File(s) under permanent embargo

Understanding water and ion transport behaviour and permeability through poly(amide) thin film composite membrane

journal contribution
posted on 01.08.2015, 00:00 authored by Weimin Gao, Fenghua SheFenghua She, Jane ZhangJane Zhang, Ludovic DumeeLudovic Dumee, Li He, Peter HodgsonPeter Hodgson, Lingxue KongLingxue Kong
Molecular dynamics (MD) together with the adaptive biasing force (ABF) and metadynamics free energy calculation methods was used to investigate the permeation properties of salt water through poly(amide) thin film composite reverse osmosis membranes. The thin films were generated by annealing an amorphous cell of poly(amide) chains through an MD method. The MD results showed they have typical structural properties of the active layer of thin film composite membranes and comparable water diffusivity (2.13×10-5cm2/s for the film with a density of 1.06g/cm3) and permeability (9.27×10-15cm3cm/cm2sPa) to experimental data. The simulations of water permeation through the films under different transmembrane pressures revealed the behaviours of water molecules in the thin films and the dynamic regimes of water permeation, including Brownian diffusion, flush and jump diffusion regimes. The intermolecular interactions of water and ions with poly(amide) chains showed a strong dependence on the local structure of films. The attraction between water and ploy(amide) molecules can be up to 8.5kcal/mol in dense polymer regions and 5kcal/mol in the pores of about 3nm. The ABF and metadynamics simulations produced the profiles of free energy potential of water and ions along the depth of the thin films, which provided important information for quantitatively determining the barrier energy required for water permeation and rejection of ions. The thin film with a density of 1.06g/cm3 and a thickness of 6nm offers a rejection to Na+ but a slight absorption of Cl- (0.25kcal/mol) at 0.3-0.4nm distance to its surface. Water molecules must overcome 63kcal/mol energy to move to the centre of the film. The dependences of the barrier energy and the water-polymer interaction energy on the local free volume size in the thin film were analysed. The simulations of water permeation under high transmembrane pressures showed a nonlinear response of the concentration and distribution of water molecules in the film to the imposed pressure. Compaction of the film segments close to the porous substrate and water congestion in dense regions significantly influenced the water permeation when the membrane was operated under pressures of more than 3.0MPa.

History

Journal

Journal of Membrane Science

Volume

487

Pagination

32 - 39

Publisher

Elsevier

ISSN

0376-7388

eISSN

1873-3123

Language

eng

Publication classification

C Journal article; C1 Refereed article in a scholarly journal

Copyright notice

2015, Elsevier