Deakin University

File(s) under permanent embargo

Winters are changing: snow effects on Arctic and alpine tundra ecosystems

Version 2 2024-06-05, 04:24
Version 1 2022-09-30, 00:23
journal contribution
posted on 2024-06-05, 04:24 authored by Christian Rixen, Toke Thomas Hoye, Petr Macek, Rien Aerts, Juha M Alatalo, Jill T Anderson, Pieter A Arnold, Isabel C Barrio, Jarle W Bjerke, Mats P Bjorkman, Daan Blok, Gesche Blume-Werry, Julia Boike, Stef Bokhorst, Michele Carbognani, Casper T Christiansen, Peter Convey, Elisabeth J Cooper, J Hans C Cornelissen, Stephen J Coulson, Ellen Dorrepaal, Bo Elberling, Sarah C Elmendorf, Cassandra Elphinstone, T'ai GW Forte, Esther R Frei, Sonya R Geange, Friederike Gerhrmann, Casey Gibson, Paul Grogan, Aud Helen Halbritter, John Harte, Gregory HR Henry, David W Inouye, Rebecca E Irwin, Gus Jespersen, Ingibjorg Svala Jonsdottir, Ji Young Jung, David H Klinges, Gaku Kudo, Juho Lamsa, Hanna Lee, Jonas J Lembrechts, Signe Lett, Joshua Scott Lynn, Hjalte MR Mann, Mikhail Mastepanov, Jennifer Morse, Isla H Myers-Smith, Johan Olofsson, Riku Paavola, Alessandro Petraglia, Gareth K Phoenix, Philipp Semenchuk, Matthias B Siewert, Rachel Slatyer, Marko J Spasojevic, Katharine Suding, Patrick Sullivan, Kimberly L Thompson, Maria Vaisanen, Vigdis Vandvik, Susanna VennSusanna Venn, Josefine Walz, Robert Way, Jeffrey M Welker, Sonja Wipf, Shengwei Zong
Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season’s start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover’s role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates.



Arctic Science




Ottawa, Canada







Publication classification

C1 Refereed article in a scholarly journal


Canadian Science Publishing