n20062146.pdf (400.38 kB)
Download file

UCP3 protein regulation in human skeletal muscle fibre types I, IIa andIIx is dependent on exercise intensity.

Download (400.38 kB)
journal contribution
posted on 2003-08-01, 00:00 authored by Aaron RussellAaron Russell, E Somm, M Praz, A Crettenand, O Hartley, A Melotti, J P Giacobino, P Muzzin, C Gobelet, O Deriaz
It has been proposed that mitochondrial uncoupling protein 3 (UCP3) behaves as an uncoupler of oxidative phosphorylation. In a cross-sectional study, UCP3 protein levels were found to be lower in all fibre types of endurance-trained cyclists as compared to healthy controls. This decrease was greatest in the type I oxidative fibres, and it was hypothesised that this may be due to the preferential recruitment of these fibres during endurance training. To test this hypothesis, we compared the effects of 6 weeks of endurance (ETr) and sprint (STr) running training on UCP3 mRNA expression and fibre-type protein content using real-time PCR and immunofluorescence techniques, respectively. UCP3 mRNA and protein levels were downregulated similarly in ETr and STr (UCP3 mRNA: by 65 and 50 %, respectively; protein: by 30 and 27 %, respectively). ETr significantly reduced UCP3 protein content in type I, IIa and IIx muscle fibres by 54, 29 and 16 %, respectively. STr significantly reduced UCP3 protein content in type I, IIa and IIx muscle fibres by 24, 31 and 26 %, respectively. The fibre-type reductions in UCP3 due to ETr, but not STr, were significantly different from each other, with the effect being greater in type I than in type IIa, and in type IIa than in type IIx fibres. As a result, compared to STr, ETr reduced UCP3 expression significantly more in fibre type I and significantly less in fibre types IIx. This suggests that the more a fibre is recruited, the more it adapts to training by a decrease in its UCP3 expression. In addition, the more a fibre type depends on fatty acid beta oxidation and oxidative phosphorylation, the more it responds to ETr by a decrease in its UCP3 content.



Journal of physiology






855 - 861


Blackwell Publishing Ltd


London, England







Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

The Physiological Society, 2003