Deakin University
Browse

File(s) under permanent embargo

Least squares learning and the US treasury bill rate

report
posted on 2013-01-01, 00:00 authored by Sagarika MishraSagarika Mishra, S Dhole
Understanding how agents formulate their expectations about Fed behavior is important for market participants because they can potentially use this information to make more accurate estimates of stock and bond prices. Although it is commonly assumed that agents learn over time, there is scant empirical evidence in support of this assumption. Thus, in this paper we test if the forecast of the three month T-bill rate in the Survey of Professional Forecasters (SPF) is consistent with least squares learning when there are discrete shifts in monetary policy. We first derive the mean, variance and autocovariances of the forecast errors from a recursive least squares learning algorithm when there are breaks in the structure of the model. We then apply the Bai and Perrron (1998) test for structural change to a forecasting model for the three month T-bill rate in order to identify changes in monetary policy. Having identified the policy regimes, we then estimate the implied biases in the interest rate forecasts within each regime. We find that when the forecast errors from the SPF are corrected for the biases due to shifts in policy, the forecasts are consistent with least squares learning.

History

Pagination

1-19

Language

eng

Notes

School working paper (Deakin University. School of Accounting, Economics and Finance) ; 2013/05 Understanding how agents formulate their expectations about Fed behavior is important for market participants because they can potentially use this information to make more accurate estimates of stock and bond prices. Although it is commonly assumed that agents learn over time, there is scant empirical evidence in support of this assumption. Thus, in this paper we test if the forecast of the three month T-bill rate in the Survey of Professional Forecasters (SPF) is consistent with least squares learning when there are discrete shifts in monetary policy. We first derive the mean, variance and autocovariances of the forecast errors from a recursive least squares learning algorithm when there are breaks in the structure of the model. We then apply the Bai and Perrron (1998) test for structural change to a forecasting model for the three month T-bill rate in order to identify changes in monetary policy. Having identified the policy regimes, we then estimate the implied biases in the interest rate forecasts within each regime. We find that when the forecast errors from the SPF are corrected for the biases due to shifts in policy, the forecasts are consistent with least squares learning.

Publication classification

CN.1 Other journal article

Copyright notice

2013, The Authors

Publisher

Deakin University, School of Accounting, Economics and Finance

Place of publication

Geelong, Vic.

Series

School Working Paper - Financial Econometrics Series ; SWP 2013/05

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC