Upgrading arc median shortest path problem for an urban transportation network
journal contribution
posted on 2009-01-01, 00:00authored byKali Prasad Nepal, D Park, C H Choi
In this paper, we propose an algorithm for an upgrading arc median shortest path problem for a transportation network. The problem is to identify a set of nondominated paths that minimizes both upgrading cost and overall travel time of the entire network. These two objectives are realistic for transportation network problems, but of a conflicting and noncompensatory nature. In addition, unlike upgrading cost which is the sum of the arc costs on the path, overall travel time of the entire network cannot be expressed as a sum of arc travel times on the path. The proposed solution approach to the problem is based on heuristic labeling and exhaustive search techniques, in criteria space and solution space, respectively. The first approach labels each node in terms of upgrading cost, and deletes cyclic and infeasible paths in criteria space. The latter calculates the overall travel time of the entire network for each feasible path, deletes dominated paths on the basis of the objective vector and identifies a set of Pareto optimal paths in the solution space. The computational study, using two small-scale transportation networks, has demonstrated that the algorithm proposed herein is able to efficiently identify a set of nondominated median shortest paths, based on two conflicting and noncompensatory objectives.