Deakin University
Browse

File(s) under permanent embargo

Water-binding capacity and viscosity of Australian sweet lupin kernel fibre under in vitro conditions simulating the human upper gastrointestinal tract

journal contribution
posted on 2005-01-01, 00:00 authored by C Turnbull, A Baxter, Stuart Johnson
There is currently little understanding of the physicochemical properties in the human gastrointestinal tract of Australian sweet lupin (Lupinus angustifolius) kernel fibre (LKF), a novel food ingredient with potential for the fibre enrichment of foods such as baked goods. Since physicochemical properties of dietary fibres have been related to beneficial physiological effects in vitro, this study compared water-binding capacity and viscosity of LKF with that of other fibres currently used for fibre-enrichment of baked goods, under in vitro conditions simulating the human upper gastrointestinal tract. At between 8.47 and 11.07g water/g dry solids, LKF exhibited water-binding capacities that were significantly higher (P<0.05) than soy fibre, pea hull fibre, cellulose and wheat fibre at all of the simulated gastrointestinal stages examined. Similarly, viscosity of LKF was significantly higher (P<0.05) than that of the other fibres at all simulated gastrointestinal stages. The relatively high water-binding capacity and viscosity of LKF identified in this study suggests that this novel fibre ingredient may elicit different and possibly more beneficial physiological effects in the upper human gastrointestinal tract than the conventional fibre ingredients currently used in fibre-enriched baked goods manufacture. We are now performing human studies to investigate the effect of LKF in the diet on health-related gastrointestinal events.

History

Journal

International journal of food sciences and nutrition

Event

International journal of food sciences and nutrition

Volume

56

Issue

2

Pagination

87 - 94

Publisher

Taylor & Francis Ltd

Place of publication

Abingdon, England

ISSN

1465-3478

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2005, Taylor & Francis Group Ltd

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC