ß- adrenergic stimulation of skeletal muscle HSL can be overridden by AMPK signaling
journal contribution
posted on 2004-09-01, 00:00authored byMatthew Watt, G Steinberg, S Chan, Andrew GarnhamAndrew Garnham, B Kemp, M Febbraio
Hormone-sensitive lipase (HSL), an important regulatory enzyme for triacylglycerol hydrolysis within skeletal muscle, is controlled by β-adrenergic signaling as well as intrinsic factors related to contraction and energy turnover. In the current study, we tested the capacity of 5′AMP-activated protein kinase (AMPK) to suppress β-adrenergic stimulation of HSL activity. Eight male subjects completed 60 min of cycle exercise at 70% VO2 peak on two occasions: either with normal (CON) or low (LG) pre-exercise muscle glycogen content, which is known to enhance exercise-induced AMPK activity. Muscle samples were obtained before and immediately after exercise. Pre-exercise glycogen averaged 375 ± 35 and 163 ± 27 mmol·kg–1 dm for CON and LG, respectively. AMPK α-2 was not different between trials at rest and was increased (3.7-fold, P<0.05) by exercise during LG only. HSL activity did not differ between trials at rest and increased (0 min: 1.67 ± 0.13; 60 min: 2.60 ± 0.26 mmol·min–1·kg–1 dm) in CON. The exercise-induced increase in HSL activity was attenuated by AMPK α-2 activation in LG. The attenuated HSL activity during LG occurred despite higher plasma epinephrine levels (60 min: CON, 1.96 ± 0.29 vs LG, 4.25 ± 0.60 nM, P<0.05) compared with CON. Despite the attenuated HSL activity in LG, IMTG was decreased by exercise (0 min: 27.1 ± 2.0; 60 min: 22.5 ± 2.0 mmol.kg–1 dm, P<0.05), whereas no net reduction occurred in CON. To confirm the apparent effect of AMPK on HSL activity, we performed experiments in muscle cell culture. The epineprine-induced increase in HSL activity was totally attenuated (P<0.05) by AICAR administration in L6 myotubes. These data provide new evidence indicating that AMPK is a major regulator of skeletal muscle HSL activity that can override β-adrenergic stimulation. However, the increased IMTG degradation in LG suggests factors other than HSL activity are important for IMTG degradation.
History
Journal
The FASEB journal : official publication of the Federation of American Societies for experimental biology
Volume
18
Issue
12
Pagination
1445 - 1446
Publisher
Federation of American Societies for Experimental Biology