δ-equality of intuitionistic fuzzy sets: a new proximity measure and applications in medical diagnosis
Version 2 2024-06-06, 10:46Version 2 2024-06-06, 10:46
Version 1 2019-05-17, 13:45Version 1 2019-05-17, 13:45
journal contribution
posted on 2024-06-06, 10:46 authored by RT Ngan, M Ali, LH Son© 2017, Springer Science+Business Media New York. Intuitionistic fuzzy set is capable of handling uncertainty with counterpart falsities which exist in nature. Proximity measure is a convenient way to demonstrate impractical significance of values of memberships in the intuitionistic fuzzy set. However, the related works of Pappis (Fuzzy Sets Syst 39(1):111–115, 1991), Hong and Hwang (Fuzzy Sets Syst 66(3):383–386, 1994), Virant (2000) and Cai (IEEE Trans Fuzzy Syst 9(5):738–750, 2001) did not model the measure in the context of the intuitionistic fuzzy set but in the Zadeh’s fuzzy set instead. In this paper, we examine this problem and propose new notions of δ-equalities for the intuitionistic fuzzy set and δ-equalities for intuitionistic fuzzy relations. Two fuzzy sets are said to be δ-equal if they are equal to an extent of δ. The applications of δ-equalities are important to fuzzy statistics and fuzzy reasoning. Several characteristics of δ-equalities that were not discussed in the previous works are also investigated. We apply the δ-equalities to the application of medical diagnosis to investigate a patient’s diseases from symptoms. The idea is using δ-equalities for intuitionistic fuzzy relations to find groups of intuitionistic fuzzified set with certain equality or similar degrees then combining them. Numerical examples are given to illustrate validity of the proposed algorithm. Further, we conduct experiments on real medical datasets to check the efficiency and applicability on real-world problems. The results obtained are also better in comparison with 10 existing diagnosis methods namely De et al. (Fuzzy Sets Syst 117:209–213, 2001), Samuel and Balamurugan (Appl Math Sci 6(35):1741–1746, 2012), Szmidt and Kacprzyk (2004), Zhang et al. (Procedia Eng 29:4336–4342, 2012), Hung and Yang (Pattern Recogn Lett 25:1603–1611, 2004), Wang and Xin (Pattern Recogn Lett 26:2063–2069, 2005), Vlachos and Sergiadis (Pattern Recogn Lett 28(2):197–206, 2007), Zhang and Jiang (Inf Sci 178(6):4184–4191, 2008), Maheshwari and Srivastava (J Appl Anal Comput 6(3):772–789, 2016) and Support Vector Machine (SVM).
History
Journal
Applied IntelligenceVolume
48Pagination
499-525Location
New York, N.Y.ISSN
0924-669XeISSN
1573-7497Language
EnglishPublication classification
C1.1 Refereed article in a scholarly journalCopyright notice
2017, Springer Science+Business Media New YorkIssue
2Publisher
SPRINGERUsage metrics
Keywords
Science & TechnologyTechnologyComputer Science, Artificial IntelligenceComputer Sciencedelta-equalitiesAlgebraic operationsIntuitionistic fuzzy setIntuitionistic fuzzy relationsMedical diagnosisGEO-DEMOGRAPHIC ANALYSISRAY IMAGE SEGMENTATIONCOLD-START PROBLEMRECOMMENDER SYSTEMSSIMILARITY MEASURESCLUSTERING METHODDISTANCE MEASUREHU-FCFALGORITHMFRAMEWORK4602 Artificial intelligence4605 Data management and data science
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC