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ABSTRACT 

 

Widespread use of chromium (Cr) in industrial processes and its subsequent discharge 

has caused environmental pollution due to the toxic and mutagenic nature of this 

metal. Microorganisms populating in Cr contaminated environment possess diverse 

mechanisms for its detoxification. A detailed understanding of the molecular 

mechanism of Cr detoxification in filamentous fungi has not been reported. The work 

of this thesis characterized the underlying mechanisms of interaction of Cr in a Cr 

tolerant fungus, Aspergillus flavus strain SFL, isolated from tannery effluent loaded 

site, in comparison to a non-tolerant Aspergillus flavus strain A1120. 

The SFL strain was found to tolerate substantially high levels of toxic Cr (VI) than 

A1120 strain and maintained growth in 100 mg L-1 Cr while the growth of A1120 

strain was impaired with 50 mg L-1 Cr in the medium. The SFL strain showed 

complete depletion of Cr (VI) within 72 h at 100 mg L-1 initial concentration where as 

A1120 could reduce up to 85 % Cr (VI). SFL internalized more Cr into its cytoplasm 

whereas A1120 showed higher total uptake (cell wall bound as well as intracellular). 

Cr uptake was reduced in the presence of different metabolic inhibitors in SFL strain 

indicating metabolically active energy dependent chromium uptake system whereas in 

A1120 a passive mode of Cr uptake (not dependent on cells metabolism) was 

observed. Proteomic study revealed substantial differences between SFL and A1120 

strain at the cellular level as indicated by differential expression pattern of proteins. 

Induction of ~35kDa protein (perhaps a glutathione synthetase) upon Cr treatment in 

SFL strain, not induced in A1120 indicated its potential involvement in conferring 

tolerance to Cr in SFL strain.  

The characteristic physical and chemical interactions occurring at the cell surface 

between Cr and fungal cell were studied using scanning electron microscopy (SEM), 



xxii 
 

transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), 

fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy 

(XPS) were found to be similar in both SFL and A1120 strains. The combined SEM-

EDX study revealed that the Cr (VI) exposed biomass of both SFL and A1120 was 

prominently different with irregular Cr deposits on the hyphal surfaces than the 

unexposed biomass having smooth surface. TEM-EDX study showed Cr is localized 

on fungal cell wall as well as in cell cytoplasm in both SFL and A1120 strain. The 

functional groups responsible for Cr (VI) binding was identified by fourier transform 

infrared (FTIR) spectroscopy which demonstrated involvement of carboxyl, amine and 

hydroxyl functionalities as main Cr binding sites present on the fungal cell wall in both 

the strain. Analysis of Cr speciation done via X-ray photoelectron spectroscopy (XPS) 

detected the presence of only Cr (III) corresponding to Cr (OH)3 on the cell wall 

indicating, the reduced Cr (III) specie is precipitated on the cell wall in both the fungal 

strains.  

Investigations using a genomic approach allowed the mapping of genes involved in Cr 

tolerance/accumulation. BLAST searches were carried out to identify putative Cr 

uptake and efflux genes namely, putative ABC efflux transporter, putative Atm1, 

putative Hmt1, putative sulphate transporter that might have a potential role in Cr 

resistance. These putative Cr transporter genes were tested for their responsiveness to 

short term Cr (VI) exposures at concentrations 50 mg L-1 and 100 mg L-1 by 

quantitative real time (qRT) PCR.  Significant upregulation of sulphate uptake gene 

after 1 h of Cr exposure suggested it may have a potential role in uptake of Cr in both 

SFL and A1120 strains. A key finding of this study was the significant upregulation of 

Atm1 gene in SFL strain after Cr exposure suggesting it may function in mediating Cr 

tolerance in SFL by defending against mitochondrial damage and the non-

responsiveness of this gene in A1120 suggested sensitivity to Cr by causing 
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mitochondrial toxicity. The role of ABC efflux and Hmt1 gene remained unclear 

which indicated the need for a long term Cr exposure study. 

The data presented in this thesis provides preliminary data on the underlying molecular 

mechanisms of Cr tolerance in Aspergillus flavus fungi and demonstrates the presence 

of intrinsic intracellular mechanism of Cr accumulation as well as upregulation of 

genes mediating tolerance and survival at high Cr. This property can be genetically 

improved to use SFL as a potential tool for bioremediation and /or biomining purpose. 
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CHAPTER 1: Introduction 
 

 
1.1 Background and foundation of thesis 

 
1.1.1 The problem: Chromium ­ a toxic pollutant 
 

Chromium (Cr) is an important heavy metal that occurs naturally in the 

environment. Today it is one of the most problematic environmental pollutants due 

to its toxicity (Mishra and Bhargava, 2016). Cr and its compounds are universally 

used in various industrial practices as diverse as leather tanning, chrome plating, 

wood preservation, textile dyeing and pigmentation, manufacturing pulp and paper 

etc. As a result, a large and alarming amount of Cr laden waste is discharged into the 

environment mainly to soils and waters that leads to Cr pollution, a serious 

environmental pollution problem worldwide (Gu et al., 2015, Ilias et al., 2011, 

Tripathi et al., 2011, Agrawal et al., 2006). The two most stable forms of Cr 

occurring in nature are the  trivalent Cr, [Cr(III)] and the hexavalent Cr,  [Cr (VI)] 

that differ in toxicity, bioavailability and mobility (UdDin et al., 2015). Cr (III) is 

scarcely soluble and less toxic form (Maqbool et al., 2015) and is an essential 

nutrient that plays a significant role in glucose metabolism (Cefalu and Hu, 2004). 

On the other hand, Cr (VI) is the most toxic state of Cr and commonly exists in the 

form of ions as chromate (CrO42) or dichromate (Cr2-O3
2-). It is a strong oxidising 

agent, highly soluble, highly carcinogenic and teratogenic in nature has been listed 

as class-A human carcinogen according to the United States Environmental 

Protection Agency (US-EPA) (Maqbool et al., 2015, Desai et al., 2008). Efficient 

and environment friendly methods are thus needed to be developed to reduce the 

heavy metal content (Juang and Shiau, 2000, Yan and Viraraghavan, 2001). 
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1.1.2 The solution: Cr tolerant microorganisms 

Several methods have been devised for the treatment and removal of heavy metals 

from aqueous streams including chemical precipitation, lime coagulation, ion 

exchange, reverse osmosis and solvent extraction (Ahalya et al., 2003). These 

techniques apart from being economically expensive have disadvantages such as 

incomplete metal removal, high reagent and energy requirements, and generation of 

toxic sludge or other waste products that require disposal (Juang and Shiau, 2000, 

Yan and Viraraghavan, 2001). The search for new technologies involving the 

removal of toxic metals from wastewaters has directed attention towards 

microorganisms populating heavy metal contaminated sites. These microbes adapt to 

survive in toxic conditions by developing tolerance/resistance are termed metal-

tolerant (Morais et al., 2011, Krumov et al., 2009). A large number of Cr 

tolerant/resistant microorganisms including bacteria (Ran et al., 2016, Sharma and 

Adholeya, 2012; McLean and Beveridge, 2001), microalgae (Han et al., 2007, Deng 

et al., 2009), yeast (Ksheminska et al., 2008; Chatterjee et al., 2012, Ram´ırez-

Ram´ırez et al., 2004) and fungi (Chang et al., 2016, Alonso et al., 2014, Shugaba et 

al., 2012, Sharma and Adholeya, 2011) have been identified and studied extensively 

for their possible role to remove Cr (VI) from aqueous solutions.  Filamentous fungi 

in general are highly promising candidates well known for their ability to tolerate 

and remove metals from the environment by utilizing different mechanisms (Puglisi 

et al., 2012, Iram et al., 2013).   

 

1.1.3 The missing link: Cellular and molecular mechanism of cell­Cr 

interaction 

Despite numerous researches published on the use of fungi for Cr (VI) removal and 

various resistance mechanisms proposed to cope with chromate toxicity relying on 
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their capability to modulate the toxic concentrations of this metal ion there is 

insufficient or no information available on large scale industrial applications 

(Dhankhar and Hooda, 2011, Poljsak et al., 2010). The molecular mechanisms of Cr 

biotoxicity still remain unclear, which prevents the development of an optimal 

strategy for its detoxification and bioremediation of industrial wastewaters 

(Ksheminska et al., 2008). Moreover, a detailed understanding of the of Cr 

interactions in Aspergillus flavus (A. flavus), a potential remediation tool is still 

unexplored.   

With this background, this thesis aims to probe the underlying mechanism of cell-Cr 

interactions in a filamentous fungus, Aspergillus flavus strain SFL previously 

isolated from Cr contaminated site. The study focuses on examining different facets 

of fungal interplay with Cr including physiological, topographical and molecular 

level. Overall, a model has been proposed that compares the cellular processing of 

Cr by two strains of Aspergillus flavus, the Cr tolerant SFL strain and the non-

tolerant strain A1120. 

 

1.2 Hypothesis:  

The hypothesis of the present study originated from the fact that metal tolerant 

microbes develop specific strategies for their survival under stress. Based on this, I 

hypothesize that: 

1. Cr-tolerant fungi possess active defense mechanisms of tolerance, reduction and 

intracellular transport of Cr which could lead to their application to develop a 

novel Cr hyper accumulator strain with enhanced Cr tolerance and accumulation 

properties.  
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2. Fungi able to accumulate Cr may also serve as potential biofactories for the 

synthesis of Cr (III) biocomplexes, probably in nano form with potential 

industrial and pharmacological applications.  

 

1.3 Thesis Objectives 

Keeping in view the many potential applications of Cr tolerant fungi in future, the 

following objectives are set forth for the proposed work: 

 1. To compare the chromium uptake and reduction rates in tolerant and non-tolerant 

strains of fungi.  

2. To characterize the chromium complexes formed by fungi, their speciation and 

intracellular localization.  

3. To identify chromium transporter genes and carry out expression analysis in 

tolerant and non-tolerant fungi. 

 

1.4 Thesis outline 

The thesis is divided into seven Chapters. Chapter 1 outlines the background and 

foundation of thesis, aim of the present study, research hypothesis and specific 

objectives. Chapter 2 discusses the review of literature related to aim of the thesis. In 

brief, heavy metal pollution, conventional and biological methods of metal removal, 

Cr toxicity and its biological impacts, various mechanisms of Cr resistance in 

different microorganisms has been discussed in detail. Chapter 3 describes the 

material and experimental methods used. Chapter 4 discusses the comparative 

analysis of Cr (VI) tolerance, physiological uptake and reduction in a Cr tolerant and 

non-tolerant strain of A. flavus.  Chapter 5 demonstrates the surface phenomena of 

Cr interaction with the fungi, Cr localisation and speciation. Chapter 6 deals with the 
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identification, characterisation and expression analysis of Cr tolerant genes and 

delineates the molecular mechanism of Cr tolerance in A. flavus. Chapter 7 

summaries the work done and highlights the major conclusions of the study. The 

gaps in the present study and the future direction for further research have been 

presented. 
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CHAPTER 2: Literature review 

2.1 Heavy metals  

Naturally occurring elements in the earth’s crust having density greater than 5 g cm-3 

are known as heavy metals and are comprised of 40 elements (Passow et al., 1961). 

Metal ions are required as trace elements for animals, plants and microorganisms; 

however they become toxic at high concentrations. Pollution caused by the 

discharge of excessive amount of heavy metals into the environment has become a 

serious issue worldwide because of the disastrous effect on living organisms. Recent 

technological developments and fast industrialization significantly contributes to the 

emission of heavy metals into the environment (Abbas et al., 2016). This poses a 

major threat to the environment and well as to public health (Cerbasi and Yetis, 

2001). According to the World Health Organization, heavy metals that require 

urgent consideration include chromium (Cr), lead (Pb), cadmium (Cd), mercury 

(Hg), nickel (Ni), cobalt (Co), copper (Cu) and zinc (Zn), since they are prone to 

prevail and accumulate in the environment due to their non-biodegradable nature 

(WHO, Geneva 2010,  Kobya et al., 2005).  

 

2.2 Conventional methods of heavy metal removal 

Due to this persistent problem of heavy metal pollution, a prior treatment of 

industrial wastewater is essential before release into the environment. Some widely 

used conventional methods for removal of heavy metals from polluted soil and water 

are explained below: 
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2.2.1 Membrane filtration: 

Membrane filtration is an effective method for the industrial effluent treatment due 

to its ability to remove inorganic pollutants including heavy metals, as well as 

suspended solid and organic compounds. On the basis of particle size retained at the 

membrane during filtration process it is further categorised as (a) ultrafiltration, (b) 

nanofiltration and (c) reverse osmosis (Kurniawan et al., 2006). 

 

2.2.1.1 Reverse Osmosis: 

Reverse Osmosis is the process of removal of heavy metals using cellophane like 

semi-permeable membrane under high pressure. In this process the purified water is 

allowed to pass through the membrane while the contaminants are rejected (Fu and 

Wang, 2011). The main disadvantage of the process is the high cost involved 

(Ahalya et al., 2003).  

 

2.2.1.2 Ultra-filtration:  
 
Ultrafiltration is a pressure-driven purification process in which heavy metals, 

macromolecules and suspended solids are separated on an ultrafiltration membrane 

according to the pore size (5-20nm) and molecular weight of the compound. Low 

molecular weight particles/complexes are passed through the membrane while the 

larger and heavy molecules are retained (Fu and Wang, 2011, Vigneswaran et al., 

2004). Generation of sludge is the major drawback of this process (Ahalya et al., 

2003).   

 

2.2.1.3 Nanofilteration : 

Nanofiltration is a separation technique intermediatory between reverse osmosis and 

ultrafiltration. In this process the ionic species are separated on a nanofiltration 
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membrane on the basis of charge and pore size (Seidel et al., 2001, Fu and Wang, 

2011) where molecules as small as one nm in size can be retained on the 

nanofiltration membrane. Insufficient separation and membrane fouling are the main 

drawbacks of this method (Van Der Bruggen et al., 2008). 

 

2.2.2 Electrodialysis: 

Electrodialysis is a process where ionized species of heavy metal from the solution 

are separated using charged ion exchange membrane under the influence of electric 

field. When electric potential is applied between the electrodes, the anions migrate 

toward the anode and the cations toward the cathode, crossing the ion-exchange 

membranes (Chen, 2004). Corrosion of electrodes becomes a limiting factor and the 

generation of metal hydroxides that blocks the membrane is a major disadvantage of 

the process (Ahalya et al., 2003, Kurniawan et al., 2006).  

 

2.2.3 Ion­exchange:  
 
Ion-exchange includes the exchange of heavy metal ions from aqueous solutions by 

employing an ion exchanger, commonly a solid synthetic organic ion exchange 

resins with ions bound to the exchange resin by electrostatic forces. Incomplete 

removal of some ions is the disadvantages of this method (Kurniawan et al., 2006, 

Ahalya et al., 2003). 

 

2.2.4 Chemical precipitation:  

Chemical precipitation is the process in which heavy metals are precipitated from 

the aqueous solution as insoluble metal hydroxides (Wang et al., 2004). Precipitants 

like alum, lime, lime stone, iron salts and various organic polymers are added in 

order to precipitate heavy metals. It is relatively slow process that generates 
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voluminous amount of toxic sludge generated which needs further processing is the 

major drawback (Aziz et al., 2008, Ahalya et al., 2003). 

 

2.2.5 Phytoremediation:  

Phytoremediation is the process in which plants are used for the removal of 

contaminating pollutants and metals from soil, sediment, and water. Longer time 

required in cleaning up of metals and plant regeneration for continued accumulation 

is the main disadvantages (Ahalya et al., 2003).  

These techniques have many disadvantages like partial removal of metal, 

high energy input, greater reagent need, and generation of sludge containing toxic 

substances that need disposal. There is a need to further develop them as economical 

and nature friendly procedures to minify heavy metal content from the environment 

(Juang and Shiau, 2000, Yan and Viraraghavan, 2001). In search of new 

technologies for metal removal, researchers have directed their interest towards 

bioremediation, which rely on ability of various microorganisms to remove metals. 

 
2.3 Bioremediation 

It can be described as the capability of microbial biomass to remediate pollutants 

such as toxic organic compounds, heavy metals from soil, water, wastewater or any 

other contaminated site (EPA, 2016). Bioremediation of heavy metals such as 

Cr(VI), Cu(II), As(V), and Cd(II) depends upon their transformation to less toxic 

form and/or immobilisation  is based on their conversion to a less toxic form and/or 

immobilization (Alvarez et al., 2016). There are some significant advantages of this 

method compared to the chemical treatments (Kratochvil and Volesky, 1998) such 

as: less costly, more efficient, minimum chemical and biological sludge generation, 

renewal capacity of biosorbent, and possibility of metal recovery.  
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Depending on the cellular metabolism there are two ways by which metals are 

removed by microorganisms, as indicated by their intricate cellular structure.  

 

2.3.1 Non -metabolism dependent “biosorption” 

The microbial biomass has an inherent capacity to adsorb metals due to the presence 

of functional groups such as -NH2, -COOH, -SH, and -OH on microbial cell walls, 

which act as binding sites for interaction of metal ions (Kuyucak and Volesky, 

1988). The microbial biosorbents can be specific for metal or have no specific 

priority. The microbial biomass can be from fungi, yeast, bacteria as by-product 

biomass or from marine algae and seaweeds (Volesky, 1994). Both prokaryotic and 

eukaryotic microorganisms such as bacteria, algae, fungi and yeasts have been used 

for metal biosorption (Volesky, 1986). In this process, the metal gets biosorbed on 

the cell wall of microbes as a result of different physical and chemical reactions. It 

occurs due to the presence of van der Waals' forces. The string electrostatic forces 

between the metal ions and cell wall of microbes was assumed to be responsible for 

the biosorption of uranium, cadmium, zinc, and cobalt by non-living algal, fungal 

and yeast biomass (Kuyucak and Volesky, 1988). These interactions were proved to 

be associated with biosorption of Cu2+ by bacterium Zoogloea ramigera and alga 

Chiarella vulgaris (Aksu et al., 1992). This process is comparatively quicker and 

reversible (Kuyucak and Volesky, 1988). This further includes ion exchange and 

chemical sorption. 

 

2.3.1.1. Ion exchange: In this process, the divalent cations interchange with the 

antagonistic ions of the polysaccharides of microbial cell wall. For example, the 

alginates of marine algae exists as salts of potassium, sodium, calcium and 

magnesium interchange with the antagonistic ions of cobalt, copper, cadmium and 
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zinc, leading to the sequestration of heavy metals by microorganisms (Kuyucak and 

Volesky, 1988). Fungus Ganoderma lucidium (Muraleedharan and Venkobachr, 

1990) and Aspergillus (Ahalya et al., 2003) take up copper using this phenomena. 

 

2.3.1.2 Complexation: Another method for metal removal from solutions is by 

formation of complexes on the cell surface once the metal and the dynamic groups 

interact. Both physical adsorption and formation of coordination bonds between 

metals and amino and carboxyl groups of the polysaccharides of cell wall, are 

involved in the biosorption of copper in C. vulgaris and Z. ramigera (Aksu et al., 

1992). Complexation has been shown as the sole mechanism that enables calcium, 

magnesium, cadmium, zinc, copper and mercury to be accumulated by 

Pseudomonas syringae. In addition microorganisms also release acids like citric, 

oxalic, gluconic, fumaric, lactic and malic acids, that interchelate with toxic metals 

giving rise to metallo-organic complexes that renders dissolving of metal 

compounds ultimately removal from the surface (Ahalya et al., 2003). 

 

2.3.2 Metabolism dependent “bioaccumulation” 

The transport of heavy metal ions through the cellular membrane of microorganisms 

is a metabolism dependent biosorption, which implies that this type of phenomena 

occurs only in viable cells. The dynamic defence system of the microorganism, 

which responds in the presence of toxic metal, may be associated with this 

mechanism (Ahalya et al., 2003). It could be assumed that, the metabolism 

dependent biosorption is directed by the similar mechanism used for the import of 

metabolically essential ions like potassium, magnesium and sodium. Such ions 

having same charge and ionic radius may confuse the metal transport system 

(Ahalya et al., 2003).  
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2.3.3 Biotransformation: 

Biotransformation is a crucial step that involves reduction of toxic metal to its less 

toxic form. This process is enhanced by employing metal reducing microorganisms. 

Biological reduction of metals is an effective mode of detoxification from polluted 

sites and therefore metal resistant microorganisms have a potential use in 

bioremediation (Jain et al., 2012). This can be further categorised into direct 

(enzyme mediated reduction) or indirect reduction (by reducing compounds 

produced by micro-organisms). A table summarising different mechanisms of 

bioremediation of heavy metals with special focus on Cr is given (Table 2.2).  

 

2.4 Aspergillus flavus: 

Kingdom Fungi is one of the most diverse groups of Eukaryotes. With 

approximately 5.1 million species present in this kingdom, about 100,000 species 

have been identified (Blackwell, 2011; Hibbett and Taylor, 2013, Kirk et al., 2008). 

Fungi are heterotrophic organisms that possess cell wall made up of chitin and grow 

in the form of single cells or as a network of multicellular mycelium. Most fungi can 

reproduce sexually and asexually via formation of spores although some species are 

not able to reproduce sexually and produce reproductive structures, but some species 

are not capable of forming specialized reproductive structures and populate entirely 

by vegetative growth (Wang et al., 2009). Aspergillus flavus is a filamentous fungi 

belonging to the class Euromycetes and order Eurotiales. It was first discovered by 

Link in 1809.  Eurotiales are sac fungi possessing three families, 49 genera and 928 

species (Kirk et al, 2008). All the sequenced genomes in order Eurotiales are 

Aspergillus species belonging to large genus “Aspergillus” and also including  
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Mechanism of 
bioremediation 

Description Heavy metals and 
microorganism 

Reference 

Biosorption 

Adsorption of Cr 
(VI) to microbial 
cells 

Cu, Zn, Cd, Pb 
(Pseudomonas aeruginosa ) 

 
Cr(VI) (Arthrobactor 

Viscosus) 
 

U (Pleurotus ostreatus) 
 

Hg, Cu, Pb (Cryptococcus sp. 
AH-13, Candida 

palmioleophila KB-6) 
 

Hg (Aspergillus versicolor) 

Zolgharnein et 
al., 2010 
 
Hlihor et al., 
2016 
 
Zhao et al., 
2016 
 
Ngo, 2016 
 
 
Das et al., 
2009 

Ion exchange 

Metal cation 
interchange with the 
antagonistic ions of 
the polysaccharides 
of microbial cell 
wall 

Cu (Ganoderma lucidium) 
 
 
 

Cu (Aspergillus) 

Muraleedhara
n and 
Venkobachr, 
1990 
Ahalya et al., 
2003 

Complexation 

Complex formation 
between metals and 
dynamic groups 
present on microbial 
cell 

Ca, Mg, Cd, Zn, Cu, Hg 
(Pseudomonas syringae) 

 
Cu (C. vulgaris and Z. 

ramigera) 

Ahalya et al., 
2003 
 
Aksu et al., 
1992 

Anionic 
adsorption 

Electrostatic 
interaction where 
metal oxy anion 
bind to the cationic 
functional groups on 
the cell surface 

Cr (VI) (Pseudomoas putida) 
Garg et al., 

2013 

Adsorption- 
coupled 

reduction 

Metal reduction 
followed by 
adsorption to 
biomass in the 
presence of acidic 
pH 

Cr (VI) (Coriolus versicolor) 
Sanghi et al., 

2009 

Anionic and 
cationic 

adsorption 

Partial reduction of 
Cr(VI) to Cr (III) 
followed by 
adsorption of both 
cationic and anionic 
Cr specie 

Cr (VI) (Agricultural solid 
waste) Namasivayam 

and 
Sureshkumar, 

2008 

Reduction and 
anionic 

adsorption 

Partial reduction of 
Cr (VI) to Cr (III) 
where only anionic 
Cr (VI) is adsorbed 
to cell biomass 

Cr (VI) (Larix 
leptolepis Gold.)  Aoyama, M. 

and Tsuda, 
2001 

Table continues on next page… 
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Mechanism of bioremediation 
Description Heavy metals and 

microorganism 
Reference 

Bioaccumulation 

Heavy metal 
transport across 
the cellular 
membrane of 
microbes 

Cr (Pichia 
guilliermondii) 
 
Co+ ( S. cerevisiae) 

Kaszycki et 
al., 2004 
 
White and 
Gadd, 1986 

Biotransformation/Bioreduction Redox process 
which requires 
supply of 
electrons to 
reduce metals 

Cr (VI) (Sporosarcina 
saromensis M52)  
 
 
 
Cr (Aspergillus, 
Penicillium  
Trichoderma) 

Zhao et al., 
2016 
 
 
 
 
Gouda, 2000; 
Acevedo- 
Aguilar et al., 
2006, 
Morales and 
Cristiani, 
2008 

 

Table 2.1 Summary of different mechanisms of bioremediation of chromium. 

 

Neosartorya fischeri, a telomorph of Aspergillus fischeri (Wang et al., 2009). The 

species belonging to the order Eurotiales are common and have various industrial 

and medicinal importances while some species are known human pathogen such as 

Aspergillus fumigatus (Yang et al., 2016). The genus Aspergillus can be identified 

by their characteristic conidiophores however the identification and differentiation 

of species is quite complex. Conventional taxonomy was based upon the 

morphological features along with molecular phyologentics (Klich, 2002, Mangala 

et al., 2016).  A. flavus is a saprophyte and has a world-wide distribution. It is found 

naturally in soil and over dead and decaying matter. Some microscopic features of 

A. flavus as described by Hedayati et al., 2007, are described below (Table 2.2). The 

culture of A. flavus on potato dextrose agar plate is shown (Figure 2.1). Scanning 

electron microscopy picture are shown in Figure 2.2. 
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Microscopic features Description 

Colony Granular, flat,  yellow to dark green in colour 

Conidiophores Thick walled, hyaline, coarsely roughened, ~1 mm in 

length 

Vesicles Subglobose to globose, 10–62 µm in diameters 

Phialides 

Primary branches 

Secondry brances 

Uniseriate or biseriate 

upto 10 µm in length 

upto 5 µm in length 

Conidia Globose to subglobose, 3.5 to 6 µm in diameter and 

conspicuously echinulate 

 

Table 2.2 Microscopic features of A. flvavus (Hedayati et al., 2007) 

 

 

Figure 2.1 Macroscopic features of A. flavus on potato dextrose agar 
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Figure 2.2 Scanning electron micrograph of A. flavus (a) spores (b) hyphae 

 

2.5 Chromium 

Chromium (Cr) having atomic number (24) and atomic weight (51.996) amu, is a d 

block element of the periodic table, that belongs to the group of transition metals 

(Figure 2.3). It occurs naturally in the earth’s crust as chromite ore (FeOCr2O3). It 

also disperses in air, soil and water through volcanic discharge and erosions of Cr 

bearing rocks. Amongst most abundant elements on earth’s crust, Cr acquires 

seventh position. French chemist Louis Nicolas Vauquelin first discovered Cr in a 

red lead mineral crocoite (PbCrO4) in 1797 (Mishra and Bhargava, 2016). 

 

 

Figure 2.3: General information about chromium. 
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2.5.1 Uses of Cr: A boon or a curse? 

Cr is an industrially important metal that is universally used in different industrial 

practices (Mishra and Bhargava, 2016, Pilon-Smits, 2005, Gao and Xia, 2011) in 

(Figure 2.4). The estimated yield of Cr in the world is around 107 tonnes per year; 

most of which (60-70%) is utilized in alloys, including stainless steel, and shown 

some (15%) in chemical industries, majorly in leather tanning process (Mishra and 

Bhargava, 2016, Cervantes et al., 2001, Polti et al., 2011). Due to its excessive use 

of this metal in different industrial applications a large amount of Cr is subsequently 

discharge into the environment Cr. As a result researcher’s attention is mainly drawn 

towards Cr remediation (Zayed and Terry, 2003).  

 

 

Figure 2.4: Various industrial applications of Cr and its compounds. 

 

Amongst all industrial wastes, tannery industry which commonly uses Cr for tanning 

process is one of the major causes for high influx of this metal into the biosphere. 

Tannery industry is one of the oldest and fastest growing industries in India and 

there are about 2,161 tanneries excluding cottage industries, which discharge annual 

of 9,420,000 m3 wastewater into the environment (Sharma, and Goyal, 2010). The 

process of tanning employs a Cr salt that convert hide to leather and the waste water 
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released from tanneries (tannery effluent) contain these Cr salts in excess (Sharma 

and Adholeya, 2011). The disposal of untreated effluent and sludge discharged by 

tanneries is one of the emerging problems as it contains high concentration of 

organic Cr which acts as pollutant (Apte et al., 2005). For instance, in India annually 

approximately 2000–3000 tones Cr discharges from tannery industries, having 

concentrations spanning between 2000 and 5000 mg L-1 in the aqueous effluent as 

compared to the recommended permissible discharge limits of 2 mg L-1 (Altaf et al., 

2008). As per waste water discharge standard of Central Pollution Control Board, 

New Delhi, India (CPCB, 2000-2001), the discharge concentration of Cr should not 

exceed from 0.1 mg L-1. As per the Pure Earth world’s worst pollution problem 

reports 2015 Cr is ranked 4th amongst the top six toxic threats and approximately 16 

million people are at risk to Cr exposures (Pure Earth, USA report 2015). The 

World’s Worst Polluted Places reports released by Blacksmith Institute, USA in 

2006 and 2007 also highlighted most polluted cities in India where chrome mining, 

chrome tanning, textile and other nearby industries discharge effluent containing 

higher concentration of toxic pollutants including chromium were reported. Places 

namely Sukinda valley in Orissa and Ranipet in Tamilnadu were among the top ten 

toxic threats in 2007. In Ranipet, India average concentration of chromium in 

surface water was found to be 247 µg L-1, quintuple of the recommended 

permissible limit of 49 µg L-1 (Srinivasa and Govil, 2008). It was noted that local 

tannery operations required manufacturing of Cr salts like sodium chromate 

(Na2CrO4), chromium (III) sulphate (Cr(H2O)6)2(SO4)3 used as tanning agents, as a 

consequence around 15 lakh tons of solid waste aggregated in Ranipet over a period 

of last 20 years (Tamil Nadu Pollution Control Board (TNPCB), 2010). Whereas in 

Sukinda, approximately 70 % surface water and 60 % drinking water was found 

contaminated with hexavalent chromium which approximately twice the level of 
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national and international standards (Dhakate et al., 2008). In West Berkeley, 

California, USA, groundwater Cr (VI) contamination was found as a result of 

historical industrial activities. Similar finding was reported from Ljubijansko Poije 

aquifer in Slovenia due to industries in nearby area (Brilly et al., 2003). 

 

2.5.2 Chemistry of Chromium: 

In nature, Cr occurs in different oxidation states that range from -2 to +6 described 

in Table 2.1.  But the frequently found oxidation states are Cr0, Cr (II), Cr (III) and 

Cr (VI) (Mishra and Bhargava, 2016). Of the various oxidation states, the trivalent, 

[Cr (III)] and the hexavalent state [Cr (VI)] are the most stable forms existing in the 

environment (Dayan and Paine, 2001, Thacker et al., 2006, Srivastava and Thakur, 

2006).  

 

Oxidation state Properties 

Elemental chromium  Biologically inert. Does not exist in nature 

Univalent  chromium  Unstable in nature 

Divalent Cr (II) A strong reducing agent which easily get oxidised to Cr3+ 

Trivalent Cr (III) Most stable and dominant specie of Cr. It is an essential 
nutrient required in glucose metabolism in humans. 

Quadrivalent Cr (IV) Intermediate specie of Cr formed during reduction of Cr 
(VI) to Cr (III). Toxic in nature. 

Pentavalent Cr (V) Intermediate specie of Cr formed during reduction of Cr 
(VI) to Cr (III). Toxic in nature 

Hexavalent Cr (VI) Second most stable form. It is a strong oxidising agent. 
Highly carcinogenic and mutagenic in nature. 

 

Table 2.3 Different oxidation states of Cr and their characteristics. 

 

Cr (III) is relatively insoluble and thus less toxic due to lesser availability for uptake 

(Leita et al., 2011, Beyersmann and Hartwig, 2008). On the other hand Cr(VI) is the 
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most harmful state of Cr, which commonly exists in the form of ions as hydro 

chromate (HCrO4
-), chromate (CrO4)

2- or dichromate (Cr2O3)
2-. Cr (VI) is found in 

copius amount in deposits and surface waters, and is highly soluble and mobile in 

nature than Cr (III) and all other species of Cr (James 2002, USEPA 2005).  

 

2.5.3 Cr (VI) regulations:  

The United States Environmental Protection Agency (USEPA) has designated 

chromium as the priority pollutant due to its toxic mutagenic and carcinogenic 

properties which are significantly harmful to human health (USEPA, 2000, Thacker 

et al., 2006) and also listed among the 17 chemicals that presents biggest threat to 

humans (Marsh and McInerney, 2001). Slightly elevated amount of Cr can cause 

serious negative impact on the environment. Hence strict regulations have been 

enforced by various government bodies.  The maximum threshold level of Cr (III) in 

waste and ground waters is 5 mg L-1 (Acar and Malkoc, 2004). For Cr (total), the 

maximum permissible limit (MPL) of total Cr is 2 mg L-1 for surface waters (Park et 

al., 2004) and that for Cr (VI) in drinking water has been established at a 

concentration of 0.05 mg L-1 on the basis of health considerations (Yadav et al., 

2005, WHO, 2004) whereas as per environment protection agency (EPA) drinking 

water standards, the MPL of total Cr in drinking water is 0.1 mg L-1 (US EPA, 

2011). 

 

2.5.4 Biological impacts of chromium 

The biological impact of chromium is related to its interaction with the biological 

matter. Depending upon the speciation of Cr and the representative organisms 

studied, diverse effects have been displayed (Poljsak et al., 2010). Though living 

membranes are virtually impenetrable for Cr (III), it may enter the cells by promptly 
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forming composites in aqueous environment with the most biologically applicable 

ligands (Poljsak et al., 2010). Once inside the cells Cr (III) takes part in DNA-DNA 

cross-linking (Snow and Xu, 1989) DNA-protein cross-linking (Kortenkamp et al., 

1992), DNA condensation, and decreases DNA replication fidelity (Bridgewater et 

al., 1994). Cr (VI) has pronounced toxicity effects upon entering the cellular system, 

in both prokaryotic and eukaryotic cells. The mechanism most likely contribute to 

the genotoxicity of Cr (VI) is related to the formation of transient, short lived Cr 

(IV) and/or Cr (V) complexes and free radicals during its intracellular reduction to 

Cr (III) with the aid of the cytoplasmic reductants such as ascorbate and glutathione 

(Costa M., 2003, Xu et al., 2004, Xu et al., 2005). Since Cr (VI) is not able to 

interact with DNA directly, DNA damage is caused during such reduction reaction 

inside the cell which can be grouped into two categories: (a) oxidative DNA damage 

and (b) Cr (III)-DNA interactions (Arakawa et al., 2012, Sobol and Schiestl, 2012).  

 

2.5.4.1 Oxidative DNA damage 

Cr (V) so produced inside the cytoplasm is oxidized back to Cr (VI) leading to 

generation of reactive oxygen species (ROS) which includes hydrogen peroxide 

(H2O2), superoxide superoxide (O2˙), hydroxyl radical (OH˙) and singlet oxygen 

(O2˙)  (Cheng et al., 2009, McNeill and McLean, 2012). As a result of oxidative 

stress in cells and the DNA protein cross-links formed, significant promutagenic 

effects are induced in cells (Quievryn et al., 2003, Reynolds et al., 2009). Cr (VI) is 

known to alter normal physiological functions of the cell by binding to cellular 

materials and Cr (VI) species along with hydroxyl radicals cause DNA lesions in 

vivo (Pesti et al., 2000, Cervantes et al., 2001, Zhitkovich, 2001).  
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2.5.4.2 Cr (III)-DNA interactions: 

During Cr (III)-DNA interactions, the magnitude of DNA damage is greater as 

stable complexes are formed between the intracellularly trapped Cr (III) with 

proteins and nucleic acids. This is due to the weak membrane permeability and 

greater binding efficiency of Cr (III). The formation of binary and ternary Cr (III)-

DNA adducts (L-cysteine-Cr (III)-DNA and ascorbate-Cr (III)-DNA) and related 

highly reactive (OH•) radical induce severe cellular DNA damages and play a key  

role in increasing both genotoxicity as well as mutagenicity in human cells (Valkoet 

al., 2005, Quievryn et al., 2002, Quievryn et al., 2003). 

 

2.6 Toxic effects of Cr: 

Excessive concentrations of Cr (VI) in the organic matter in soils modifies the 

biological structure of soil microbial communities that greatly impacts the microbial 

biomass thus affecting microbial activities related to decomposition of organic 

matter, cycling of nutrients etc. (Zhou et al., 2002, Shi et al., 2002). Cr (VI) easily 

crosses the cellular membranes, both in prokaryotic and eukaryotic cells, resulting in 

loss of membrane integrity and/or inhibition of the electron transport chain (Codd et 

al., 2001, Francisco et al., 2010).  In plants, Cr concentration above 2 ppm was 

found to have inhibitory effects on plant growth, seed germination and leading to 

necrosis. Plants growing in the neighbourhood of chromium discharging factories 

have reported diminished photosynthesis and change in chloroplast structure in 

vegetable and fruit trees (Yadav et al., 2006). Cr (VI) is also highly hazardous to 

human health and affects through inhalation, skin contact, and ingestion, being 

highly toxic, carcinogenic and mutagenic to living organisms, even in very low 

amounts. Its compounds are known to cause irritation in the lining of the nose, 

breathing problems, allergy reactions, skin rashes, reproductive problems, anaemia, 
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irritation and ulcer in small intestine and sometimes cancer and tumours in stomach, 

intestinal tract and lung, etc. (Kozlowski and Walkowrak, 2002, Agency for Toxic 

Substances and Disease Registry, 2008).  

 

2.7 Chromium resistant micro­organisms: 

Elevated concentration of toxic metals has deleterious effects on the functionalities 

of microbial communities that inhabit contaminated environments. In order to 

survive in toxic conditions, concentration of these metals (Habi and Daba, 2009, 

Ahmad, 2012). Over a period of time, several Cr resistant microorganisms has been 

identified and studied extensively for their potential as Cr removing agents. 

 

2.7.1 Bacteria 

Some of the recently identified Cr resistant bacterial strains are Zobellella 

denitrificans (He et al., 2016), Rhizobacteria (CrS2) (Pramanik et al., 2016), 

Sporosarcina saromensis M52 (Ran et al., 2016), Bacillus methylotrophicus (Mala 

et al., 2015), Bacillus dabaoshanensis sp. nov. (Cui et al., 2015) Brevibacterium 

casei (Verma and Singh, 2013), Serratia sp. Cr-10 (Zhang and Li, 2011), 

Leucobacter chromiiresistens sp. nov., (Sturm et al., 2011). Several others include 

bacteria belonging to genera Escherichia, Bacillus, Pseudomonas, Pantoea, 

Cellulomonas, Micrococcus, Staphylococcus, Achromobacter and Ochrobactrum 

(Narayani and Shetty, 2013).   

 

2.7.2 Algae 

Comparatively lesser data is available Cr tolerance and biosorption using 

algal species than other microorganisms. Some examples are 

Dictyosphaerium chlorelloides, a laboratory strain trained to be Cr (VI) 
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resistance (D’ors et al., 2016), Spirulina platens (Zinicovscaia et al., 2016), 

Rhizoclonium hookeri (Kayalvizhi et al., 2015), and Cladophora albida (Deng et al., 

2009), Ceramium virgatum (Sari and Tuzen, 2008), Chlorella miniata (Han et al., 

2007), Scenedesmus acutus (Torricelli et al., 2004) and Spirogyra species (Gupta et 

al., 2001).  

 

2.7.3 Yeasts 

Several yeast strains have been isolated from different Cr polluted sites and are 

known for chromate resistance. These include Cyberlindnera fabianii, 

Wickerhamomyces anomalus and Candida tropicalis (Bahafid et al., 2013), 

Rhodotorula mucilaginosa (Chatterjee et al., 2012), Candida maltose (Ram´ırez-

Ram´ırez et al., 2004), Pichia guilliermondii ATCC 201911 (L2) (Ksheminska et al., 

2008), Saccharomyces cerevisiae (Fedorovych et al., 2009), Schizosaccharomyces 

pombe (Czako¨-Ve¨r et al., 1999). 

 

2.7.4 Other fungi 

A large amount of data is available on Cr resistance by fungal system and many Cr 

resistant fungi have been identified including Cladosporeum perangustum,  

Penicillium commune, Fusarium equiseti  (Sharma and Malviya, 2016)  

Trichoderma asperellum (Chang et al., 2016), Penicillium griseofulvum MSR1 

(Samuel et al., 2015), Aspergillus niger (Gu et al., 2015, Alonso et al., 2014), 

Paecillomyces lilacinus (Sharma and Malviya, 2016, Sharma and Adholeya, 2011), 

Termitomyces clypeatus (Ramrakhiani et al., 2011, Das et al., 2009), Coriolus 

versicolor (Sanghi and Srivastava, 2010), Aspergillus versicolor (Das et al., 2008)  

and many more. 
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2.8 Mechanism of Cr resistance in microorganisms 

Metal resistance is defined as the ability of an organism to respond to concerned 

metal species by means of mechanisms to promote their survival in a toxic metal 

environment. In different organisms different mechanism of Cr (VI) resistance has 

been demonstrated. In general, three main strategies adopted by the microorganism 

to confer Cr (VI) resistance are reduction, uptake and efflux (Joutey et al., 2015). In 

this section, mechanism of Cr (VI) resistance by different microorganisms has been 

explained. 

 

2.8.1 Chromium resistance in bacteria: 

Bacteria exhibits transmembrane efflux of chromate as one of the survival 

mechanism which has been well documented.  In species like Pseudomonas (Bopp 

et al., 1983, Cervantes and Ohtake, 1988, Summers and Jacoby, 1978) and 

Alcaligenes (Nies et al., 1989) a plasmid-determined resistance to chromate has been 

shown. In these organisms the plasmid-specified resistance phenotype was 

determined by ChrA, a hydrophobic protein with 12 proposed transmembrane-

spanning domains (Cervantes et al., 2001, Cervantes et al., 1990, Nies et al., 1990) 

ChrA is a membrane protein belonging to chromate ion transporter (CHR) 

superfamily that confers chromate resistance by pumping chromate out of the cell in 

an energy dependent process (Alvarez et al., 1999). Two families of CHR proteins 

have been reported, a bidomain long chain chromate ion transporter or LCHR, 

approximately 340-500 amino acid long and a monodomain short chain chromate 

ion transporter or SCHR aprroximately 120-250 amino acid long. Both families of 

CHR transporters are known to mediate chromate efflux in bacteria. Phylogenetic 

analysis of CHR protein revealed several homologous membrane found in all three 

domains of life; bacteria, archea and eukaryota (Dı´az-Pe´ rez et al., 2007).  
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Another Cr resistance mechanism reported in bacterial species is reduction of 

Cr (VI) to Cr (III). Chromate reductases secreted by these organisms mediates the 

conversion of hexavalent Cr to its trivalent form via electron transfer reactions by its 

cytosolic form under aerobic conditions and by its membrane bound component 

under anaerobic conditions (Camargo et al., 2003). In Bacillus methylotrophicus 

extracellular chromate reductase activity has been reported (Mala et al., 2015). In 

Shewanella oneidensis MR-1, involvement of outer membrane bound cytochromes 

in the extracellular reduction of Cr (VI) to insoluble Cr (III) precipitate has been 

reported (Belchik et al., 2011).  

 

2.8.2 Chromium resistance in algae  

Little is reported about the Cr resistance in algae with no information on tolerance 

mechanisms. Possibly, the exudates secreted by algal cells form complexes with Cr 

(VI) to reduce its toxic effects (Gorbi et al., 2004). It was described in S. acutus that 

after treatment with chromate, asexual reproduction does not occur and tolerance to 

Cr (VI) is acquired resulting in a Cr-resistant offspring by sexual reproduction 

(Corradi et al., 1995a). This species when incubated with of Cr (VI) results in the 

formation of agglomerates; which when dissipates, biflagellate cells are released, 

allowing cell survival (Corradi et al., 1995a). Interaction of Cr with plastidial 

metabolism was demonstrated in Scenedesmus (Corradi, and Gorbi, 1993), Chlorella 

(Wong, and Chang, 1991) and Euglena (Fasulo et al., 1983). There are reports that 

in the presence of Cr, plastid-deprived gametes were induced (Corradi et al., 1995b). 

Surprisingly, diminished chromium uptake and Cr (VI) resistance were not 

correlated in Scenedesmus (Gorbi et al., 1996).  
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2.8.3 Chromium resistance in fungi 

In filamentous fungi and yeasts, mutations in the laboratory strain were induced to 

determine the mechanism of Cr resistance (Marzluf, 1970, Czako¨-Ve¨r et al., 1999). 

Non-functionality of sulphate transport system was also described in the chromate-

resistant mutants of filamentous fungus Neurospora crassa (Marzluf, 1970) 

indicating the role of sulphate transport system in Cr tolerance. Mutations affecting 

a single copy glutathione reductase gene (pgr+1) resulted in enhanced Cr (VI) 

tolerance in fission yeast Schizosaccharomyces pombe. Glutathione reductase 

facilitates the reduction of Cr (VI) to the reactive intermediate Cr (V) and 

subsequently generating reactive oxygen species (peroxides and superoxides and 

hydroxyl radical) that lead to cytotoxic and genotoxic effects on the cell. Hence, a 

diminished glutathione dependent glutathione reductase activity coupled with 

decreased production of hydroxyl radicals induced Cr (VI) tolerance in S. pombe 

(Gazdag et al., 2003). For the chromate-resistant strains of Candida maltosa, it was 

found that a NAD-dependent chromate-reducing activity took place mainly in the 

soluble protein fraction, and was less active in the membrane fraction (Ramirez-

Ramirez et al., 2004). In another study, it has been discovered that a significant role 

in Cr (VI) detoxification belongs to extracellular reducing substances, which are 

secreted by the yeast cells (Ksheminska et al., 2006). It was shown that extracellular 

pathways leading to Cr (VI) reduction are also an important factor in providing the 

resistance of the cells to chromate (Ksheminska et al., 2008). In a separate study, it 

was observed that the sequestration of Cr (possibly in vacuoles) is increased due to 

the activity of a putative transcriptional activator MSN1 in yeast, seen when its 

disruption decreases Cr sequestration, regardless of the content of Cr (Chang et al., 

2003). The role of metabolically active vacuoles in heavy metals resistance was 

shown in S. cerevisiae where mutants with non-functional vacuole, mutants lacking 
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vacuole-like structures as well as mutants devoid of a particular subunit of vacuolar 

(V)-H+-ATPase demonstrated high sensitivity to chromate and tellurite (Gharieb, 

and Gadd, 1998). Studies on Aspergillus in the past have conclusively proven its 

biosorption abilities, also another species from same genera, A. niger showed 

chromate reduction of the more toxic Cr (VI) to less toxic Cr (III) and indicated that 

this process was not an enzyme mediated process (Park et al., 2005a, b). In A. 

parasiticus and A. niger uptake and reduction of Cr (VI) has been described as a 

mechanism of Cr detoxification (Shugaba et al., 2012). 

Hence it can be concluded that fungi exhibit different mechanisms of Cr 

resistance. To investigate the potential for fungi to be used either as an 

environmental heavy metal remediator or as a biomining tool it is necessary to 

characterize the cellular and molecular mechanism related to Cr (VI) tolerance and 

detoxification. This thesis describes an analysis of the mechanisms of Cr 

resistance/tolerance in a strain of Aspergillus flavus (SFL) isolated from a Cr-

contaminated site in comparison to the laboratory A. flavus strain (A1120). Firstly 

the two fungal strains were compared for their ability to tolerate, accumulate and 

reduce Cr (VI). Further investigations were done to characterize the surface 

configuration of fungi in relation to Cr binding and different functional groups 

potentially involved in the binding process were identified. Localisation and Cr 

speciation analysis was done. To further delineate the mechanism at molecular level, 

putative genes encoding Cr transporters were identified. In silico analysis was 

carried out to analyze the structural and functional characterization of these 

transporters and gene expression studies were done to test the responsiveness of 

putative gene to Cr exposures. Overall a model of Cr tolerance in SFL strain of A. 

flavus has been proposed.  
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CHAPTER 3: Materials and Methods 

3.1 Fungal strains and growth conditions 

The well-characterized reference strain A. flavus (FGSC A1120, henceforth A1120) 

was obtained from Fungal Genomics Stock Group, Kansas City, Kansas, U.S.A. 

Chromium tolerant A. flavus (SFL), previously isolated from tannery effluent, was 

provided by the Centre for Mycorrhizal Research at TERI, New Delhi, India. 

Cultured plates were grown and maintained on potato dextrose agar (PDA) (Hi-

media Lab. Ltd., Mumbai, India) plates at 30°C in a BOD incubator. 

 

3.2 Determination of metal tolerance level 

Tolerance to chromium was determined for both reference and tolerant fungal 

strains. PDA medium (Hi-media Lab. Ltd., Mumbai, India) was prepared and 

supplemented with various amounts of potassium dichromate (K2Cr2O7) (Hi-media 

Lab. Ltd., Mumbai, India) ranging from 100 mg L-1 to 3200 mg L-1. The PDA plates, 

containing different concentrations of chromium, were each inoculated with a 10 

mm disc taken from the edge of actively growing fungal colony and incubated at 

30°C for 10 days. Fungi grown on PDA plates containing no Cr (VI) were used as 

controls. The tolerance level to Cr (VI) was determined by measuring the diameter 

of fungal growth (Zafar et al., 2007, Ezzouhri et al., 2009). The experiment was 

performed using three biological replicates. 

 

3.3   Determination of Chromium dose response in broth media 

To establish the effect of Cr (VI) on growth in a submerged culture, the fungus was 

grown in potato dextrose broth (PDB) containing 50 mg L-1, 100 mg L-1, 250 mg L-1 

and 500 mg L-1 Cr (VI) concentrations and incubated in a continuous rotatory shaker 
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incubator (Kuhner Shaker X, Lab-Therm LT-X) at 140 rpm at 30°C for 144 h. After 

every 24 h, the biomass was harvested by sieving through 300 µ mesh and placed in 

hot air-oven at a temperature of 60°C for drying till the constant weight arrived. The 

constant dry weight was recorded. Biomass of fungi grown in media not 

supplemented with any Cr was used as the control. The experiment was performed 

using three biological replicates. 

 

3.4   Cr (VI) depletion, biosorption and intracellular accumulation study: 

The capacity of Cr (VI) to be removed from the media by actively growing A1120 

and SFL strains was examined by cultivating each fungus in 250 ml Erlenmeyer 

flasks containing 100 ml PDB, in a continuous rotatory shaker at 140 rpm at 30°C.  

At the mid exponential phase (48 h), the mycelial biomass was separated from the 

culture broth by sieving through 300µm mesh and re-suspended in 100 ml of fresh 

media supplemented with 50,100 and 250 mg L-1 K2Cr2O7 solution, and again 

incubated at 30° C in a rotatory shaker at 140 rpm for 96 h. After every 24 h, the 

biomass was harvested, washed with sterile water to remove the loosely bound Cr 

(Ahmad et al., 2003), centrifuged and divided into two halves. One half was used 

immediately after the treatment (contains total Cr taken up by the fungus). The 

remaining half was treated with 20 mM ethylenediaminetetraacetic acid (EDTA) for 

30 min (to remove cell wall bound Cr). Samples were dried in hot air oven at 60°C 

and later digested in concentrated nitric acid for 2 h. Total Cr was detected in the 

acid digested samples with flame atomic absorption spectrophotometer (TJA 

Solutions Solaar M5 series Model). Results were analysed using three replicates. 

Residual Cr (VI) in the supernatant was determined using 1, 5-di-

phenylcarbazide method (DPC) (Greenberg et al., 1981). Briefly, to 950 µl sample, 

20 µl of 0.5% w/v 1, 5-di-phenylcarbazide (prepared by dissolving 250 mg DPC in 
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50 ml acetone) was added. Few drops of 10 % H2SO4 were added to give a pH of 2 

± 0.5 in a total reaction volume of 1 ml. The reaction mixture was left at room 

temperature for 10 min for full colour development and Absorbance was measured 

in a UV-VIS spectrophotometer (UV-2450, SHIMADZU, USA) at 540 nm. Cr (VI) 

concentration was calculated by preparing a Cr (VI) standard curve using K2Cr2O7  

solution in the range of 0.5 - 5 mg L-1. Total Cr was determined by flame atomic 

absorption spectrophotometer (TJA Solutions Solaar M5 series Model). Cr (III) was 

determined in the supernatant by subtracting the remaining Cr (VI) from the total Cr 

(Gu et al., 2015, Shen et al., 2012). Media not inoculated with fungi was taken as 

control. Three replicates of each culture were taken. 

 

3.5 Determination of effect of metabolic inhibitors on Cr uptake: 

To study the effect of metabolic inhibitors on Cr uptake, experiments were carried 

out according to (Das et al., 2009) with some modifications. Briefly actively 

growing fungus was incubated in 100 ml of PDB supplemented with 50, 100 and 

250 mg L-1 K2Cr2O7 solution, and containing 200 uM N,N’-

dicyclohexylcarbodiimide (DCCD), 1 mM sodium azide (NaN3) and 1mM 2,4-

dinitrophenol  (DNP) at 30° C in a rotatory shaker at 140 rpm.  The biomass was 

then harvested and processed as described in the previous section. Three replicates 

of the culture were taken. The biomass not incubated with inhibitors was taken a 

control. 

 

3.6 Trichloroacetic acid (TCA) protein precipitation and SDS PAGE analysis 

The TCA precipitation of protein protocol was based on Carpentier et al., 2005 with 

some modifications. Briefly, fungal biomass was grown to mid log phase (new 

growth material); harvested by centrifugation, water washed and approx. 2 g 
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maximum wet weight was grounded in powder using liquid nitrogen. The powdered 

biomass was suspended in 50mM phosphate buffer (pH 7.2), vortexed and 

centrifuged at 10000 rpm to collect the debris. To the supernatant, 10 % (w/v) TCA 

dissolved in acetone containing 1mM phenylmethane sulfonyl fluoride (PMSF) and 

0.07 % β-mercaptoethanol was added. This suspension was kept at -20°C for 1 h and 

stirred at regular intervals. Total protein was precipitated by centrifugation at 4°C 

for 20 minutes at 14000 rpm. The protein pellet was then washed with 100 % 

acetone, air dried and redissolved in 50 mM phosphate buffer. The concentration of 

protein was determined using Bradford method; 250 µl Bradford reagent 

(Sigma-Aldrich, USA) was added to 10 µl protein sample. Absorbance was read in 

HIM microplate reader (Biotek, USA) at 595nm. Approximately 15 µg of protein 

was electrophoresed on 15 % SDS-PAGE gel and the bands were visualised after 

staining with Coomassie Brilliant Blue R-250 stain. The experiment was performed 

using three biological replicates. 

 

3.7 Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) 

analysis: 

Fungal strains treated with Cr for up to 96 h and controls were freeze dried and 

mounted onto aluminum stubs and coated with gold in a sputter coater (Polaron 

SC7610, Fisons Instruments) and examined under SEM (Philips XL20). Duplicate 

samples were carbon-coated (Polaron CA7615, Fisons Instruments) and analyzed 

under SEM with energy-dispersive x-ray spectroscopy (EDS, X-Max 50 mm2, 

Oxford Instruments) to detect Cr signals in the fungal mycelia. Data was processed 

with Aztec Nanoanalysis Software (Oxford Instruments).  
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3.8 Transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) 

analysis: 

For TEM, duplicate samples of Cr treated and untreated cells were fixed in 1.5 % 

glutaraldehyde buffered with sodium phosphate buffer (50 mM, pH 7.2). Primary 

fixation was done for 3 h at 4ºC. The cells were then washed with fresh buffer 

several times. Secondary fixation was done in 0.75 % Osmium tetraoxide for 1 h. 

The cells were again washed several times with buffer. Dehydration of cells were 

done in graded acetone solutions and followed by engrafting in spur resin. An ultra 

cut E, Ultramicrotome (PowerTome, RMC Products, USA) was used to cut ultrathin 

sections of approximately 60–80 nm in thickness. Electron scattering provided by 

the adsorbed metal ions acted as the contrasting agent. Electron micrographs were 

recorded in a transmission electron microscope (Technai 20 G2 STEM, 200KV FEI 

Company, The Netherlands) at 80 kV (Das et al., 2008, Srivastava and Thakur, 

2006) and EDX analysis was done at 200 kV. Gatan’s Digital Micrograph software 

was used for processing the images. 

 

3.9 Fourier transforms infrared spectroscopy (FTIR): 

For FTIR study fungal biomass treated with and without Cr were harvested by 

centrifugation and washed with deionized water several times and freeze dried. The 

infrared spectra of duplicate samples were recorded on Nicolet 6700 FTIR 

spectrometer in the region of 400–4000 cm−1 with 500 scans at a resolution of 2 

cm−1.  

 

3.10 X-ray photoelectron spectroscopy (XPS): 

For XPS study fungal biomass treated with and without Cr were harvested by 

centrifugation and washed with deionized water several times and freeze dried. XPS 
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analysis was performed at LaTrobe University, Melbourne, Australia using a Kratos 

Nova with an Al Kα energy source at 1486.6 eV. Scans of duplicates samples were 

conducted using an anode voltage of 15 kV and a current of 10 mA. The pass energy 

was set to 20 eV for high resolution scans. The binding energy was calibrated by 

referencing the charge to the hydrocarbon C 1s peak at 284.8 eV. 

 

3.11 Bioinformatics analysis for the identification of Cr transporter genes from 

A1120 and SFL strain: 

To identify putative Cr transporter genes present in A. flavus protein sequences 

encoding metal ion transporters were retrieved from the sequenced genome of 

reference (A1120) Aspergillus flavus (NCBI Accession number; AAIH00000000.2) 

obtained from NCBI genome database. Four putative transporters were selected 

based on the designed hypothesis and the related literature search. The identified 

putative Cr transport sequences, from A1120 strain, were used as bait to pull out 

putative Cr transporter amino acid sequences from the recently sequenced (at TERI) 

and putatively annotated genome of Cr tolerant SFL strain (unpublished) on the 

basis of maximum sequence similarity and percent identity. 

 

3.12 Sequence retrieval of homologous Cr transporters genes: 

 For a comparative sequence analysis basic local alignment search tool (BLAST) 

searches were carried out to retrieve homologous sequences in other  fungal species 

Aspergillus oryzae, Aspergillus parasiticus, Talaromyces marneffie  and Penicillium 

italicum as the genome of these fungi are fully sequenced and Saccharomyces 

cerevisiae, Arabidopsis thaliana as these are the two well studied model organisms.  
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3.13 Sequence alignment using Clustal Omega 

Multiple sequence alignment were produced using sequence alignment tool Clustal 

Omega (Higgins and Sharp, 1988, Sievers et al., 2011). NCBI conserved domains 

database search (Marchler-Bauer A et al., 2015) was carried out for the 

identification of conserved regions in the aligned species. 

 

3.14 Insilico identification of putative metal binding sites: 

 Putative metal binding sites were identified by using Multiple Em for Motif 

Elicitation MEME programme (Version 4.11.2) (Bailet et al., 2009). Following 

parameters were used: the maximum number of motifs to be found, 5. Minimum 

width of motifs was set as 5 and the maximum width of motif was set as 15.  

 

3.15 Phylogenetic analysis: 

For the construction of phylogenetic tree MEGA (Molecular Evolutionary Genetics 

Analysis) version 6 was used (Tamura et al., 2013). The evolutionary history was 

inferred by using the available Maximum Likelihood algorithm based on the JTT 

matrix-based model. For a reliable assessment, 1000 bootstrap replicates were taken. 

 

3.16 Membrane topology analysis: 

The amino acid sequences were submitted to Transmembrane Hidden Markov 

Model (TMHMM) online programme for the prediction of total number of 

transmembrane domains (TMDs and the physicochemical properties of putative Cr 

tranporters were determined using Expasy’s ProtParam tool. 
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3.17 Total RNA extraction, purification and synthesis of cDNA: 

A1120 and SFL strains were grown for 48 h in PDB media. The biomass was then 

harvested and treated with 50 mg L-1 and 100 mg L-1 Cr (VI) for 1 h, 6 h, and 24 h. 

Total RNA was extracted using PureLink RNA mini kit (Ambion). The kit protocol 

followed as described below: Approximately 100 mg of frozen fungal pellet was 

grounded into fine powder using liquid nitrogen in RNase free motor and pestle. 

Liquid nitrogen was allowed to evaporate. Immediately 1 ml of lysis buffer 

containing β-mercaptoethanol was added and homogenised and transferred to RNase 

free Eppendorf tube and centrifuged at ~2,600 × g for 5 minutes at room 

temperature (RT). The supernatant was transferred to a new RNase free tube. 

Approx. 0.5 volume of 96 % ethanol was added to the volume of homogenate and 

thoroughly mixed on vortex. The mixture (700 µl) was transferred to spin cartridge 

and spun for 15 s at high speed. The flow through was discarded and this step was 

repeated 3 to 4 times until the entire sample was processed. The flow through was 

discarded and 700 µl of wash buffer I was added directly to the Spin Cartridge and 

centrifuged for 15 s at 12,000 × g at RT. The flow through and the collection tube 

was discarded and the spin cartridge was placed into a new collection tube.  To this 

500 μL Wash Buffer II containing ethanol was added and again spun for 15 s at 

12,000 × g at RT. The flow through was discarded and this step was repeated twice. 

The membrane was dried by spinning the spin cartridge along with the collection 

tube at 12,000 × g for 1 minute at RT. The flow through was discarded and spin 

cartridge was reinserted into a new eppendorf tube. 11. Finally, RNA was eluted in 

50 μl RNase-Free Water added directly to the center of the Spin Cartridge, incubated 

at RT for 1 minute, spun for 2 minutes at ≥12,000 × g at RT.  Approximately 1.5 mg 

of isolated RNA was then treated with DNase I (Sigma-Aldrich, USA) as per the 

given protocol and used for cDNA synthesis using the iScript cDNA synthesis kit 
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(Bio-Rad Laboratories, Inc.) using following PCR conditions: 5 minutes at 25ºC, 30 

minutes at 42ºC and 5 minutes at 85ºC. RNA and cDNA quantification was done 

using the H1M microplate reader (Biotek, USA). The experiment was performed 

using three biological replicates.  

 

3.18: Quantitative real time PCR 

The response of putative Cr transporter genes to Cr (VI) exposure was tested by 

qRT-PCR. Primer Express software (Applied Biosystems, Primer Express version 

2.0) was used to design the real time primers. Primers were bought from Sigma-

Aldrich (Melbourne, Australia) (Table 3.1). The efficiency of primers were tested by 

amplification of template cDNA as control at concentrations of 1, 2, 4 and 8 µg     

ml-1 and comparing the cycle time on a log scale. The binding efficiencies of all 

primers were >0.1. qRT PCR analysis was executed using: cDNA 50 ng; 10X Sso 

Fast Eva Green Supermix Dye (Bio-Rad Laboratories, Inc.), 10 µl; forward and 

reverse primers, 0.3 μM with the final volume of reaction mixture, 20 µl. qRTPCR 

analysis was carried out on a CFX96 Touch Real-Time PCR Detection System (Bio-

Rad Laboratories, Inc.). β-tubulin was taken as internal control for the normalization 

of targeted gene expression. Three replicates of each sample were taken and a no 

template control reactions lacking template cDNA was included. 

 

3.19 Statistical analysis 

All the experiments were carried out in triplicates. The data are presented as 

standard error of mean (±SEM). The data analysis for Cr reduction and uptake 

studies was done using one-way analysis of variance (ANNOVA) and independent 

t-test. A non-parametric Kruskal-Wallis test and Tukey's post hoc analysis were 

performed for gene expression study data.  Significance of difference was tested 
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against the probability values (p-value) of <0.05. SPSS version 22.0 was used for all 

statistical analyses.  

 

Name  Sequence of primers (5’­3’) 

ΒTub qRT (F) GCCGCTTTTTGACTTGCTCC 

ΒTub qRT (R) ACTGATTGCCGATACGCTGG 

Sul qRT (F) GGGCGATCTCAAAACCAAAA 

Sul qRT (R) AAATAACGGCCCACCTGATG 

Atm1 qRT (F) ACAGCGACCAAATCCTTGTACTAAA 

Atm1 qRT (R) ATCGAGCTCAAGAAGTTCACGAT 

Vac qRT (F) GCTTTGGTTGTCACTATTGTCACA 

Vac qRT (R) GCTTTGGTTGTCACTATTGTCACA 

ABC qRT (F) GGGCGCACTCTGGTTATGA 

ABC qRT (R) CACTGGAGAAATGCTGGAACAA 

 

Table 3.1 Primes for quantitative real time PCR (qRT). The primers used for gene 
expression study are listed as forward (F) and reverse (R). BTub represents internal 
control β-tubulin. Sul represents sulphate uptake gene. Atm1 represents Atm1 gene, 
Vac represents vacuolar Hmt1 gene and ABC represents ABC efflux gene. 
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CHAPTER 4 

   Discrepant mechanism of cell­Cr interaction  

in two strains of Aspergillus flavus 
 
 
4.1 Introduction: 

The capacity of microorganisms to acquire different resistance/detoxification 

mechanisms to deal with the toxic effects of metals enables them to tolerate and 

survive in high concentrations of polluting heavy metals (Gadd, 2001, Krumov et 

al., 2009). These different detoxification strategies are therefore of great significance 

in metal removal processes. Extrapolation of various mechanisms of metal 

tolerance/resistance might lead to development of microbes with high intrinsic 

tolerance and promising metal accumulation potential (Chang et al., 2016, Shugaba 

et al., 2012). 

Various detoxification mechanisms have been proposed in relation to Cr (VI) 

tolerance. Cr studies in various filamentous fungi have demonstrated either 

adsorption and/or Cr (VI) reduction mechanism for Cr removal. Biosorption and/or 

bioaccumulation of Cr (VI) has been reported in a number of filamentous fungi 

including: Aspergillus foetidus (Prasenjit and Sumathi, 2005), Aspergillus niger 

(Kovacevic et al., 2000), Termotomyces clypeatus (Das et al., 2009), Aspergillus sp. 

(Congeevaram et al., 2007), Hirsutella sp. (Srivastava and Thakur, 2006a) and 

Rhizopus (Bai and Abraham, 2001). Reduction of Cr (VI) to less toxic Cr (III) was 

investigated in actively growing the filamentous fungi: Aspergillus sp., Penicillium 

sp. (Acevedo-Aguilar et al., 2006, Fukuda et al., 2008) and Trichoderma inhamatum 

(Morales and Christiani, 2008).  In Aspergillus and Rhizopus sp., an “adsorption 

coupled reduction” mechanism for Cr(VI) removal has been described whereby Cr 



40 
 

(VI) is completely reduced to C (III) by the fungal biomass and then adsorbed to the 

cell surface (Park et al., 2005, 2007, Sanghi et al., 2009).  In Paecillomyces lilacinus 

(Sharma and Adholeya, 2011), Aspergillus niger (Alonso et al., 2014, Gu et al., 

2015), A. flavus (Singh and Bishnoi, 2015, Singh et al., 2016) both Cr (VI) reduction 

and adsorption has been demonstrated but reduction has been reported as the main 

mechanism. The events of intracellular accumulation of Cr have not been explored 

in detailed in filamentous fungi.  Moreover, the mechanisms of interaction of Cr 

(VI) with A. flavus are not well studied. 

Hence, to gain an understanding of the mechanisms of Cr interaction with 

fungi, I evaluated Cr (VI) tolerance and detoxification via biotransformation or 

reduction, sorption and intracellular accumulation in the filamentous fungi, 

Aspergillus flavus strain SFL, previously isolated from a tannery effluent-loaded site 

containing high concentrations of chromium, in comparison to a laboratory 

reference strain of A. flavus A1120. This knowledge will form the basis to study the 

interaction of Cr with fungal cell at cellular and molecular level and develop a novel 

Cr hyper accumulator strain with enhanced Cr tolerance and accumulation property.  

My project examined three different pathways of Cr biosorption: 1) 

extracellular depletion of Cr (VI), 2) cell surface sorption and 3) intracellular 

accumulation. The effect of increasing concentration of Cr (VI) on the growth of 

fungi was examined and the maximum Cr (VI) tolerance level was determined in 

comparison to the reference strain. Cr (VI) reduction by the two fungal strains was 

studied in the extracellular growth medium. Cr biosorption and accumulation study 

was carried out by determining the amount of total Cr uptake by the cell as well as 

that taken up inside the cell. The intracellular accumulation of Cr is an energy-

dependent process and to confirm this, metabolic inhibitor study was done. Further, 

SDS-PAGE analysis was carried out to visualise proteins expressed under Cr stress. 
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In addition, a qualitative comparison was done to identify differences between 

A1120 and SFL strain with respect Cr interaction. Overall, substantial differences in 

the mechanism of Cr tolerance exhibited by SFL and A1120 strain have been shown. 

 

4.2. Results  

4.2.1 Chromium tolerance study:  

Cr tolerance was measured in the reference (A1120) and tolerant (SFL) fungi 

grown in potato dextrose agar media containing increasing concentration of Cr (VI) 

ranging from 100 mg L-1 to 3200 mg L-1 over a period of 10 days (Figure 4.1).  

A prominent difference in the response to Cr (VI) tolerance was observed 

between the two strains. The A1120 strain showed 27% reduction in growth at 100 

mg L-1 Cr (VI) (Figure 4.1aii) compared to control containing no Cr (VI) in the 

media (Figure 4.1ai). No growth was observed above 100 mg L-1 Cr (VI) (Figure 

4.1a iii, iv). In contrast, the SFL strain showed no significant reduction in growth up 

to 400 mg L-1 (Figure 4.1bi-iii). With Cr (VI) above 400 mg L-1 a progressive 

reduction in growth of the SFL strain was found and the SFL strain could tolerate up 

to 1600 mg L-1 Cr (VI) (Figure 4.1biv-vii).  No growth was observed at 3200 mg L-1 

Cr (VI) (Figure 4.1bviii). The dark green powdery mass of spores observed in the 

untreated A1120 strain (Figure 4.1ai) was reduced at 100 mg L-1 Cr (VI) (Figure 

4.1aii). In comparison, no reduction in sporulation was seen in the tolerant strain at 

concentration from 100-400 mg L-1 (Figure 4.1bi-iii). With the increase in 

concentration from 800 mg L-1 onwards, a gradual reduction in sporulation was seen 

(Figure 4.1biv-vii). 
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Figure 4.1 Determination of Cr tolerance in A. flavus  by observing the growth 
on PDA plates supplemented with different concentration of Cr (VI) after 10 
days of incubation (a) photographs of A1120 strain exposed to (i) no chromium 
(ii)100 mg L-1 (iii) 200 mg L-1 (iv) 400 mg L-1, showing complete inhibition of 
fungal growth at 200 mg L-1 (b) photographs of SFL strain exposed to 0 to 1600 mg 
L-1 ((i) to (vii)) showing gradual reduction in fungal growth up to 1600 mg L-1 (c) 
graph of radial growth of each strain, relative to control versus Cr (VI) exposures 
from 0 to 3200 mg L-1 where PC is a positive control [media not supplemented with 
Cr (VI) ] and NC represents a 10 mm stub of A. flavus taken as negative control just 
before incubation. Significant difference in radial growth was observed between 
A1120 and SFL strain. Mean ± SEM of three replicates are shown. Significance of 
difference (p< 0.01) is denoted by (*) for A1120 and (**) for SFL strain. 
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4.2.2 Dose response study: 

A dose-response relation of the filamentous fungus to Cr was tested by growing the 

fungus in broth media, the fungi were grown in potato dextrose broth (PDB) 

containing Cr (VI) at concentrations of 50, 100, 250 and 500 mg L-1. In broth media, 

only vegetative mycelia were found, devoid of the reproductive structures that are 

frequently observed on solid media. The A1120 strain grown without Cr (VI) 

showed a relatively rapid increase in growth between 24 h and 72 h followed by a 

stationary phase up to 120 h and autolysis at 144 h (Figure 4.2a). When treated with 

50 mg L-1 Cr (VI), reduced growth was seen up to 24 h, and then a rapid increase in 

growth was observed until 72 h. This growth rate then significantly reduced until 

144 h. At exposure to 100 mg L-1 Cr (VI), a reduction in growth was also observed 

over the first 48 h. Growth was inhibited by approximately 84% by 72 h, but 

partially recovered to 44 % inhibition after 144 h compared to the control. 

Negligible growth was observed at exposures to 250 mg L-1 over 144 h. Growth was 

completely inhibited at 500 mg L-1.  

The growth pattern of SFL strain was not affected at 50 and 100 mg L-1 Cr 

(VI) supplemented broth (Figure 4.2b). However, at 250 mg L-1 Cr (VI) exposure, 

growth was impaired by approximately 89 % at 96 h, but partially recovered to 61 % 

inhibition after 144 h, relative to untreated control. No growth was observed at 

exposures of 500 mg L-1 Cr (VI).  

 

4.2.3 Extracellular depletion of Cr (VI) by A. flavus: 

A time course study was carried out to determine the Cr depletion efficiency of the 

fungal strains in the liquid culture. The filtrate was collected after separating the 

biomass from media following treatment with different concentrations of Cr (VI) in  
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Figure 4.2 Effect of increasing concentrations of Cr (VI) on the growth of A. 
flavus. The fungal biomass was grown for up to 144 h in potato dextrose broth 
supplemented with 0 to 500 mg L-1 Cr (VI) and its effect on growth was determined 
by measuring the dry weight of biomass (a) graph showing growth inhibition of 
A1120 strain. Around 84% growth inhibition was observed after 72 h of exposure at 
100 mg L-1 and complete growth inhibition at 250 mg L-1 (b) graph showing 
inhibition of growth in SFL strain. Approximately 89 % growth inhibition was 
observed after 96 h at 250 mg L-1. The data are presented as mean ± SEM of three 
biological replicates. 
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Figure 4.3 Extracellular depletion of Cr (VI) by A. flavus. 
Graphs showing significant (p<0.001) depletion of Cr (VI) by A1120 and SFL 
strain, from the extracellular medium spiked with different concentration of Cr (a) at 
50 mg L-1 and (b) at 100 mg L-1, (c) 250 mg L-1. The data are presented as mean ± 
SEM of three replicates. (d) representative photograph showing the disappearance of 
pale yellow colour indicative of K2Cr2O7 (Cr VI), and appearance of greenish colour 
in the extracellular filtrate at 100 mg L-1, confirming the biotransformation of Cr 
(VI) to Cr (III) (i) abiotic control showed no significant change in Cr concentration 
as well as no change in colour ruling out the possibility of abiotic Cr (VI) reduction 
by any of the media component (ii) A1120 strain, (iii) SFL strain. 
 
 
PDB. The depletion of Cr (VI) and total Cr [Cr (T)] concentration in PDB spiked 

with 50, 100 and 250 mg L-1 Cr (VI) over a period of 96 h is shown (Figure 4.3).  

Significant reduction (P<0.001) in the Cr (VI) concentration was observed in both 

the strains at 24 h intervals. At 50 mg L-1 the SFL strain showed complete removal 

of Cr (VI) from the media within 72 h, representing 100% detoxification whereas Cr 
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(VI) was reduced to 10.84 ± 0.28 mg L-1 by the A1120 strain, showing 78% 

removal. The amount of total Cr reduced sharply (P<0.001) within 24 h and 

remained unchanged after 72 h. After the complete reduction of Cr (VI), the final 

concentration of Cr (T) in the medium remained at 22.68 ± 0.31 mg L-1 in SFL and 

28.29 ± 0.56 mg L-1 in A1120 strain (Figure 4.3a). At 100 mg L-1 Cr (VI) initial 

concentration also SFL strain showed complete removal of Cr (VI) from the media 

within 72 h. In contrast at this concentration, Cr (VI) was reduced to 14.38 ± 0.59 

mg L-1 by A1120 strain showing 85 % removal. After 72 h the final amount of Cr 

(T) in the medium was 28.61 ± 0.12 mg L-1 in SFL strain and 38.50 ± 0.44 mg L-1 in 

A1120 strain (Figure 4.3b). Further, at 250 mg L-1, a maximum of 95% and 74 % Cr 

(VI) removal was observed after 96 h by SFL and A1120 strain, respectively with 

remaining Cr (VI) amount of 13.08  ± 3.09  mg L-1 and 64.61 ± 1.05 mg L-1, 

respectively in the medium (Figure 4.3c). In both the strains, the amount of total Cr 

[Cr (T)] in the medium also decreased significantly (p<0.001) within 24 h which 

then became constant without significant change (p>0.05). The decrease in the 

amount of Cr (VI) coincided with the disappearance of the pale yellow colour from 

the media, a general indicator of K2Cr2O7 corresponding to Cr (VI) and appearance 

of greenish colour indicative of Cr(III) which was not initially present in the 

medium (Figure 3.3d). There was no significant change in Cr concentration in the 

abiotic control (biomass free PDB spiked with Cr) along with any change in the 

colour of media. This observation eliminates the possibility of Cr reduction by 

media components or degradation by UV or light. 

 
 4.2.4 Total Chromium uptake and intracellular accumulation analysis:  

To determine the amount of total Cr uptake by hyphae, the fungal cells were grown 

in PDB supplemented with 50 mg L-1, 100 mg L-1 and 250 mg L-1 Cr (VI). Post Cr 
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(VI) treatment biomass was harvested, dried and acid digested. Total Cr 

concentrations in the acid digested samples were recorded using atomic absorption 

spectroscopy (AAS). The biosorption capacity of the two fungi increased 

significantly (p<0.05) with an increase in Cr (VI) concentration from 50 to 250 mg 

L-1 (Figure 4.4).  

 

 

Figure 4.4: Bar graphs showing total Cr biosorption by A. flavus strains after 72 h in 
potato dextrose broth supplemented different concentrations of Cr (VI). The fungal 
biomass was then harvested, dried and acid digested. The Cr concentrations were 
analysed in the digested sample. The amount of total Cr taken up by fungal cells 
increased significantly (p ≤0.05) with the increase in Cr (VI) concentration. Data are 
presented as mean ± SEM of each of three replicates (n = 3). Significant difference 
(p ≤0.05) in the Cr biosorption capacity of SFL denoted by superscript (a, b, c) and 
by A1120 denoted by superscript (x, y, and z). Significant difference (p ≤ 0.05) in 
the Cr biosorption between the two strains at each concentration is denoted by 
asterisk (*). 
 

This suggests that both the strains are able to take up Cr from the medium. 

Following treatment with 50 mg L-1 Cr (VI), a maximum biosorption of 4.19 mg g-1 

and 3.48 mg g-1 dry weight of A1120 and SFL strain occurred. At 100 mg L-1, a 
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maximum biosorption of 6.01 and 4.54 mg g-1 dry weight was observed by A1120 

and SFL strain. With the further increase in Cr concentration to 250 mg L-1 the Cr 

biosorption increased to a maximum of 7.99 mg g-1 and 7.51 mg g-1 dry weight by 

A1120 and SFL strain. The sorption values in A1120 strain were significantly higher 

(P<0.05) than SFL strain at 50 and 100 mg L-1 Cr (VI) concentration.  

        The intracellular uptake capacity of fungi was determined by incubating 

Cr treated fungi with EDTA to remove cell wall bound Cr. The EDTA washed 

biomass was acid digested and analysed for Cr by using AAS.  Internalization of 

0.88 mg g-1 and 2.25 mg g-1 dry weight was observed by A1120 and SFL strains, 

respectively at 50 mg L-1 Cr (VI). With the Cr (VI) concentration at 100 mg L-1, 

accumulation of 2.41 mg g-1 and 3.68 mg g-1 dry weight and at concentration 250 

mg L-1, internalization of 3.39 mg g-1 and 6.17 mg g-1 was observed by the A1120 

and SFL strains, respectively (Figure 4.5).  

Overall, SFL fungus showed complete removal of 50 mg L-1 and 100 mg L-1 Cr 

(VI) in 100 ml growth media [i.e, net removal of 5 mg and 10 mg Cr (VI) in 100 ml 

media]. Out of total 5 mg of extracellularly removed Cr (VI) at 50 mg L-1 Cr (VI),  

a maximum accumulation of 2.26 mg Cr by 0.65g dry biomass (calculated as total 

accumulation in mg g-1 by fungi x total biomass of fungi in g) was achieved. At 100 

mg L-1 Cr (VI), out of total 10 mg of extracellularly depleted Cr (VI) a maximum 

uptake of 2.76 mg Cr by 0.61 g dry biomass has been observed. At 250 mg L-1 Cr 

(VI) [with a total of 25 mg Cr present in the medium] about 23.69 mg Cr (VI) was 

removed and out of which 1.22 mg Cr was taken up by 0.16 g dry SFL biomass. On 

the other hand in A1120 strain at 50 mg L-1, 3.92 mg Cr was removed extracellulary 

out of which only 1.67 mg Cr uptake was achieved by 0.61g dry biomass and at 100 

mg L-1, out of 8.57 mg of extracellularly removed Cr, a total of 0.78 mg Cr uptake 

was achieved by 0.12 g dry fungal biomass. At 250 mg L-1, about 18.53 mg Cr (VI) 
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was removed from the growth medium out of which 0.31 mg accumulation was 

achieved by 0.03g dry biomass. Interestingly, SFL strain showed significantly 

higher (P<0.05) intracellular Cr uptake than A1120 at all Cr concentrations.  

 

 

Figure 4.5: Bar graphs showing Cr accumulation by A. flavus strains after 72 h in 
potato dextrose broth supplemented different concentrations of Cr (VI). Cr treated 
biomass was incubated with 20mM EDTA to remove the cell wall bound Cr, dried 
and acid digested. The Cr concentrations were analysed in the digested sample. Cr 
accumulation by fungal cells increased significantly (p ≤0.05) with the increase in 
Cr (VI) concentration. Data are presented as mean ± SEM of each of three replicates 
(n = 3). Significant difference (p ≤0.05) in Cr accumulation capacity of SFL denoted 
by superscript (a, b, c) and of A1120 denoted by superscript (x, y, and z). Significant 
difference (p ≤ 0.05) in the Cr accumulation between the two strains at each 
concentration is denoted by asterisk (*). 
 
 
 
Further to confirm the role of fungal active metabolism in transport of Cr to the 

cells, the inhibitory effects of the respiratory chain inhibitor sodium azide (NaN3), 

an uncoupler of oxidative phosphorylation 2,4 Dinitro phenol (DNP) and an ATP 
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synthetase inhibitor  N,N-Dicyclohexylcarbodiimide (DCCD) on Cr accumulation 

was studied (Figure 4.6).  

      In the presence of 1 mM DNP, the uptake was inhibited by 69%, 76% and 78% 

in SFL strain at 50 mg L-1 (Figure 4.6a) 100 mg L-1 (Figure 4.6b) and 250 mg L-1 

(Figure 4.6c) Cr (VI) respectively. In A1120 strain, 51 %, 41 % and 12 % inhibition 

was observed at 50 mg L-1 (Figure 4.6a) 100 mg L-1 (Figure 4.6b) and 250 mg L-1 

(Figure 4.6c) Cr (VI) respectively. In the presence of 200 uM DCCD the uptake of  

Cr was reduced to approximately 71-72 % at 50 mg L-1 (Figure 4.6a) and 100 mg L-1 

(Figure 4.6b) Cr (VI) and 80 % at 250 mg L-1 (Figure 4.6c) Cr (VI) in SFL strain. In 

contrast, a 48 %, 42 % and 15 % inhibition was observed by A1120 strain at 50 mg 

L-1 (Figure 4.6a) 100 mg L-1 (Figure 4.6b) and 250 mg L-1 (Figure 4.6c) Cr (VI) 

respectively. The respiratory chain inhibitor NaN3 (1mM) showed 59 %, 61 % and 

75 % inhibition in SFL strain and 37 %, 19 % and only 8 % inhibition in Cr 

accumulation at the three Cr concentrations used (Figure 4.6a-c). 

 

4.2.5 Identification of proteins involved in Cr binding:  

SDS-PAGE analysis of the two A. flavus strains was done to identify the proteins 

expressed upon exposure of 50 mg L-1 and 100 mg L-1 Cr (VI) in A1120 and SFL 

strain. The fungal mycelia was harvested from the mid-log phase and used for TCA-

acetone precipitation. The coomassie blue stained PAGE gels showed protein band 

patterns containing up to 20 discrete bands.  The protein bands ranged from ~12 kDa 

to 95 kDa in molecular weight on 15 % PAGE gel. The electrophoresis observations 

showed considerable changes in expression of different proteins in Cr treated 

samples in comparison to the untreated (without Cr) samples (Figure 4.7). The 

expression of ~12 kDa and 23 kDa protein decreased in both the strains after Cr 

treatment in comparison to the corresponding untreated protein band, as observed by  
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Figure 4.6 Bar graphs showing the reduction in Cr accumulation by A. flavus strains 
in the presence of metabolic inhibitors. Actively grown fungal biomass was 
incubated with 1 mM NaN3, 1mM 2, 4 DNP and 200 uM DCCD, harvested, dried 
and acid digested. Cr concentration was detected in the acid digested samples. a) at 
50 mg L-1  b) at 100 mg L-1 c) at 250 mg L-1 SFL strain. 
 

a reduction in protein band density on the PAGE gel (indicate by red arrow). The 

expression of ~25k Da and ~29 kDa proteins was induced after Cr treatment in SFL 

compared to the untreated, indicated by increase in band density. In contrast, these 

proteins were either not expressed or expressed in low quantity in Cr treated A1120 

strain (indicated by green arrow) and hence not much visible on the gel.  Relative to  

other proteins, a strong protein band of ~ 35 kDa was present in untreated A1120 

strain and its expression was slightly decreased after Cr treatment. On the contrary, 

this 35 kDa protein band was less prominent in untreated SFL and increased in 

density after Cr treatment but still less prominent in comparison to A1120 (indicated 
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by yellow arrow). Differential expression of proteins of approx. 45 kDa, 51 kDa, 62 

kDa and 80 kDa was observed in SFL and A1120 where these proteins were 

strongly expressed in SFL as observed by increase in band density after Cr treatment 

as compared to A1120 in which the band density remained same or have decreased 

(indicated by blue arrow). 

 

 

Figure 4.7 Detection of proteins expressed in A. flavus cells treated with 50 mg L-1 
and 100 mg L-1Cr (VI). Intracellular proteins were isolated from untreated and Cr 
treated mycelia and analysed and separated on 15% SDS-PAGE gels. 
Approximately, 15 ug of total protein was loaded in each lane. Bands were 
visualized using coomassie blue stain. Differentially expressed proteins are shown 
by different coloured arrows. 
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4.3 Discussion:  

In A. flavus, the mechanism of Cr (VI) detoxification is not well understood. 

Two main mechanisms found in fungi include biotransformation of Cr (VI) to Cr 

(III) and cell wall adsorption. The events of Cr sequestration inside the cell, 

however, remained unexplored. The filamentous fungus Aspergillus flavus, strain 

SFL, isolated from Cr contaminated tannery site was used to investigate Cr 

tolerance, uptake and reduction in comparison to a reference strain of A. flavus, 

A1120. In the metal tolerance study carried out in solid media after 10 days of 

incubation, the SFL strain showed remarkably high Cr (VI) tolerance of 1600 mg L-1 

Cr (VI), although there was a gradual reduction in visible radial growth. Conversely, 

A1120 could tolerate a maximum of 100 mg L-1 but the growth is significantly 

reduced, however A1120 showed biosorption at 250 mg L-1 Cr (VI) concentration 

(mentioned below) which could be because of the presence of more number of dead 

cells. In Aspergillus lentulus, Penicillium sp.,and Fusarium solani a tolerance level 

of 1000 mg L−1 Cr (VI) have been reported (Fukuda et al., 2008; Sen,2012). In 

another study, A. terreus was found to tolerate Cr (VI) up to 1200 mg L−1 (Mishra 

and Malik, 2014).  

The lowest concentration of metal that completely inhibits the visible growth 

of the isolate was termed “minimum inhibitory concentration” (MIC) (Chang et al., 

2016).  In this study, the MIC for SFL strain was found to be 3200 mg L-1 and 200 

mg L-1 for A1120. Thus, a substantial difference in the Cr (VI) tolerance capacity 

between the two fungal strains was observed on solid media where SFL strain was 

found to be approximately 16 times more tolerant than A1120 strain. The results 

indicated the capacity of the SFL strain to tolerate a broad range of Cr concentration 

and survive at high levels of toxic Cr (VI), compared to the A1120 strain. Similar to 

this, variable tolerance to Cr (VI) has also been reported in two strains of 
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Trichoderma asperellum (PTN7 and PTN10) having high homology where PTN7 

was 1.5 times more tolerant than PTN10 (Chang et al., 2016).  

Growth inhibition of 84% was observed in A1120 strain grown for 72 h in 

100 mg L-1 Cr, and partial recovery to 44 % inhibition was found after 144 h 

compared to the control (biomass grown in broth media not spiked with Cr). In 

contrast, SFL strain grew well in liquid media containing up to 100 mg L-1 Cr (VI).  

At exposures to 250 mg L-1 over 144 h, negligible growth of A1120 strain was 

observed. This is in contrast to the 89 % growth inhibition in SFL that occurred at 

96 h which was reduced to 61% after 144 h at 250 mg L-1 Cr (VI). This suggests that 

in liquid media fungal cells can become tolerant over time where their growth is 

restored after certain period of adaptation. Growth inhibitory effects of 51 mg L-1 Cr 

(VI) in laboratory strains of yeast Pichia guilliermondii (Ksheminska et al., 2003), 

15 and 20 mg L-1 Cr (VI) in A. flavus and A. parasiticus strains, isolated from 

landfill and sludge samples, respectively (Shugaba et al., 2010) and 15.3 mg L-1 in 

the aerobic cultures of bacterial strain Shewanella oneidensis MR–1 (Middleton et 

al., 2003) have been reported. Our newly described strain of A. flavus (SFL) 

demonstrated a higher tolerance than found in these examples.  

Both the strains were found capable of reducing Cr (VI) to Cr (III) from the 

extracellular medium, however significant differences (p<0.001) in the reduction 

capacity between the two strains were observed. SFL showed complete reduction of 

Cr (VI) in the growth medium supplemented with 50 mg L-1 and 100 mg L-1 Cr (VI) 

within 72 h of exposure and approximately 95 % reduction occurred at 250 mg L-1 

after 94 h. Cr (VI) is most likely to be enzymatically reduced to Cr (III) in the 

medium. This is consistent with the disappearance of the pale yellow colour from 

the media, and subsequent appearance of greenish colour indicative of Cr (III) which 

was not initially present in the medium. Chromate reductases secreted by 
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microorganisms most likely mediate the conversion of hexavalent Cr to trivalent Cr 

via electron transfer reactions occurring in the cytosol under aerobic conditions and 

by a membrane bound component under anaerobic conditions (Camargo et al.,. 

2003, Mala et al., 2015). Chromium reduction by various Aspergillus species has 

previously been reported in a range of media conditions.  Reductions of 96.3 % and 

91.6 % Cr were attained by A. niger and A. parasiticus, respectively, within 72 h at 

20 mg L-1 Cr (VI) (Shugaba et al., 2012).  A 97 % decrease occurred from an initial 

concentration of 5 mg L-1 Cr (VI) after 92 h by A. foetidus (Prasenjit and Sumathi, 

2005 et al., 2005). Complete removal of 50 mg L-1 Cr (VI) was also reported for A. 

tubingensis after 72 h (Acevedo-Aguilar et al., 2006). The SFL strain investigated in 

the current study was found to be more efficient compared to other reported 

Aspergillus species. The fungal strains also demonstrated partially adsorption and 

/or accumulation Cr by the biomass as one of the mechanism of Cr (VI) 

detoxification. This was inferred by the sharp decrease in the amount of Cr (T) 

within 24 h that subsequently levelled off.  

To determine Cr adsorption and /or accumulation capacity of A. flavus cells, 

a Cr biosorption study was carried out. Biosorption of Cr is a complex phenomenon 

involving metabolism-independent surface adsorption or “passive uptake”, which 

takes place either in living or dead biomass, followed by metabolism-dependent 

intracellular uptake or “active uptake” where metal is transported across the cell 

membrane, occurring only in viable cells (Malik, 2004). The Cr biosorption capacity 

of 7.99 mg g-1 and 7.51 mg g-1 dry weight by the two A. flavus strains was found to 

be higher than most of the other reported Aspergillus species where Cr biosorption 

of 2.99 mg g-1 was reported in A. niger (Kovacevic et al., 2000), 1.56 mg g-1 and 1.2 

mg g-1 by a tolerant and a less tolerant Aspergillus sp., respectively (Zafar et al., 

2007), 0.587 mg g-1 and 0.082 mg g-1 by A. niger and A. parasiticus (Shugaba et al., 
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2012), 2 mg g-1 by A. foetidus (Prasenjit and Sumathi, 2005 and Sumathi, 2005). Our 

newly described strain SFL and A1120 showed approximately 5 fold higher 

biosorption.  

The intracellular accumulation of 6.17 mg g-1 Cr by SFL strain was found 

similar to one of the highest cellular Cr accumulation values of 6.7 mg g-1 reported 

in yeast Pichia guilliermondii (Kaszycki et al., 2004), however, it would be difficult 

to directly compare these data as the author have used different experimental 

conditions inculding rich optimal growth medium and a different Cr (VI) 

concentration ranging between 0.1-0.5 mM. Differences in Cr the uptake mechanism 

exhibited by two strains was observed whereby the less tolerant A1120 showed 

significantly higher total Cr biosorption (passive uptake) whereas the tolerant SFL 

strain internalized significantly more Cr into its cytoplasm (active uptake). In 

literature it is well documented that metal resistant strains show reduced uptake of 

toxic metal into the cell (Gadd and White 1989). But, in S. cerevisiae resistant to 

Co2+ a higher cytosolic concentration of Co2+ has been reported compared to the 

non-resistant parent strain (White and Gadd 1986) which is consistent with the 

present study. This might be attributed to vacuolar compartmentalisation of metal. 

Metal transport across cell membranes is an energy-dependent process leading to 

storage in intracellular organelles like vacuoles, or binding to cysteine-rich small 

proteins such as metallothioneins (Ahalya et al., 2003). Such a process would take 

place only within viable cells. Only the SFL strain continued to grow in Cr-rich 

supplement and the growth of A1120 strain was impaired with the increase in Cr 

concentrations in the medium. The SFL strain may be metabolically more active and 

may have intrinsic mechanisms to neutralize the toxic effects of chromate and thus 

able to tolerate high Cr (VI) concentration and accumulate more Cr inside the cell 

compared to the A1120 strain. 
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To further confirm this hypothesis, Cr uptake was studied in the presence of 

different metabolic inhibitors and as expected, the intracellular accumulation was 

greatly reduced in SFL than in A1120 strain. The uncouplers of oxidative 

phosphorylation (OP) blocks the coupling between electron transport and OP 

reactions in mitochondria and thus prevents ATP synthesis without influencing 

respiratory chain and H(+)-ATPase (Terada, 1990). The inhibitory effect of 2, 4 

DNP in the chromium uptake process indicates the requirement of energy generated 

by ATP synthesis during OP. DCCD is a proton-translocation inhibitor that blocks 

the translocation of H+ in Fo subunit of FoF1-ATP synthase. FoF1-ATP synthase is a 

proton translocating P- type ATPase that catalyse ATP synthesis by using proton 

motive force generated across the plasma membrane during OP (Toei and Noji, 

2013, Das et al., 2009) . This suggested that the transport of chromium into the cell 

cytoplasm might be driven by H+ATPases (Toei and Noji, 2013, Das et al., 2009). In 

the presence of azide ion (N3) both electron transport and OP are inhibited. The OP 

is inhibited by blocking the electron transport cascade, particularly via inhibition of 

cytochrome oxidase a3 (Thompson et al., 2000). 

Taken together, these observations suggest that Cr uptake into the fungal 

cells is an energy dependent process that takes place via specific transport system. 

However, a significantly different degree (P<0.001) of Cr uptake inhibition between 

the two strain (higher Cr uptake inhibition in SFL and lower inhibition in A1120) is 

indicative of a different nature of energy coupling and different metabolic responses 

by these fungi during the Cr accumulation.  Inhibition of Cr uptake in the range of 

25-35% using these metabolic inhibitors, has been reported in Termitomyces 

clypeatus (Das et al., 2009).   

Proteomic analysis showed differential expression of proteins in A1120 and 

SFL strain in response to 50 mg L-1 and 100 mg L-1 Cr (VI) which may indicate 
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different cellular response by these fungi in the presence of Cr. A ~25kDa, and a 

~29kDa protein was induced upon Cr treatment in SFL. This could correspond to a 

chromate reductase enzyme from Pseudomonas ambigua, known to reduce Cr (VI) 

to Cr (III), which has a similar molecular weight of 25kDa (Suzuki et al., 1992). A 

protein of molecular weight 20kDa has been purified and characterised as chromate 

reductase in Pseudomonas putida MK1 (Park et al., 2000). Other studies have 

reported the induction of a 30kDa protein in the presence of Cr in P. aeruginosa 

(Ganguli and Tripathi, 2002), in Ochrobactrum sp. (Thacker and Madamwar, 2005). 

Therefore it can be predicted that chromate reductases might be involved in the 

reduction of Cr (VI) to Cr (III) in A. flavus strains. The differential expression of a ~ 

35 kDa in SFL and A1120 could be attributed to play a significant role in Cr 

tolerance as this protein was present in low quantity in untreated Cr tolerant SFL and 

its expression was induced under Cr stress.  On the other hand, this protein was 

strongly expressed in untreated A1120 which was reduced after Cr treatment. 

Similar to this observation in Pseudomonas aeruginosa, a 35.6 kDa glutathione 

synthetase protein was overexpressed under Cr stress (Kılıç et al., 2010). 

Glutathione plays a central role in protection against oxidative stress induced by 

toxic metals by detoxification of the free radicals generated upon metal toxic metal 

exposure (Jozefczak et al., 2012, Kılıç et al., 2010). Cr (VI) is also known to 

generate reactive oxygen species during Cr (VI) reduction process via formation of 

intermediate Cr (IV) and Cr (V). Hence, it may be predicted that glutathione 

synthestase (~35 kDa protein) might have a potential involvement in protecting SFL 

strain against Cr (VI) toxicity as indicated by its induction after Cr treatment 

whereas the downregulation of this protein indicates Cr (VI) induced oxidative 

damage in A1120.  Nevertheless, identification and characterisation of these proteins 

would provide confirmatory results. Others proteins of 45 kDa, 51 kDa, 62 kDa and 
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80 kDa molecular weight found in this study, might have a potential role in Cr 

tolerance as indicated by increased expression in Cr treated SFL compared to 

A1120.  

A consolidative analysis of the above studies demonstrated high Cr tolerance by 

SFL strain, higher Cr (VI) reduction capacity along with Cr accumulation inside the 

cell via active transport system utilizing the energy generated during ATP synthesis. 

On a proteomic level as well, both the strains responded differently to Cr exposure 

as depicted through differential expression of certain proteins. Approximately 

25kDa, 29kDa, 35 kDa proteins were found to have potential role in such 

interaction. However, the identification of these proteins remains to be elucidated. 

Overall a considerable difference in the mechanism of Cr (VI) tolerance by 

Aspergillus flavus strains A1120 and SFL is established.  
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CHAPTER 5 

 

Topographical characterisation, in situ 

localization, and speciation of chromium in A. 

flavus 

 

5.1 Introduction: 

Owing to its toxicity, interaction of Cr (VI) with fungi primarily relies on a 

detoxification process that includes cell wall binding, intracellular transport and 

reduction of Cr (VI) to its less toxic form Cr (III). The kinetic mechanisms of these 

detoxification processes using different fungi including A. flavus are well 

established (Singh et al., 2016, Sharma and Malviya, 2016, Singh and Bishnoi, 

2015, Shugaba et al., 2012, Ahluwalia and Goyal, 2010, Deepa et al., 2006). With 

the emergence of different surface characterisation techniques including 

spectroscopic and microscopic analysis, it became possible to understand the 

characteristic physical and chemical interactions occurring between the metal ion 

and the microbial biomass (Das et al., 2009). Studies have been carried out on the 

surface characterisation of fungal biomass in relation to Cr (VI) biosorption and 

biotransformation of Cr (VI) to Cr (III), and the relevant mechanisms have been 

elucidated, as reported in a chemically pre-treated biomass of Termitomyces 

clypeatus using Fourier transform infrared spectroscopy (FTIR) and scanning 

electron microscopy (SEM) (Ramrakhiani et al., 2011), in brown seaweed Ecklonia 

using X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy 

(XAS) (Park et al., 2007), in Aspergillus versicolor using SEM-energy dispersive X-

ray analysis (SEM- EDX), attenuated total reflection infrared (ATR-IR), and atomic 
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force microscopy (AFM) probing (Das et al., 2008). Several reduction mechanisms 

have also been proposed including direct Cr (VI) reduction, anionic adsorption 

and/or adsorption coupled reduction, described in Coriolus versicolor on the basis of 

FTIR and SEM- EDX (Sanghi et al., 2009), Aspergillus niger SEM, FTIR, 

transmission electron microscopy-EDX (TEM-EDX) and Raman spectroscopy (Gu 

et al., 2015, Alonso et al., 2014). Cr accumulation into the cytoplasm and its 

respective localisation has been described in Termitomyces clypeatus using 

TEM-EDX analysis (Das et al., 2009). 

The cell surface of microorganisms acts as the first site of communication 

with the extracellular environment and hence plays a vital role in metal-microbe 

interaction (Poljsak et al., 2010). The fungal cell wall is complex in nature 

comprising of different polysaccharides including chitin, chitosan, 1, 3-β glucan- 

and 1,6- β glucan, mannan, glycoproteins, and lipids (Adams, 2004,  Pessoni  et al., 

2005, Bowman and Free, 2006, Das et al., 2008). The large surface area and 

electronegative charge on the fungal cell provides an excellent site for metal binding 

(Srivastava and Thakur, 2006). Therefore, it is important to understand the 

interactions and complex formation between Cr and various supramolecular 

structures present within the fungal biomass (Park et al., 2005) which may facilitate 

Cr binding. However, little has been reported on Cr interactions with A. flvaus. 

There are certain questions that remained unanswered such as: 1) in which form of 

Cr is taken up by the fungal cells? 2) What is the precise localisation of Cr into the 

cell? 3) Are there any metal-protein complexes formed by fungi? 

To fill these knowledge gaps, topographical characterisation, speciation 

analysis and insitu localisation of Cr were carried out in A1120 and SFL strains of 

filamentous fungi A. flavus. At first, Cr localisation studies were done using 

Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy 
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(TEM). Functional groups involved in Cr binding to cell wall were identified by 

Fourier Transform Infrared Spectroscopy (FTIR). Cr speciation analysis was done 

using X-ray photoelectron spectroscopy (XPS). 

 

5.2 Results  

5.2.1 Localisation of Cr on the cell surface 

Scanning electron microscopy (SEM) was carried out to localise the cell surface 

bound Cr. Fungi grown in broth media without Cr showed no differences in surface 

morphology between the A1120 (Figure 5.1a) and the SFL strain (Figure 5.1b). The 

hyphae of both fungi had a smooth surface. The fungal biomass exposed to 100 mg 

L-1 Cr (VI) was prominently different with irregular deposits on the hyphal surfaces. 

Particulate aggregates were observed along the subapical and mature regions of the 

hyphae (Figure 5.1c-f). These were seen at 24 h as individual submicronic particles 

(Figure 5.1c, d) and later as aggregates (Figure 5.1e, f) in both A1120 and SFL 

respectively. The tip of the hyphae remained smooth, and particles did not 

accumulate on surfaces closer than 40µm to the hyphal tip.  To confirm the presence 

of Cr on the hyphae energy dispersive X-ray spectroscopy (EDX) analysis was done. 

As expected, EDX analysis did not detect Cr on either of the A1120 or SFL fungal 

surfaces from the untreated biomass (Figure 5.1g). The mature zone with the 

deposition of aggregates was found rich in Cr when analysed with EDX, indicated 

by appearance of clear peaks of Cr in the EDX spectrum (Figure 5.1h). 

 

5.2.2 Sub cellular localization of Cr  

The intracellular localization of Cr was carried out by transmission electron 

microscopy (TEM). Micrographs of thin sections of untreated and Cr (VI) treated 

cells were examined. In the untreated A. flavus cells septate hypha was seen along  



63 
 

 

 
 
Figure 5.1 SEM EDX analysis of A. flavus mycelia grown in broth media with or 
without 100 mg L-1 Cr (VI) supplement. (a, b) micrograph of untreated A1120 and 
SFL strain resp., after 24 h showing smooth hyphal surface, (c, d) micrographs of 
treated A1120 and SFL strain resp., after 24 h showing submicronic particles on the 
hyphal surface, (e, f) micrographs of treated A1120 strain and SFL strain resp., after 
96 h showing particle aggregation on the hyphal surface. Scale bar denotes 10 μm, 
(g) representative EDX spectra of untreated mature hyphae in which no Cr was 
detected (h) representative EDX spectra of Cr treated mature hyphae showing Cr 
peaks (i) representative SEM micrograph of mature hypha used for elemental 
scanning (i) elemental area map from the same hypha shown in (i) showing uniform 
distribution of Cr denoted by green coloured Cr-K energy line. Scale bar denotes 2.5 
μm. Further, the elemental mapping acquired from the Cr-treated fungal mycelia 
confirmed the distribution of Cr along the sub-apical and mature surfaces of the 
hyphae (Figure 5.1i, j).  
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with the presence of vacuolar structures and small vesicles in the cytoplasm. The 

cell wall appeared clear and smooth without the deposition of dense granules in both 

A1120 (Figure 5.2a) and SFL strain (Figure 5.2b). Electron micrographs of cells 

treated with 100 mg L-1 Cr (VI) for 96 h showed the presence of black dense clumps 

(indicated by circles) on the cell wall as well as in the cytoplasm in both A1120 

(Figure 5.2c) and SFL (Figure 5.2d). Micrographs at higher magnification also 

showed the presence of dense granules in the internal structures of cell (Figure 5.3e, 

f) possibly nucleus, mitochondria and outer membrane of the vacuole along with the 

cell wall. The EDX spectra acquired from the section showed the presence of Cr 

peak in both the fungi (Figure 5.2g, h) but it could not be confirmed that these 

clumps are made of Cr. To establish this, point EDX was done in SFL strain at 

different points (1, 2 and 3) as indicated by red circles in the micrographs (Figure 

5.3a) which localised Cr in the cytoplasmic region (EDX spectra of spot1) as well as 

on the cell wall (EDX spectra of spot 3) and confirmed that the dense clumps are 

composed of Cr. In the region just outside the cytoplasm no Cr was detected (EDX 

spectra of spot 2). In addition, point EDX was taken from three different points (1, 2 

and 3) inside the cytoplasm. The appearance of Cr peak at these points confirmed Cr 

sequestration in the membrane bound organelles (Figure 5.3d).  Furthermore, line 

EDX   spectra were recorded to support the above observations (Figure 5.3 b, c, e, 

and f). Line EDX was taken from inside to the outside of the cell (from left to right) 

and indicated by red line in the micrograph (Figure 5.3b). The spectra showed Cr 

peaks in the region where dark clumps are present approximately at 0-0.2 µm, a 

higher peak at ~1.3-1.7 µm. The peak dropped down at ~ 1.8-2.2 µm in the 

periplasmic space and again went up at 2.5 µm at the cell wall and disappeared 

outside the cell at ~2.6-3.2 µm (Figure 5.3c). Line EDX of the cytoplasmic region, 

taken from top to bottom as indicated by orange line in the micrograph (Figure 5.3e) 
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showed higher amount of Cr perhaps in the nuclear region especially around the 

nuclear membrane (0-0.15 um) in comparison to the cytoplasmic region (0.12- 0.22 

um). Cr peak was further increased around the vacuole membrane which then 

disappeared inside the vacuole (Figure 5.3f).   

 

 

 

Figure 5.2 TEM EDX analysis of A. flavus mycelia grown in broth media for 96 h 
with or without 100 mg L-1Cr (VI) supplement (a, b) micrographs of untreated 
A1120 and SFL strain respectively, showing clear wall (CW), septate hypha (SH), 
vesicles (Ves), vacuoles (V) shown by red arrow, (c, d) micrographs of Cr treated 
A1120 and SFL strains resp., showing the ultrastructure of fungal cells (V=vacuoles, 
M=mitochondria, N=nucleus) where black dense clumps were observed on the cell 
surface and cytoplasmic region (indicated by black circle), (e, f) micrographs at Cr 
treated A1120 and SFL strains resp., at higher magnification where the black dense 
clumps observed on the cell surface and cytoplasmic region are indicated by black 
circle (g, h) EDX spectra of Cr treated A1120 strain and SFL strain resp., showing 
Cr peaks (indicated by red squares). 
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Figure 5.3 Point and Line EDX analysis of A. flavus cells treated with100 mg L-1Cr 
(VI) (a, b) STEM micrographs showing three spots (1, 2, 3) at which EDX spectra 
were recorded. EDX spectra of the same spots are on the right side of the respective 
image (red inset), sowing the presence of Cr on the cell surface, cytoplasm and 
vacuoles (V) except for point 2 right outside the cytoplasmic region [EDX spectra of 
spot 2 in (a)],  (c, d) STEM micrographs showing the region at which line EDX scan 
as done (shown by red and orange line), the respective EDX spectra (e, f) confirmed 
the presence of Cr in the intracellular region of the cell. 
 

 

5.2.3 Identification of functional groups involved in Cr binding: 

The functional groups likely to be involved in chromium adsorption to the fungal 

cell wall were identified by Fourier transform infrared spectroscopy (FTIR). The 

FTIR spectra were recorded for untreated and 100 mg L-1 Cr (VI) treated biomass at 

48 h and 96 h. FTIR spectral analysis showed a number of absorption peaks in the 
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untreated and Cr (VI) treated fungal biomass. The observed peaks were in the range 

3500-3200, 3000-2800, 1760-1665, 1200-1000 cm-1 (Figure 5.4). The broad peak 

appearing in the region 3500-3200 cm-1 is attributed to –OH and -NH stretching. 

Two medium intensity peaks at around 2921.34 cm-1 (SFL), 2922.47 cm-1 (A1120) 

and 2851.76 cm-1 (SFL), 2852.81 cm-1 (A1120) indicative of -CH asymmetric and 

symmetric stretching vibrations of methylene hydrogen. A medium intensity peak at 

1744.37 cm-1 (SFL) and 1743.59 cm-1 (A1120) represents C=O stretching band of 

carboxylic group. The appearance of bands in the range of 1650-1500 cm-1 is 

representative of primary and secondary amines. A sharp peak at 1637.34 cm-1 

(SFL) and 1639.57 cm-1 (A1120) is attributed to amide I band mainly in C=O 

stretching mode. The peak at 1588.38 cm-1 (SFL) and 1543.85 cm-1 (A1120) 

represents amide II band chiefly in O=C-N-H bending mode of chitin and chitosan 

present on the fungal cell wall (Sanghi et al., 2009). A small peak appeared at 

1376.17 cm-1(SFL) and 1375.61 cm-1 (A1120) represents –CH3 wagging (umbrella 

deformation; a type of structural deformation in an umbrella closing manner) 

(Sanghi and Srivastava, 2010). The region 1300-1200 cm-1 is characteristic of more 

intricate amide III region. A number of peaks were found in this region denoting a 

large amount of structural proteins constituting the fungal biomass. The small peak 

emerging at corresponds to C-H stretching in amide III and C-O stretching. A strong 

and 1238.39 cm-1 (SFL) and 1234.01 cm-1 sharp peak at 1025.59 cm-1 (SFL) and 

1023.21 cm-1 (A1120) denotes C-OH stretching. Two weak intensity peaks in the 

region 1200-1000 cm-1approx. are the characteristic adsorption peaks of phosphate 

groups. The peaks occurring in the region 700-400 cm-1 are attributed to the 

presence of nitro compounds and disulphide groups (Ramrakhiani et al., 2011). The 

spectra of Cr-laden biomass showed notable differences when compared with the 

spectra of the untreated biomass of both A1120 and SFL strain as evident by the  
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Figure 5.4 FTIR spectra for 100 mg L-1Cr (VI) treated A. flavus biomass showing 

differences in the untreated and Cr treated mycelia observed by stronger peaks in the 

untreated mycelia. Black circle indicates complete disappearance of peak at ~1744 

cm-1 after 96 h of Cr treatment (a) A1120, significant difference in the peak intensity 

was observed at 96 h (b) SFL, difference in the peak intensity was observed at both 

48 h and 96 h.  
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changes in peak intensity (Figure 5.4) where stronger peaks were observed in the 

spectra of untreated biomass. In A1120, there was not much difference in the peak 

intensity between the untreated and 48 h treated biomass but the peaks were 

significantly different after 96 h of treatment (Figure 5.4a). In SFL, a difference in 

the peak intensity was observed within 48 h (Figure 5.4b). The details of peak 

positions are given in Table 5.1. Apart from this, the two most remarkable 

differences observed were the complete disappearance of the peak at 1743.59 cm-1 

and 1744.37 cm-1 (indicated by circle) after Cr treatment in both A1120 (Figure 5.4a) 

and SFL strain (Figure 5.4b) and narrowing of the peaks appeared in the region 

3500-3200 cm-1. 

 

5.2.4 Determination of Cr speciation by using X­ray photoelectron 

spectroscopy:   

X-ray photoelectron spectroscopy (XPS) was done to determine the change in 

oxidation state of Cr during the biosorption process. The fungal biomass was treated 

with 100 mg L-1 Cr (VI) up to 96 h. XPS spectra were recorded  Cr treated A1120 

and SFL biomass at 48 h and 96 h and detailed analysis of photoelectron spectrum 

was done. High resolution spectra collected from Cr2p core region of Cr treated 

biomass were collected. In the XPS spectra of A1120 strain treated with Cr (VI), the  

main Cr2p peak at 576.9 eV was observed (Figure 5.5a) and in the spectra of SFL 

strain the main peak was observed at around 577.1eV (Table 5.2) binding energy 

(Figure 5.5b). The peak observed corresponds to Cr (III) in hydroxide form. The Cr 

2p peak consists of a doublet (Cr 2p3/2 and Cr 2p1/2). Doublets were normally both fit 

to get peak positions, however for Cr the secondary peak is complicated with 

satellite peaks, so only the larger (Cr 2p3/2) peak was fitted. The 2p1/2 peaks were  
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Table 5.1:  Peak positions and allocation of FTIR bands in untreated (control) and Cr 
treated A1120 and SFL strain. 
 
 

FTIR 
Peak

s 

A1120 
Contro
l 

A1120  
48 h  

A1120   
96 h 

SFL  
Contro
l  

SFL 
 48 h   

SFL  
96 h 

Representativ
e of functional 
groups 

3500-
3200 
cm-1 

3272.9
6 

3268.8
6 

3274.4
5 
 

3276.7
1 

3269.4
4 

3258.7
4 

-OH group, -
NH stretching 
and the 
acetamide 
group of the 
chitin fraction. 

3000-
2800 
cm-1 

2921.1
5 
2851.7
2 
 

2920.0
4 
2851.1
0 

2921 
2851.7
3 

2920.7
9 
2851.7
0 

2918.7
5 

2917.6
1 
2847.4
9 

CH 
asymmetric 
and symmetric 
stretching 
vibrations of 
methylene 
hydrogen. 

1650-
1500 
cm-1 

1638.9
5 
 
 
 
1543.5
7 
 

1638.0
3 
 
 
 
1553.0
2 

1639.2
1 
 
 
 
1542.9
1 

1635.2
3 
 
 
 
1544.3
5 

1638.1
4 
 
 
 
1548.5
4 

1639.0
8 
 
 
 
1540.7
7 

Amide I band 
primarily in 
C=O stretching 
mode 
 
O=C-N-H 
bending of 
amide II bands 
present in both 
chitin and 
chitosan on the 
cell wall. 
 

1760-
1665 
cm-1 

1741.8
1 

- 
 

- 
 

1740.9
5 

- 
 

- 
 

C=O stretching 
band of 
carboxyl 
groups. 

1400-
1000 
cm-1 

1375.6
7 
 

1376.2
5 

1370.1
4 

1373.5
3 

1375.9
7 

1376.0
1 

C–N 
stretching, in-
plane O–H 
bending, 
sulphur and 
phosphorus 
compound 
 

1200-
1000 
cm-1 

1244.1
6 
 

- 
 

- 
 

1233.8
0 
 

- 
 

- 
 

C–H stretching 
in amide III 
and C–O 
stretching 
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Figure 5.5 High resolution Cr2p spectra recorded after treating  A. flavus biomass 
treated with 100 mg L-1Cr (VI) showing a single peak around 577.1eV 
corresponding to Cr (III) in hydroxide form. The second peak at 586.5eV does not 
correspond to any other form of Cr (a) A1120 (b) SFL 
 
 
 
Table 5.2   Peak position obtained in Cr2p spectra 
 
 

 

 

Treatment 
time 

Cr 2p3/2 Peak position (eV) 
A1120         SFL 

48 h           577.0         577.2 
96 h           576.9          577.1 
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 of Cr was identified on the fungal cell surface. The XPS spectra of cytoplasmic 

extracts of Cr (VI) treated cells were also recorded however, no peaks were detected 

(Figure not shown) perhaps Cr was present in very low concentration.  

 

5.3 Discussion: 

Previous studies have attempted to characterise the mechanism of Cr (VI) uptake as 

well as reduction to Cr (III) in different filamentous fungi by employing different 

types of instrumentational analysis. However, in A. flavus a detailed physiochemical 

investigation of Cr interaction with the fungal cells has not previously been reported. 

In the present study, topographical characterisation, subcellular localisation and 

speciation analysis of Cr was carried out in A1120 and SFL strain of A. flavus. 

SEM analysis showed deposition of irregular aggregates on the surface of Cr 

(VI) treated mycelia in both A1120 and SFL fungi, while the untreated mycelia had 

a smooth surface. These aggregates were majorly found on the maturing region of 

hyphae. This is likely due to the differences between the apical, subapical, and 

mature zones of the hyphae. The apical zone is the actively growing region 

predominantly richer in chitin, and relatively lower in proteins than mature hyphae. 

The mature zone is the cytoplasmically more active zone, highly vacuolated and 

loaded with enzymes involved in metal homeostasis (Lee et al., 2010, Gow and 

Gadd, 1995). There was no significant difference observed in the surface 

morphology between A1120 and SFL strain with respect to Cr exposure. EDX 

analysis confirmed the presence of Cr on the hyphal surface in both A1120 and SFL 

fungi. Thus, a combined SEM EDX observation suggested that the fungal strains 

had Cr particles deposited across the maturing hyphal surface as a result of Cr 

adsorption to the cell wall.  Similar to our observations, a uniform distribution of Cr 

on the fungal hyphae along with the formation of aggregates was reported in A. 
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niger (Gu et al., 2015, Khambhaty et al., 2009, Srivastava and Thakur, 2006), in A. 

versicolor nearly uniform distribution of mercury (Hg) together with the formation 

of nanostructures on the cell surface (Das et al., 2007). These findings strongly 

suggest that fungal cell surface modifications are a consequence of metal adsorption 

however no substantial difference was observed between A1120 and SFL strain. The 

limitations of SEM- EDS are that it does not differentiate between Cr (VI) and Cr 

(III), nor internal versus surface bound Cr. Thus, further characterization of the 

fungal surface in response to Cr (VI) was performed.  

TEM-EDX study that Cr [either Cr (VI) and/or Cr (III)] was uniformly 

adsorbed to the cell surface in both A1120 and SFL strain, indicating the first site of 

fungal–metal interaction is the cell wall during the Cr uptake process. The Cr 

binding to the cell wall could be due to the electrostatic interaction between the 

metal ion and the various functional groups present on the cell surface (Das et al., 

2009). Further, subcellular localisation of Cr was confirmed by point EDX and line 

EDX analysis. The appearance of Cr peak in the cellular structures confirmed the 

internalization of Cr into the cell and the membrane bound cellular organelles but 

not in the periplasmic space. This study reports for the first time the localization of 

chromium in the internal membrane bound cell structures. No significant difference 

was observed between the two fungal strains. TEM-EDX analysis suggested the 

mechanism of Cr biosorption adopted by this fungus, that involves initial Cr binding 

to the cell wall followed by Cr transportation into the cell and compartmentalization 

into the membrane bound organelles. The TEM study could not differentiate 

between the oxidation states of Cr however, since Cr (III) due to its limited 

solubility, is highly impermeable to biological membranes (Chang et al., 2016, 

Chourey et al., 2006), it can be assumed that Cr in hexavalent form is transported 

into the cell Similar observations of intracellular accumulation of Cr following 
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initial Cr adsorption to cell wall has also been reported in A. niger var tubigensis 

Ed8 (Alonso et al., 2014) and Termitomyces clypeatus (Das et al., 2009). They 

described the presence of electron dense granules of chromium on the cell wall, 

periplasmic space, cytoplasmic membrane and within the cytoplasm of the fungal 

cell. In contrast, in another study, the appearance of an electron dense layer 

throughout the cell wall of A. versicolor mycelia without any intracellular 

accumulation was reported suggesting the role of cell wall components as major 

chromium binding site whereas the process of transportation of chromium inside the 

cytoplasm was found to be insignificant (Das et. al, 2008). A further in-depth 

understanding of the cell surface phenomena and the information about the different 

valence states of chromium is needed to describe in detail the Cr biosorption 

mechanism. 

The characterisation of Cr adsorption to the cell wall was done by FTIR 

analysis. The complex nature of fungal cell wall was indicated by the presence of 

number of absorption peaks obtained in the FTIR spectral analysis (Ahluwalia and 

Goyal, 2010). Prominent differences observed in the FTIR spectra of untreated and 

chromium treated biomass indicated chemical interaction between the metal ion and 

the functional groups present on the cell wall. Interestingly, differences in the peak 

intensities were observed with the increase in Cr treatment time. In A1120 there was 

a minute difference observed in the spectral peak intensity between untreated and 48 

h treated biomass whereas the peaks were considerably weaker after 96 h. In 

contrast, significantly weaker peaks were observed within 48 h of Cr treatment in 

SFL strain. This may be due to the resistant nature of SFL strain in which the 

interaction and subsequent complexation of Cr with the biomass may occur earlier 

than A1120. The FTIR study identified that the functional groups that provide 

chromium binding sites on the fungal cell walls in both A1120 and SFL strain were 
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predominantly amines and hydroxides (3269 cm-1, 3273 cm-1), phospholipids (2921 

cm-1 and 2851 cm-1), carboxyl (1744.30 cm-1 ), amides (1637.34 cm-1, 1639.57 cm-

1,1588.38 cm-1, 1543.85 cm-1, 1238.39 cm-1,1234.01 cm-1), proteins (1376.17 cm-1 

and 1375.61 cm-1), carbohydrates (1025.59 cm-1, 1023.21 cm-1). Similar 

observations have been reported in various other fungal organisms as well such as A. 

niger (Gu et al., 2015), Termitomyces clypeatus (Das et al., 2009, Ramrakhiani et 

al., 2011), Coriolus versicolor (Sanghi et al., 2009), Trichoderma, C. resinae, P. 

chrysosporium (Ahluwalia and Goyal, 2010), A. Versicolor mycelia (Das et al., 

2008). 

XPS study revealed the information regarding the changes in the valence 

state of Cr during the biosorption process. The observed peaks in the XPS spectra at 

576.9 eV (A1120) and 577.1 eV (SFL) were consistent with Cr (III) in hydroxide 

form (Biesinger et al., 2011) suggesting only Cr (III) is adsorbed by the A. flavus 

biomass. This indicates Cr (VI) is reduced to Cr (III) in the extracellular medium 

prior to its aggregation on the cell wall, well supported by the findings of the 

preceding CHAPTER. Previous studies showed only Cr (III) existed on the surface 

of Cr- laden biomass of brown seaweed Ecklonia (Park et al., 2008) as a result of 

redox reactions occurring on the surface of biomass. In bacterium Shewanella 

oneidensis, XPS studies showed the presence of only trivalent chromium on the cell 

surface as a result of enzymatic reduction of Cr (VI) (Neal et al., 2002). In contrast 

to the findings of this study, presence of both Cr (VI) and Cr (III) on A. versicolor 

cell surface was reported (Das et al., 2008). XPS study did not reveal any 

differences between A1120 and SFL strain. 

To summarise, this qualitative analysis revealed that both A1120 and SFL 

strain exhibited similar physical and chemical interaction with Cr taking place at 

topographical and subcellular level, indicated by SEM, TEM, FTIR and XPS 
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analysis. In terms of mechanism, only Cr (III) was adsorbed to the cell surface and 

Cr (VI) is transported into the cell. Proteins, lipids and carbohydrates acted as the 

major Cr binding sites. Further genomic study is required to decode the mechanism 

on a molecular level.  
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CHAPTER 6 

Structural and functional characterisation of 

genes involved in chromium transport in 

Aspergillus flavus: Bioinformatics and gene 

expression study 

 
 
6.1 Introduction: 

The harmful effects are mainly associated with the intracellular uptake of chromate 

ions (Chourey et al., 2006). Once inside the cell, Cr (VI) undergoes a series of 

enzymatic reduction reactions and produces unstable Cr (IV) and Cr (V) 

intermediates that can cause genotoxicity (Viti et al., 2014). Metal transport proteins 

that play a crucial role in preventing Cr toxicity by sequestration of metal ions 

(Clemens S., 2001, Williams and Hall, 2000) in different organelles, trafficking, 

storage, active extrusion and the capability to regulate intracellular concentrations of 

these metal ions (Slocik et al., 2004, Festa and Thiele, 2011).  

In several bacteria including Pseudomonas aeruginosa (Cervantes et al., 

1990), Cupriavidus metallidurans formerly Alcaligenes eutrophus and Ralstonia 

metallidurans (Nies et al., 1990) a molecular mechanism of resistance to chromate 

has been described (Ramírez-Díaz MI et al., 2008, Viti et al., 2014). One of the best 

characterised mechanism is efflux of chromate ion mediated via the ChrA 

transporter, a hydrophobic protein with 12 proposed transmembrane-spanning 

domains (Cervantes et al., 2001, Cervantes et al., 1990, Nies et al., 1990), belonging 

to chromate ion transporter (CHR) superfamily that transport chromate out of the 

cell (Alvarez et al., 1999). Chromate uptake and resistance is also reported to be 
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mediated by the sulphate transport system due to the structural similarity between 

the tetrahedral chromate anion (CrO42-) and the sulphate anion (SO42-). In a wide 

range of cell types including, bacteria, fungi, yeast, plants, uptake of Cr via sulphate 

uptake pathway has been demonstrated (Ohtake et al., 1987, Ohta et al., 1971, 

Ramirez-Diaz et al., 2008, Das et al., 2009, Piłsyk and Paszewski, 2009). 

Involvement of genes encoding several other transporters such as PDR-like ABC 

transporter, multidrug resistance protein 4 and glutathione S-transferase GSTU6 

under Cr stress has also been demonstrated in rice (Dubey et al., 2010). The 

molecular mechanisms that confer resistance to Cr (VI) in microorganism, in 

particular fungi are poorly understood. 

So far, there is no report on systematic identification and characterization of 

critical genes involved in Cr-responsiveness, uptake, transportation and 

sequestration in Aspergillus flavus. This led to the hypothesis that, changes in the 

expression of genes encoding metal transporters may assist in unravelling the 

molecular mechanism of Cr resistance and/or tolerance in A. flavus. This hypothesis 

was tested by identification and structural and functional characterization of putative 

Cr transporter genes expressed under Cr toxicity in A1120 and SFL strain of A. 

flavus. Comparative genomics was used to identify four putative Cr transporter 

genes. In addition, computational analysis was executed for the functional inference 

of these proteins. Sequence analysis was done to establish relationships with well-

characterised homologues that are experimentally characterised, using sequence 

based search such as BLAST (Altschul et al., 1990). Multiple sequence alignment 

were generated to identify the conserved regions using Clustal Omega programme 

(Sievers et al., 2011) and putative metal binding sites were predicted using Multiple 

Em for Motif Elicitation (MEME), Version 4.11.1. MEGA version 6 was employed 

to construct the Phylogenetic tree. The physiochemical properties of proteins were 
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determined by Expasy's ProtParam server and structural prediction of the identified 

Cr transport proteins were carried out using Phyre2 web portal for protein 

modelling, prediction and analysis. Further, quantitative real time PCR (qRT PCR) 

analysis was executed to determine the transcripts level and establish the 

responsiveness of genes to Cr (VI). 

Overall, a comprehensive comparative investigation was done to determine 

functional similarities and differences between the reference (A1120) and the Cr 

tolerant (SFL) strain on a molecular level in response to Cr stress which led to 

delineate the mechanism of Cr resistance in A. flavus. 

 

6.2 Results:  

6.2.1 Identification of putative chromium transporter genes: 

Employing the comparative genomics approach, putative Cr transport proteins were 

identified in Cr tolerant SFL strain of A. flavus. Amino acid sequences encoding 

metal ion transporters were retrieved from the sequenced genome of reference strain 

Aspergillus flavus (NCBI Accession number; AAIH00000000.2) obtained from 

NCBI genome database.  Four putative Cr uptake and efflux genes were identified 

based on a literature search. The putative Cr transport genes included: 

1. Putative sulphate transporter (Accession number: XP_002374529.1),  

2. Putative ABC iron exporter, Atm1 (Accession number: XP_002374920.1),  

3. Putative vacuolar ABC heavy metal transporter, Hmt1 (Accession number: 

XP_002379308.1),  

4. Putative ABC efflux transporter (Accession number: XP_002373430.1). 

Whole genome sequencing of the SFL strain has been carried out by TERI (The 

Energy and Resources Institute) researchers and the sequence has been putatively 

annotated (unpublished). This data was used for the study. The four identified 
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transporter gene sequences from reference strain A1120 were used as bait for fishing 

out the putative Cr transporter genes in the sequenced genome of SFL strain. 

Sequences with maximum identity were selected as putative Cr transporters in SFL 

strain, namely, scaffold_9G379 (putative sulphate transporter), scaffold_12G096 

(putative Atm1), scaffold_4G491 (putative Hmt1) and scaffold_8G356 (putative 

ABC efflux transporter). Since, A1120 and SFL exhibited different degree of 

tolerance as well as different protein expression profiles, it is likely that besides the 

four studied proteins other proteins might not be expressed in A1120 are responsible 

for the differential tolerance observed in the two strains.  

For putative sulphate uptake transporter from A1120, query coverage of 74% 

showed 99% identity with sulphate permease 2 (scaffold_9G379) from SFL (Figure: 

6.1a). A query coverage of 98% of putative ABC iron exporter, Atm1, from A1120 

showed 96% identity with iron sulphur cluster transporter, Atm1 (scaffold_12G096) 

from SFL (Figure 6.1b). In case of putative vacuolar heavy metal transporter (Hmt1) 

from A1120, a query coverage of  63% showed 100% identity with ABC transporter 

(scaffold_13G402) from SFL (Figure: 6.1c). With query coverage of ninety percent, 

the ABC efflux transporter from A1120 showed 100% identity with pleotropic drug 

resistant protein (scaffold_8G356) from SFL (Figure 6.1d).   

 

6.2.2 Sequence homology analysis of Cr genes in A1120 and SFL strains, and 

insilico identification of putative metal binding sites:   

BLAST searches against NCBI non-redundant protein database were performed to 

identify the metal transporters genes, homologous to putative Cr transporters, in 

other eukaryotic organisms including Aspergillus species, Penicillium species, 

Talaromyces species, as the genome of these fungal species are fully sequenced, and 

two well studied reference species, Saccharomyces cerevisiae and Arabidopsis  



81 
 

 
Figure 6.1a: Sequence alignment of putative sulfate transporter from A1120 
(XP_002374529.1) with amino acid sequence of putative sulphate permease 2 from 
SFL (scaffold_ 9G379) showing identical and partially conserved residues. Identical 
residues are denoted by aestrick (*). Partially conserved residues are denoted by 
either dot (.) or semi colon (:) where dot indicates the residues are more or less 
similar and semi-colon indicates the residues at that position are highly similar. 
 
   
thaliana. The name of the identified species and corresponding transporter type is 

given in Table 6.1. Multiple sequence alignment of representative homologous 

transporter protein from different species was produced, using sequence alignment 

tool Clustal omega, to obtain structurally/functionally important regions. These 

functional and/or structural regions, called   domains, are highly conserved across  

species. NCBI conserved domains database search (Marchler-Bauer A et al., 2015), 

was used for the functional annotation of these conserved domains. Identification of 

putative metal binding sites is an important step for the function prediction of 

proteins. This was done by prediction of structural motifs.  Motifs are a particular 
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Figure 6.1b: Sequence alignment of putative ABC iron exporter, Atm1 from A1120 
(XP_002374920.1) with amino acid sequence of iron sulphur cluster transporter, 
Atm1 SFL (scaffold_ 12G096) showing identical and partially conserved residues. 
Identical residues are denoted by aestrick (*). Partially conserved residues are 
denoted by either dot (.) or semi colon (:) where dot indicates the residues are more 
or less similar and semi-colon indicates the residues at that position are highly 
similar.   
 
 

Figure 6.1c: Sequence alignment of putative vacuolar heavy metal transporter, 
Hmt1 from A1120 (XP_002379308.1) with amino acid sequence of putative ABC 
transporter from SFL (scaffold_ 13G402) showing identical and partially conserved 
residues. Identical residues are denoted by aestrick (*).  

XP_002374920.1     ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------  1   
scaffold_12G096    MLPRAARPPC LRVPGDFAHR GPAVPRSTPR ISTRHSIQFR VFSTSKGLLN KNATSEPKTP ISGSPLAPQS ADQKTKNAQN AAGTPKRDLL  90  
Clustal Consensus                                                                                                      1   
 
XP_002374920.1     ---------- ---------- ---------- ---------- ----MNVDFA AIGGTAYTVA GSMIIAY--- ---------- --GVTRIGAT  31  
scaffold_12G096    SETMVGKQEQ RKADWAIMKE MAKYLWPKIL NVNVPFYFKS IVDSMNVDFA AIGGTAYTVA GSMIIASYTY NAGPLSNGSL PDGVTRIGAT  180 
Clustal Consensus                                                  ****** ********** ******                  ********  30  
 
XP_002374920.1     LFQELRNAVF ASVAQKAIRR VARNVFEHLL RLDLNFHLSR QTGGLTRAID RGTKGISFLL TSMVFHVVPT ALEISLVCGI LTYQYGAQFA  121 
scaffold_12G096    LFQELRNAVF ASVAQKAIRR VARNVFEHLL RLDLNFHLSR QTGGLTRAID RGTKGISFLL TSMVFHVVPT ALEIS----- LTYQYGAQFA  265 
Clustal Consensus  ********** ********** ********** ********** ********** ********** ********** *****      **********  115 
 
XP_002374920.1     AITAATMVAY SAFTITTTAW RTKFRKQANA ADNRGATVAV DSLINYEAVK YFNNEKFEVA RYDKALKAYE DASIKVTTSL AFLNSGQNMI  211 
scaffold_12G096    AITAATMVAY SAFTITTTAW RTKFRKQANA ADNRGATVAV DSLINYEAVK YFNNEKFEVA RYDKALKAYE DASIKVTTSL AFLNSGQNMI  355 
Clustal Consensus  ********** ********** ********** ********** ********** ********** ********** ********** **********  205 
 
XP_002374920.1     FSSALAGMMY LAANGVASGS LTVGDLVMVN QLVFQLSVPL NFLGSVYREL RQSLLDMETL FNLQKVNVNI TEKPNAKPLQ LHRGGEIKFE  301 
scaffold_12G096    FSSALAGMMY LAANGVASGS LTVGDLVMVN QLVFQLSVPL NFLGSVYREL RQSLLDMETL FNLQKVNVNI TEKPNAKPLQ LHRGGEIKFE  445 
Clustal Consensus  ********** ********** ********** ********** ********** ********** ********** ********** **********  295 
 
XP_002374920.1     NVTFGYHPDR PILKNASFTI PAGQKFAIVG PSGCGKSTIL RLLFRYYDVQ EGRILVDGQD VRDVTLESLR KAIGVVPQDT PLFNDSIAHN  391 
scaffold_12G096    NVTFGYHPDR PILKNASFTI PAGQKFAIVG PSGCGKSTIL RLLFRYYDVQ EGRILVDGQD VRDVTLESLR KAIGVVPQDT PLFNDSIAHN  535 
Clustal Consensus  ********** ********** ********** ********** ********** ********** ********** ********** **********  385 
 
XP_002374920.1     IRYGRIDATD EEVRKAAQRA HIHELIEKLP EGYKTAVGER GMMISGGEKQ RLAISRLILK DPELLFFDEA TSALDTYTEQ ALLQNINSVL  481 
scaffold_12G096    IRYGRIDATD EEVRKAAQRA HIHELIEKLP EGYKTAVGER GMMISGGEKQ RLAISRLILK DPELLFFDEA TSALDTYTEQ ALLQNINSVL  625 
Clustal Consensus  ********** ********** ********** ********** ********** ********** ********** ********** **********  475 
 
XP_002374920.1     KDKARTSVFV AHRLRTICDS DQILVLKEGR VAETGSHREL LELDGIYAEL WNGKEPIVCL CLVY------ ---------- ----- 545  
scaffold_12G096    KDKARTSVFV AHRLRTICDS DQILVLKEGR VAETGSHREL LELDGIYAEL WNAQEMSFAQ DPESEGNAEL EEGAGQEVLP DSRQK 710  
Clustal Consensus  ********** ********** ********** ********** ********** **.:*  ..                              529  
 

XP_002379308.1     MDSHHATRQL LEYLRTGYPI LLLLVFISAF VANSVLAAKN ANNSTTAAQT GPGGRPLPKR SRSTMAIMKN PQKFSQNTRS WFRWLSVGIL  90   
scaffold_13G402    ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------  1    
Clustal Consensus                                                                                                      1    
 
XP_002379308.1     LTILGDAAVN VAHVMVSRSE QWWCGQSVVI YVVGSFFVYS IILVSLLDTD PSPTFAQFVP WLVAVPIELA ILGISSSINA GNHHEPVVGD  180  
scaffold_13G402    ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------  1    
Clustal Consensus                                                                                                      1    
 
XP_002379308.1     PTGGRLQKGV TSWELLELIC NCVRVLILSI LVALYVFSSI RMHSSSRKAP RAYANGASET TGLLDPSHAE NGNAYGSTPA NQQPTKPADA  270  
scaffold_13G402    ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------  1    
Clustal Consensus                                                                                                      1    
 
XP_002379308.1     WVRPTTVPST SWWEYLSGYS LFFPYLWPSK SRRLQIVVVI CFILIVLQRV VNVLVPLQVG VITRKLTKTG DSFDVPWFDI CLYILFRWLQ  360  
scaffold_13G402    ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------  1    
Clustal Consensus                                                                                                      1    
 
XP_002379308.1     GNQGLIGSLR SSLWIPVSQY SYMELSTAAF EHVHSLSLDF HLGKKTGEVL SALSKGSSIN TFLEQVTFQV VPMLVDLCVA IVYFLIALDA  450  
scaffold_13G402    ---------- ---------- --MELSTAAF EHVHSLSLDF HLGKKTGEVL SALSKGSSIN TFLEQVTFQV VPMLVDLCVA IVYFLIALDA  68   
Clustal Consensus                          ******** ********** ********** ********** ********** ********** **********  68   
 
XP_002379308.1     YYALVVTIVT FCYLYVTVRM AQWRAEIRRQ MVNASRQEDA VKNDSMVSYE TVKYFNAEDY EFDRYRGAVS DFQRAEYHVL FSLNLMNTSQ  540  
scaffold_13G402    YYALVVTIVT FCYLYVTVRM AQWRAEIRRQ MVNASRQEDA VKNDSMVSYE TVKYFNAEDY EFDRYRGAVS DFQRAEYHVL FSLNLMNTSQ  158  
Clustal Consensus  ********** ********** ********** ********** ********** ********** ********** ********** **********  158  
 
XP_002379308.1     NTVFMLGLLI ACFIAAYQVS LGQRDVGEFV SLLTYMAQLQ GPLNFFGTFY RSIQSALINS ERLLELFREQ PTVVDMPSAT PLPVCKGDIA  630  
scaffold_13G402    NTVFMLGLLI ACFIAAYQVS LGQRDVGEFV SLLTYMAQLQ GPLNFFGTFY RSIQSALINS ERLLELFREQ PTVVDMPSAT PLPVCKGDIA  248  
Clustal Consensus  ********** ********** ********** ********** ********** ********** ********** ********** **********  248  
 
XP_002379308.1     FENVKFSYDS RKPALNGLTF RCEPGTTTAL VGESGGGKST VFRLLFRFYN SEWGRILIDG HDVKNTTIDS LRKHIGVVPQ DTVLFNETLM  720  
scaffold_13G402    FENVKFSYDS RKPALNGLTF RCEPGTTTAL VGESGGGKST VFRLLFRFYN SEWGRILIDG HDVKNTTIDS LRKHIGVVPQ DTVLFNETLM  338  
Clustal Consensus  ********** ********** ********** ********** ********** ********** ********** ********** **********  338  
 
XP_002379308.1     YNLKYANQNA TDEDVYEACK AASIHDKIMS FPDKYNTKVG ERGLRLSGGE KQRVAIARTI LKNPRIILLD EATAALDTET EEHIQGALST  810  
scaffold_13G402    YNLKYANQNA TDEDVYEACK AASIHDKIMS FPDKYNTKVG ERGLRLSGGE KQRVAIARTI LKNPRIILLD EATAALDTET EEHIQGALST  428  
Clustal Consensus  ********** ********** ********** ********** ********** ********** ********** ********** **********  428  
 
XP_002379308.1     LSRGRTMLVI AHRLSTITTA DRILVLHEGK VAESGTHDQL LAMKGRYASM WRKQIRAQRA AAEAQVLQDR AQRLRSASTS GAVGDDSSSQ  900  
scaffold_13G402    LSRGRTMLVI AHRLSTITTA DRILVLHEGK VAESGTHDQL LAMKGRYASM WRKQIRAQRA AAEAQVLQDR AQRLRSASTS GAVGDDSSSQ  518  
Clustal Consensus  ********** ********** ********** ********** ********** ********** ********** ********** **********  518  
 
XP_002379308.1     SDEDRNGNTH ASAVRQTQGH HWPAHDQKA 929  
scaffold_13G402    SDEDRNGNTH ASAVRQTQGH HWPAHDQKA 547  
Clustal Consensus  ********** ********** ********* 547  
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Figure 6.1d Sequence alignment of four putative ABC efflux transporters, A1120 
(XP_002373430.1) with amino acid sequence of pleotropic drug resistant protein 
from SFL (scaffold_8G356) showing identical and partially conserved residues. 
Identical residues are denoted by aestrick (*). Partially conserved residues are 
denoted by either dot (.) or semi colon (:) where dot indicates the residues are more 
or less similar and semi-colon indicates the residues at that position are highly 
similar.  
 

arrangement of amino acid residues that imparts structural and functional properties 

to a protein (Thilakaraj et al., 2007). Motif analysis discovered the most conserved 

five motif types and motif locations were identified in putative Cr transporter 

genesusing MEME (Ver  4.11.1) (Bailey et al., 2009). Alignment of the putative 

A1120 and SFL Cr uptake and efflux genes with established metal transporter genes 

in other species indicated homologous amino acid residues. 

 

6.2.2.1 Sulphate uptake transporter: 

Multiple sequence alignment of putative sulphate uptake transporter in A1120 and 

SFL (Scaffold_ 9G379) (from here onwards called SUT) demonstrated 99%  



84 
 

 

Table 6.1 Genes used for multiple sequence alignment. The name of the gene from 
A. flavus is given in the leftmost column (Gene). Description of each gene and the 
corresponding accession number is given in next to leftmost column (Description 
and accession). Across the top, name of the species used for multiple sequence 
alignment were listed. 
  

similarity with sulphate permease 2 from A. oryzae RIB40 and least similarity with 

high affinity sulphate transporter 2;2 from A. thaliana (27%).Two putative 

conserved domains were detected shown by red and green bars (Figure 6.2). Further 

investigations of the conserved domains revealed potential binding sites called 

motifs (Figure 6.3) which may contain active sites for chromate binding. Of the five 

motifs discovered, motif 1 (Figure 6.3a) was found within STAS SulP like sulphate 

transporter domain at the C terminal of protein which contains highly conserved and 

motif 2, 3, 4 and 5 (Figure 6.3a) were found on sulphate transporter domain at the N 

terminal. Further motif location analysis showed motif 3 and 4 were present in all 

Aspergillus 
parasiticus  SU­1 
(taxid:1403190)

Aspergillus 
oryzae RIB40 
(taxid:510516)

Talaromyces 
marneffei 
(taxid:37727)

Penicillium 
italicum 
(taxid:40296)

Saccharomyces 
cerevisiae 
(taxid:4932)

Arabidopsis 
thaliana 
(taxid:3702)

Description SUL1 like protein
sulfate permease 
2

sulfate 
transporter, 
putative 

sulfate anion 
transporter

Sul1p
sulfate 
transporter 2;2

Accession KJK65149.1
XP_001819936.
1

XP_002150182.
1

KGO75420.1 AJP85721.1 NP_565165.2

Description ATM1 like protein 
iron-sulfur 
clusters 
transporter atm1 

Iron-sulfur 
clusters 
transporter atm1, 
mitochondrial 

 ABC 
transporter, 
integral 
membrane type 1 

Atm1p 
ABC transporter 
of the 
mitochondrion 3 

Accession KJK64780.1
XP_001819593.
1

KFX43873.1 KGO73433.1 AJS97061.1 NP_200635.1

Description
Hypothetical 
Protien 
AOR_1_1188014

ATM1 like 
protein 

vacuolar ABC 
heavy metal 
transporter 
(Hmt1), putative 

ABC transporter, 
integral 
membrane type 1

ATM1
ABC transporter 
of the 
mitochondrion 3

Accession XP_001822080.2 KJK60295.1
XP_002150389.
1

KGO71896.1 CAA57938.1 NP_200635.1

Description
Pleiotropic Drug 
Resistance PDR 
Family protein

unnamed protein 
product

ABC efflux 
transporter, 
putative

ABC-2 type 
transporter

hypothetical 
protein 
H635_YJM1083
O00069

ABC transporter 
G family member 
37

Accession KJK62758.1 BAE56219.1
XP_002143557.
1

KGO70414.1 AJT87060.1 NP_190916.1

ABC
efflux

Sulphate
uptake

Atm1

Hmt1

                       Species
  Gene
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sequences while motif 1, 2 and 5 were present in all except S. cerevisiae (Figure 

6.3b). 

 

Figure 6.2: Multiple sequence alignment of alignment of putative sulfate transporter 
from A1120 (XP_002374529.1) and putative sulphate permease 2 from SFL 
(scaffold_ 9G379) with SUL1 like protein of A. parasiticus SU-1 (Accession no. 
KJK65149.1), sulfate permease 2 of A. oryzae RIB40 (Accession no., 
XP_001819936.1, sulfate transporter of T. marneffei ATCC 18224 (Accession no. 
XP_002150182.1, sulfate anion transporter of P. italicum (Accession no. 
KGO75420.1), Sul1p of S. cerevisiae YJM1444 (Accession no. AJP85721.1) and 
sulfate transporter 2;2 of A. thaliana  (Accession no. NP_565165.2) sowing 
conserved regions. Identical residues are denoted by asterisk (*). Partially conserved 
residues are denoted by either dot (.) or semi colon (:) where dot indicates the 
residues are more or less similar and semi-colon indicates the residues at that 
position are highly similar. Red and green bars indicate conserved functional 
domains.   
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Figure 6.3 Conserved motif analysis of sulfate uptake transporter (a) sequence 
logo of most conserved five motifs in putative sulphate uptake transporter (b) 
distribution of conserved motifs in ABC efflux transporter in A1120, SFL, A. 
oryzae, A. parasiticus, P. italicum, T. marneffei, S. cerevisiae, A. thaliana. 
 

6.2.2.2 ABC iron exporter, Atm1: 

Sequence alignment of putative Atm1 transporter in A1120 indicated 98% similarity 

with ATM1 like protein from Aspergillus parasiticus SU-1 and iron-sulphur clusters 



87 
 

transporter atm1 from Aspergillus oryzae RIB40 and the least similar sequence was 

ABC transporter of the mitochondrion 3 (59%). In SFL (scaffold_12G096), the 

maximum similarity of 100% was found with iron-sulphur clusters transporter atm1 

from Aspergillus oryzae RIB40 and the least similar sequence was ABC transporter 

of the mitochondrion 3 (49%) from A. thaliana. Two putative conserved domains 

were detected indicated by red and green bars. The highly conserved invariant 

amino acid residues are indicated (Figure 6.4). Within the conserved domains 

putative binding sites were identified which showed 5 most conserved motifs 

(Figure 6.5) containing potential metal binding residues. Motif 1 and 5 (Figure 6.5a) 

were related with found within ABC_membrane, cl00549 (accession no. 

pfam00664) belonging to ABC_membrane superfamily while motif 2, 4 and 5 

(Figure 6.5b) were found in ABCC_ATM1 transporter cl21455 (accession no. 

cd03253), belonging to P-loop NTPases superfamily.  All 5 motifs were found to be 

present in all sequences (Figure 6.5b). 

 

6.2.2.3 Vacuolar heavy metal transporter, Hmt1: 

Multiple sequence alignment of putative vacuolar transporter, Hmt1 from A1120 

showed 100 % similarity to unnamed protein product from A. oryzae. It is also 

closely related to ATM1 like protein from Aspergillus parasiticus SU-1 99% 

similarity. The least similarity of 33% was found with ATM1 from S. cerevisiae. For 

SFL strain, putative Hmt1 transporter was found closest to hypothetical protein 

AOR_1_1188014 from A. oryzae as well as ATM1 like protein from A. parasiticus 

SU-1 with 100% similarity. The least similarity of 39% was found with ATM1 from 

S. cerevisiae. Two putative conserved domains detected are shown by red and green 

bars (Figure 6.6). Identification of potential metal binding sites revealed five motifs 

(Figure 6.7) containing the most conserved active metal binding residues where 
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Figure 6.4: Multiple sequence alignment of putative ABC iron exporter, Atm1 from 
A1120 (XP_002374920.1) and iron sulphur cluster transporter, Atm1 from SFL 
(scaffold_ 12G096) with iron-sulfur clusters transporter atm1 of A. oryzae RIB40 
(Accession no. XP_001819593.1), ATM1 like protein of A. parasiticus SU-1 
(Accession no. KJK64780.1), Iron-sulphur clusters transporter atm1, mitochondrial 
of T. marneffei PM1 (Accession no. KFX43873.1), ABC transporter, integral 
membrane type 1 of P. italicum (Accession no. KGO73433.1), Atm1p of S. 
cerevisiae YJM1463 (Accession no. AJS97061) and ABC transporter of the 
mitochondrion 3 of A. thaliana (Accession no. NP_200635.1) showing the 
conserved regions. Identical residues are denoted by asterisk (*). Partially conserved 
residues are denoted by either dot (.) or semi colon (:) where dot indicates the 
residues are more or less similar and semi-colon indicates the residues at that 
position are highly similar. Red and green bars indicate conserved functional 
domains.  
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Figure 6.5 Conserved motif analysis of ABC iron exporter ATM1 (a) sequence 
logo of most conserved five motifs in ATM1 (b) distribution of conserved motifs in 
ABC efflux transporter in A1120, SFL, A. oryzae, A. parasiticus, P. italicum, T. 
marneffei, S. cerevisiae, A. thaliana. 
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motif 1 and 3 (Figure 6.7a) were found in ABCC_ATM1 transporter domain, 

cl21455 (accession no. cd03253), belonging to P-loop NTPases superfamily and 

motif 2, 4 and 5 (Figure 6.7a) were found within ABC_membrane domain, cl00549 

(accession no. pfam00664) belonging to ABC_membrane superfamily. All 5 motifs 

were found to be located in all sequences (Figure 6.7b).  

 

6.2.2.4 ABC efflux transporter: 

For putative ABC efflux transporter, multiple sequence alignment indicated that 

ABC efflux transporter of A1120 and SFL (scaffold_8G356) (from here onwards 

called ABC efflux) are closely related to unnamed protein product from A. oryzae 

with 99% and 100% similarity, respectively. The least similar was ABC transporter 

G family member 37 from A. thaliana having 23 % and 22 % similarity with A1120 

and SFL respectively. Two putative conserved domains were found shown by red 

bars (Figure 6.8). Investigations of putative metal binding sites showed 5 motifs 

(Figure 6.9) containing the most conserved residues within the conserved domains 

that act as binding sites where motifs 1, 2 and 5 (Figure 6.9a) were found in P-loop 

NTPase superfamily domain (accession no. cl21455) and motif 3 (Figure 6.9a) was 

found in ABC2_membrane superfamily domain cl21474 (accession no. pfam01061) 

while motif 4 was not a part of either of the two conserved domains. In addition,            

motif 1, 2 and 5 were present in all sequences, and motif 3 was present in all 

sequences except A. thaliana and motif 4 was present in all sequences except S. 

cerevisiae and A. thaliana (Figure 6.9b).  

 

6.2.3 Transmembrane domain (TMD) analysis of putative Cr transporters: 

TMMHMM server was used to predict the membrane topology of putative Cr 

transporters. For putative SUT from A1120, a TMD containing 8 transmembrane 
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Figure 6.6: Multiple sequence alignment of putative vacuolar heavy metal 
transporter, Hmt1 from A1120 (XP_002379308.1) and putative ABC transporter 
from SFL (scaffold_ 13G402) with hypothetical protein AOR_1_1188014 of A. 
oryzae RIB40, (Accession no. XP_001822080.2), ATM1 like protein of A. 
parasiticus SU-1 (Accession no. KJK60295.1), vacuolar ABC heavy metal 
transporter, Hmt1 of T. marneffei ATCC 18224 (Accession no. XP_002150389.1), 
ABC transporter, integral membrane type 1 of P. italicum (Accession no. 
KGO71896.1), ATM1 of S. cerevisiae (Accession no. CAA57938.1), and ABC 
transporter of the mitochondrion 3 of A. thaliana (Accession no. NP_200635.1) 
showing the conserved regions. Identical residues are denoted by asterisk (*). 
Partially conserved residues are denoted by either dot (.) or semi colon (:) where dot 
indicates the residues are more or less similar and semi-colon indicates the residues 
at that position are highly similar. Red and green bars indicate conserved functional 
domains.   
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Figure 6.7 Conserved motif analysis of vacuolar heavy metal transporter Hmt1 
(a) sequence logo of most conserved five motifs in Hmt1 (b) distribution of 
conserved motifs in ABC efflux transporter in A1120, SFL, A. oryzae, A. 
parasiticus, P. italicum, T. marneffei, S. cerevisiae, and A. thaliana. 
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Figure 6.8: Multiple sequence alignment of putative ABC efflux transporter from 
A1120 (XP_002373430.1) and pleotropic drug resistant protein from SFL 
(scaffold_8G356) with pleiotropic drug resistance PDR family protein of A. 
parasiticus SU-1 (Accession no. KJK62758.1), unnamed protein product of A. 
oryzae RIB40 (Accession no. BAE56219.1), ABC efflux transporter of T. marneffei 
ATCC 18224 (Accession no. XP_002143557.1), ABC-2 type transporter of P. 
italicum (Accession no. KGO70414.1), hypothetical protein 635_YJM1083O00069 
of S. cerevisiae YJM1083 (Accession no. AJT87060.1), ABC transporter G family 
member 37 of A. thaliana (Accession no. NP_190916.1) showing the conserved 
regions. Identical residues are denoted by asterisk (*). Partially conserved residues 
are denoted by either dot (.) or semi colon (:) where dot indicates the residues are 
more or less similar and semi-colon indicates the residues at that position are highly 
similar. Red and green bars indicate conserved functional domains.   
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Figure 6.9 Conserved motif analysis of ABC efflux transporter (a) sequence logo 
of most conserved five motifs in putative ABC efflux transporter (b) distribution of 
conserved motifs in ABC efflux transporter in A1120, SFL, A. oryzae, A. 
parasiticus, P. italicum, T. marneffei, S. cerevisiae, A. thaliana. 
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helices (TMH) with N and C terminus inside the cell was predicted all located 

within the sulphate transporter domain between 93aa-480aa (Figure 6.10). In SFL, 

one TMD with 6 TMHs was predicted within the sulphate transporter domain from 

7aa-319aa with N and C terminus inside the cell (Figure 6.11).  

 

Figure 6.10 Predicted model for transmembrane domain analysis of putative 
sulfate uptake transporter in A1120 showing 8 transmembrane helix (TMH) with 
N and C terminals inside. Highly conserved residues identified during motif analysis 
are marked in red. Approximate positioning of positively charged arginine (R) 
residue is marked in blue. 
 
 

 For Atm1 transporter, 5 TMH were predicted in A1120 with N terminus outside and 

C terminal inside the cell (Figure 6.12). All 5 TMH were found within the ABC 

membrane domain from 20aa-251aa. In SFL, 6 TMH were predicted all within the 

transmembrane conserved domain from 125aa-395aa, with N and C terminal outside 

the cell (Figure 6.13). TMH2 (93aa-115aa), TMH3 (119aa-139aa), TMH4 

(200aa-223aa), TMH5 (240aa-261aa) of A1120 Atm1 aligned with TMH3 

(242aa-260aa), TMH4 (264aa-283aa), TMH5 (344aa-367aa) and TMH6 (384aa-405aa) of 

SFL Atm1. 
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Figure 6.11 Predicted model for transmembrane domain analysis of putative 
sulfate uptake transporter in SFL showing 6 transmembrane helix (TMH) with N 
and C terminals inside. Highly conserved residues identified during motif analysis 
are marked in red. Approximate positioning of positively charged arginine (R) 
residue is marked in blue. 
 
 

 
 

 Figure 6.12 Predicted model for transmembrane domain analysis of putative 
Atm1 transporter in A1120 showing 4 transmembrane helix (TMH) with N and C 
terminals outside. Highly conserved residues identified during motif analysis are 
marked in red.  
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Figure 6.13 Predicted model for transmembrane domain analysis of putative 
Atm1 transporter in SFL showing 6 transmembrane helix (TMH) with N and C 
terminals outside. Highly conserved residues identified during motif analysis are 
marked in red. 
 
 
For Hmt1, 10 TMH were predicted in A1120 with both N and C terminus outside 

the cell (Figure 6.14) where TMH5 (305aa-329aa), TMH6 (347aa-374aa), TMH7 

(426aa-447aa), TMH8 (451aa-471aa), TMH9 (532aa-555aa), TMH10 (572aa-593aa) were 

found within the conserved ABC integral membrane domain from (308aa-583aa). In 

SFL Hmt1 transporter, 4 TMH were predicted with N and C terminal outside the cell 

(Figure 6.15). All four TMH, TMH1 (44aa-65aa) TMH2 (69aa-89aa), TMH3 

(150aa-173aa) and TMH4 (190aa-211aa) aligned with TMH7 to TMH10 from A1120 

and were found within the conserved ABC membrane domain from (1aa-201aa). 

THM1 to TMH6 of A1120 Hmt1 were not found in SFL. 



98 
 

Figure 6.14 Predicted model for transmembrane domain analysis of putative Hmt1 
transporter in A1120 showing 10 transmembrane helix (TMH) with N and C 
terminals outside the cell. Highly conserved residues identified during motif analysis 
are marked in red.  
 
 

 
 
Figure 6.15 Predicted model for transmembrane domain analysis of putative Hmt1 
transporter in SFL showing 4 transmembrane helix (TMH) with N and C terminals 
inside. Highly conserved residues identified during motif analysis are marked in red. 
 
 
For putative ABC efflux transporter from A1120, 7 TMD were found with N 

terminus outside and C terminus inside the cell (Figure 6.16) where the first four 

TMHs, TMH1 (484aa-501aa), TMH2 (508aa-530aa), TMH3 (535aa-557aa),TMH4 

(569aa-591aa) were located within the highly conserved ABC2 membrane domain 

from 376 aa -588aa. TMH5 (632aa-654aa) was present outside this domain. The TMH6   
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Figure 6.16 Predicted model for transmembrane domain analysis of putative ABC 
efflux uptake transporter in A1120 showing 7transmembrane helix (TMH) with N 
terminal outside and C terminals inside. Highly conserved residues identified during 
motif analysis are marked in red.  
 
 
(1036aa-1058aa) and TMH7 (1071-1093aa) were found at C terminal end of protein. 

On the other hand the predicted topology of SFL ABC efflux transporter 

(scaffold_8G356) showed the presence of only 4TMHs (one TMD) from 484aa-591aa 

right after the NBD from 65aa-285aa, with N and C terminal outside the cell (Figure 

6.17). THM 5, 6 and 7 of A1120 transporter were not found in SFL ABC 

transporter. 

 

6.2.4 Physicochemical properties of putative Cr transporters: 
 

The physico chemical characteristics of putative Cr transport proteins were 

determined using Expasy’s ProtParam tool. A table summarising the general 

characteristics of each protein including length of amino acids, putative name, and 

othet physicochemical properties such as molecular weight, theoretical Pi, extinction 

oefficient is given (Table 6.2). 
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Figure 6.17 Predicted model for transmembrane domain analysis of putative ABC 
efflux transporter in SFL showing 4 transmembrane helix (TMH) with N and C 
terminals outside.  Highly conserved residues identified during motif analysis are 
marked in red.  
 

6.2.5 Phylogenetic analysis of putative Cr transporters: 

To investigate potential evolutionary relationships, putative Cr transporter sequences 

were aligned using clustal omega and a phylogenetic tree was constructed using 

maximum likelihood (ML) method using MEGA version 6 (Tamura et al., 2013). 

After the analysis, the transporters from A. flavus clustered together with other 

Aspergillus species based on the sequence similarity between them (Figure 6.18a-d). 

In all cases, the transporters from S. cerevisiae and A. thaliana lay outside the 

cluster and appeared as outgroups. The value shown next to each branch indicates 

ML as a percentage (based on 1000 bootstraps) in which the associated taxa 

clustered together. 

 

6.2.6 Gene expression analysis: 

The fungal cells were grown for 48 h in potato dextrose broth. The biomass was then 

harvested and treated with 50 mg L-1 and 100 mg L-1 Cr (VI) for 1 h, 6 h, and 24 h. 

Gene expression analysis for all four putative Cr transporter genes was carried out  
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Table: 6.2 General characteristics of putative Cr transport proteins 

 

 

General 
Characteristics 

Sulphate 
Uptake 

 

ATM1 
 

Hmt1 
 

ABC efflux 
 

A1120 (Reference strain) 

 
Putative name 

Sulphate 
uptake 

transporter 

ABC iron 
exporter 

Vacuolar 
heavy metal 
transporter 

ABC efflux 
transporter 

Number of 
amino acids 

813 545 929 1097 

Number of TMD 8 4 10 7 

Molecular 
Weight (Units) 

89182.5 
60260.4 

 

103512.6 

 

121564.1 

 

Theoretical Pi 
8.54 

 

8.73 

 

8.72 

 

8.56 

 

Extinction 
coefficient 

94240 39560 143295 114305 

Extinction 
coefficient * 

93740 39310 142670 113680 

SFL (Tolerant strain) 
 

Putative name Sulphate 
permease 2 

Iron sulphur 
cluster 

transporter 

Vacuolar 
ABC 

transporter 

Pleotropic 
drug resistant 

protein 

Number of 
amino acids 

605 

 

710 

 

547 

 

625 

 

Number of TMD 6 6 4 4 

Molecular 
Weight (Units) 

66472.9 78343.5 61216.5 69080.9 

Theoretical Pi 
8.59 

 

9.14 

 

6.58 

 

6.09 

 

Extinction 
coefficient 

61560 53415 52175 65820 

Extinction 
coefficient * 

61310 53290 51800 65320 



102 
 

 

 

Figure 6.18 Molecular Phylogenetic analysis of putative Cr transporter by 
Maximum Likelihood method. The evolutionary history was inferred by using the 
Maximum Likelihood method based on the JTT matrix-based model. The percentage of 
trees in which the associated taxa clustered together is shown next to the branches. The tree 
is drawn to scale, with branch lengths measured in the number of substitutions per site. The 
analysis involved 8 amino acid sequences. All positions containing gaps and missing data 
were eliminated. Evolutionary analyses were conducted in MEGA6. (a) Phylogenetic tree of 
putative sulphate uptake transporter (b) phylogenetic tree of putative Atm1 transporter (c) 
phylogenetic tree of putative Hmt1 transporter (d) phylogenetic tree of putative ABC efflux 
transporters  
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using quantitative real time PCR and changes in relative mRNA expression was 

measured in control (not treated with Cr), SFL and A1120 strain. No template 

control reactions lacking template cDNA were negative for all analysed samples. 

 

6.2.6.1 Sulphate uptake transporter: The expression of putative sulphate uptake 

transporter (SUT) was significantly upregulated in both SFL and A1120 strain after 

1 h with relative expression of 3.5 and 1.5 folds of their respective controls (Figure 

6.19a). After 6 h, the mRNA expression was significantly (p<0.05) reduced to basal 

level i.e., control in both SFL and A1120 and remained unchanged till 24 h without 

significant change in expression (Figure 6.19a). With the increase in Cr (VI) 

concentration to 100 mg L-1 the mRNA expression level of SUT increased 

significantly (p<0.05) by 6.6 folds and 2.6 folds after 1 h in SFL and A1120 strain 

respectively, compared to control (Figure 6.19b). After 6 h, the mRNA expression 

significantly (p<0.05) downregulated below to control and remained unchanged and 

there was no significant change in the gene expression after 24 h in SFL where as in 

A1120 strain the expression level after reducing significantly below to control went 

slightly up after 24 h (Figure 6.19b). The expression pattern of putative SUT was 

similar for both strains at 50 mg L-1 and 100 mg L-1 Cr concentrations. However, the 

relative expression of sulphate transporter in SFL was approximately 2 folds (at 50 

mg L-1) and 4 folds (at 100 mg L-1) higher than that of A1120 with probability 

values of: p < 0.05 to p< 0.001 at three treatment times i.e., 1 h, 6 h and  24 h. 

 

6.2.6.2 ABC iron exporter, Atm1: The transcript level of putative Atm1 transporter 

in SFL was upregulated significantly (p<0.05 to p<0.001) after 50 mg L-1 Cr (VI) 

treatment, with relative mRNA expression of 1.7 folds, 2.1 folds and 2.7 folds after 

1h, 6 h, and 24 h respectively, to that of control (Figure 6.20a). With the increase in  
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Figure 6.19 Relative mRNA expression levels for putative sulphate uptake 
transporter gene in response to 50 and 100 mg L­1 Cr at time points of 0, 1, 6 
and 24 hours. Real-time qPCR was used to detect differences in expression of the 
putative Cr transporter gene. Significant values (p<0.05 to p<0.001) for 1, 6 and 24 
hour treatments compared with basal level in SFL and A1120 strain are denoted by 
asterisk (**) and (*) respectively. Significant differences (p<0.05 to p<0.001) in the 
relative mRNA expression between SFL and A1120 at each time point are denoted 
by hashtag (#). After 1 h exposure SUT was significantly (p<0.05) upregulated. 
After 6 h and 24 h the mRNA expression was significantly (p<0.05) reduced to basal 
level at both (a) at 50 mg L-1 (b) at 100 mg L-1 
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Cr (VI) concentration to 100 mg L-1, the transcripts showed 5.57 fold, 6.59 fold and 

11.27 fold increase after 1 h, 6 h and 24 h respectively, compared to that of control 

(Figure 6.20b). In contrast, in A1120, no significant (p>0.05) change in the mRNA 

expression was observed after Cr (VI) treatment at both 50 mg L-1 and 100 mg L-1as 

compared to that of control (Figure 6.20a,b).  The expression patterns of Atm1 gene 

were significantly different in A1120 and SFL strain. 

 

6.2.6.3 Vacuolar heavy metal transporter, Hmt1: For Hmt1, the mRNA 

expression level decreased significantly, in both A1120 and SFL, below to that of 

control (p≤0.005) after 1 h. After 6 h and the expression of Hmt1 transporter further 

decreased significantly (p<0.05) and went slightly up but still remaining 

significantly below to basal level after 24 h  in both SFL and A1120 strain at 50 and 

100  mg L-1 Cr treatment (Figure 6.21a,b). There was no significant difference in 

expression of putative Hmt1 gene between SFL and A1120 strain. 

 

6.2.6.4 ABC efflux transporter: The expression of putative ABC efflux transporter 

in SFL significantly decreased after 1 h of exposure in comparison to the control i.e., 

untreated or 0 h treated (p<0.05) and remained constant up to 6 h of exposure 

without any significant change (p>0.05) which reverted back to basal level i.e., 

control after 24 h of exposure (Figure 6.22a). In A1120 strain, the expression of 

putative ABC efflux transporter significantly decreased within 1 h of exposure 

(p=0.007) and remained unchanged thereafter at 6 h as well as 24 h (Figure 6.22a). 

There was no significant change in the mRNA expression level between SFL and 

A1120 strain initially at 1h (p>0.05) and  6 h (p>0.05) whereas after 24 h the 

expression of putative ABC efflux transporter was significantly lower in A1120 

strain compared to SFL (p<0.05). When the Cr concentration was increased to 100 
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mg L-1, the expression level of putative ABC efflux transporter in SFL strain 

decreased significantly below the control level after 1 h (p<0.05) and  6 h (p<0.05) 

(Figure 6.22b). After 24 h of exposure, the expression increased significantly above 

the control level (p<0.05). In A1120 the mRNA expression levels reduced 

significantly after 1 h (p<0.05) and 6 h (p<0.05) of Cr exposure as compared to the 

basal level and remained constant after 24 h (Figure 6.22b). Putative ABC efflux 

transporter expressed differentially in SFL and A1120. The differences in the 

expression levels were significant (p<0.05) at each treatment time. 
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Figure 6.20 Relative mRNA expression levels for putative ABC iron exporter 
transporter, Atm1 gene in response to 50 and 100 mg L­1 Cr at time points of 0, 
1, 6 and 24 hours. Real-time qPCR was used to detect differences in expression of 
the putative Cr transporter gene. Significant values (p<0.05 to p<0.001) for 1, 6 and 
24 hour treatments compared with control level in SFL strain are denoted by asterisk 
(**). Significant differences (p<0.05 to p<0.001) in the relative mRNA expression 
between SFL and A1120 at each time point are denoted by hashtag (#). In SFL, 
Atm1 was significantly upregulated after 1 h, 6 h and 24 h of Cr exposure in SFL. In 
A1120, Atm1 expression level remained unchanged after Cr exposure (a) at 50 mg 
L-1 (b) at 100 mg L-1 
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Figure 6.21 Relative mRNA expression levels for putative vacuolar heavy metal 
transporter, Hmt1 gene in response to 50 and 100 mg L­1 Cr at time points of 0, 
1, 6 and 24 hours (a) Real-time qPCR was used to detect differences in expression 
of the putative Cr transporter gene. Significant values (p<0.05 to p<0.001) for 1, 6 
and 24 hour treatments compared with control level in SFL strain are denoted by 
asterisk (**) and (*) in A1120 strain respectively. Significant differences (p<0.05 to 
p<0.001) in the relative mRNA expression of putative Hmt1transporter between 
A1120 and SFL at each time point are denoted by hashtag (#). The mRNA 
expression reduced significantly (p<0.05) after 1h, 6 h and 24 h of Cr exposure in 
both A1120 and SFL strain (a) at 50 mg L-1 (b) at 100 mg L-1 
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Figure 6.22 Relative mRNA expression levels for putative ABC efflux 
transporter gene in response to 50 and 100 mg L­1 Cr at time points of 0, 1, 6 
and 24 hours (a) Real-time qPCR was used to detect differences in expression of 
the putative Cr transporter gene. Significant values (p<0.05 to p<0.001) for 1, 6 and 
24 hour treatments compared with control level in SFL strain are denoted by asterisk 
(**) and (*) in A1120 strain respectively. Significant differences (p<0.05 to 
p<0.001) in the relative mRNA expression between SFL and A1120 at each time 
point are denoted by hashtag (#). In SFL at 50 mg L-1, the expression of ABC efflux 
transporter decreased significantly (p<0.05) below the basal level after 1 h. After 6 
h, there was no significant change (p>0.05) in expression. After 24 h, the mRNA 
expression significantly increased (p<0.05) from 6 h but reverted back to basal level.  
In A1120, the mRNA expression decreased significantly (p<0.05) after 1 h.  At 100 
mg L-1 the mRNA expression was significantly reduced below the basal level after 1 
h and 6 h. After 24 h, there was upregulation in gene expression significantly 
(p<0.05) above the basal level. In A1120 the mRNA expression was significantly 
(p<0.05) downregulated after Cr exposure at 1 h and 6h with no further change in 
expression  (a) at 50 mg L-1 (b) at 100 mg L-1 
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6.3 Discussion: 

 The molecular mechanism of Cr tolerance and Cr transport in filamentous 

fungi remain unclear. Genes encoding metal uptake and efflux transporters may get 

expressed during Cr exposure in microorganisms and their differential expression 

may provide insights into the underlying molecular mechanism of Cr (VI) tolerance. 

To prove this hypothesis, four putative Cr uptake and efflux genes were identified 

(though there could be other genes present particularly in SFL strain that may also 

play a significant role in Cr tolerance), insilico analysis were performed for 

structural characterisation of these genes. The time course regulation of gene 

expression in A. flvaus cells in response to exposure to 50 mg L-1 and 100 mg L-1 Cr 

(VI) was analysed in a non-tolerant and a Cr tolerant strain of A. flavus, A1120 and 

SFL, respectively accounting for their differences in function in relation to Cr 

toxicity.  

Sequence similarity analysis of the putative A1120 and SFL (Scaffold_ 9G379) 

sulphate uptake transporter (SUT) revealed 99% similarity with sulphate permease 2 

from A. oryzae RIB40. Two putative highly conserved domains were detected; a 

sulphate transporter domain belonging to SLC26A/SulP transporter family, transport 

commission no. 2.A.53 (Shibagaki and Grossman, 2006) towards the N terminal, is 

the transmembrane domain and a STAS (sulphate transporter and anti-sigma factor 

antagonist) SulP like sulphate transporter domain belonging to STAS superfamily, at 

the C-terminal region of SLC26/SulP transporters that extends into the cytoplasmic 

region of the cell (Shibagaki and Grossman, 2006). Proteins belonging to this large 

and ubiquitous SLC26A/SulP family are known to function as inorganic anion 

uptake transporters or anion: anion exchange transporters (Sandal and Marcker, 

1994; Smith et al., 1995, Piłsyk and Paszewski, 2009). The STAS domain is a highly 

conserved region of sulphate transporter across different species from eubacteria to 
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humans. It has been reported that mutations in the STAS domain lead to several 

human diseases hinting towards the regulatory role of STAS domain (Babu et al., 

2010).  Deletion of whole STAS domain completely prohibited sulphate transport 

activity in A. thaliana (Rouached et al., 2005). A1120 is 813 aa (amino acid) long 

and is predicted to contain 8 TMH which is slightly different from the membrane 

topology of 10 to 14 TMH of other SulP family transporters (Alper and Sharma, 

2013) whereas SFL SUT is 605 aa (amino acid) long predicted to possess 6TMH. 

TMH1 (93aa-115aa) and TMH2 (138aa-160aa) at the N-terminal end of A1120 

sulphate transporter were not found in SFL sulphate transporter. This indicates a 

difference in membrane topology between SFL and A1120 SUT. The presence of 

extracellular charged residues might have important functional property in these 

transporters. The uptake of sulphate was inhibited by an arginine-binding reagent, 

phenylglyoxal (Clarkson et al., 1992). Hence these basic residues were expected to 

play a role in sulphate anion binding and channelling (Smith et al., 1995). An 

extracellular loop rich in positively charged arginine (R) residues was present in 

both A1120 (between TMH5 and TMH6) and SFL (between TMH3 and TMH4). 

Therefore it can be assumed that extracellular R286aa, R287aa, R291aa, R300aa, R313aa in 

A1120 and R125aa, R126aa, R130aa, R139aa, R152aa, R217aa, R227aa, R281aa in SFL might play 

a role in binding of chromate anions. Further, substitution mutations of several 

amino acids including valine (V), phenylalanine (F), alanine (A), isoleucine (I), 

arginine (R) etc. present in the STAS domain were found to affect the transport 

activity and stability of these transporters in S. cerevisiae transformants of A. 

thaliana Sultr 1;2 gene and thus reported to play a critical role in the function and 

stability of sulphate transporters. In the present study apart from above mentioned 

(V, A, I, R) residues, histidine (H), tryptophan (W), lysine (K), and arginine (R) 

were found highly conserved (motif 1) across species in the STAS domain. Other 
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completely conserved amino acid residues within the transmembrane region were 

identified however their function with respect to Cr binding is not yet known. Hence 

it can be hypothesized that these residues might play a similar regulatory role during 

CrO42- uptake in A. flavus. Upon exposure to Cr (VI), the expression of sulphate 

transporter was upregulated by 3.5 and 1.5 folds (at 50 mg L-1) and 6.6 folds and 2.6 

folds (at 100 mg L-1) within 1 h in A1120 and SFL strain respectively, compared to 

the basal level (0 h). Higher expression of sulphate transporter in SFL indicates high 

Cr accumulation capacity of this strain as also observed in the Cr uptake study. By 6 

h the expression is reduced below the basal level and remained unchanged up to 24 

h. Thus, an increased expression of sulpate transporter gene in the presence of Cr 

(VI) results in enhanced Cr accumulation within 1 h of exposure. Reduction in 

transcript level after 6 h of Cr exposure may indicate activation of other regulatory 

mechanism to limit the excess accumulation of Cr into the cells. Similarly, 

upregulation of high-affinity sulphate transporter SHST1 in Brasscia juncea has 

been reported to play a role in enhanced Cr uptake (Lindblom et al., 2006). 

Upregulation of sulphate ABC transporters after chromate exposure has also been 

reported in bacteria Shewanella oneidensis MR-1 (Brown et al., 2006), Arthrobacter 

sp. Strain FB24 (Henne et al., 2009). These observations confirm the hypothesis that 

chromate may be transported into the cytoplasm via sulphate transport system.  

Sequence similarity analysis revealed ABC (ATP Binding Cassette) iron exporter, 

Atm1 from A1120 and SFL is homologous to iron-sulphur clusters transporter atm1 

from Aspergillus oryzae RIB40. Sequence alignment showed highly conserved ABC 

membrane domain and ABCC ATM1 transporter domain (ATP-binding cassette 

domain of iron-sulphur clusters transporter, subfamily C; ATM1). ABC membrane 

domain is the transmembrane region (TMD) followed by ABCC ATM1 which is the 

nucleotide binding domain (NBD) containing the conserved Walker A 
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(GxxxxGK[S/T] where x is any residue) also known as nucleotide phosphate 

binding motif, the Walker B motif (hhhh[D/E], where h is a hydrophobic residue), 

ABC signature motif (LSGGQ) a characteristic feature of this family of transporters 

(Marchler-Bauer A et al., 2015, Walker et al., 1982, Higgins 1992).  This suggests 

Atm1 is a half size ABC transporter with TMD-NBD configuration that might 

function as homodimer (Chloupkova et al., 2004). It may also function as 

heterodimer as described in yeast (Decottignies and Goffeau, 1997). In general, ATP 

binding cassette transporters constitutes a large group of integral membrane 

proteins, ubiquitously found in all organisms from bacteria to humans, that are 

involved in ATP dependent transport of various substrates/ligands including metals, 

inorganic ions, nutrients, sugars, chemotherapeutic drugs etc., across the cellular 

membrane (Linton, 2007, Piehler et al., 2012). Atm1 is expressed in the inner 

membrane of mitochondria that act as precursors of iron sulphur protein and is 

essential for maintaining iron homeostasis in mitochondria (Lill et al., 2012, Kispal 

et al., 1997). Membrane topology analysis revealed a slightly different topology in 

both A1120 and SFL Atm1, with A1120 Atm1 (545 aa long) predicted to possess 4 

TMH with N and C terminal outside and SFL Atm1 (710 aa long) possessed 5 

TMHs with N and C terminal outside, in comparison to the topology of half size 

ATM1 transporter having 6 TMH (Tusnády et al., 1997).  TMH 1 (from 112aa-142aa) 

of SFL Atm1 was not found in A1120 Atm1. Insilco analysis showed the presence 

of completely conserved D162aa, E168aa, E176aa, N166aa, N174aa, N175aa, F173aa (A1120) 

and D306aa, E312aa, E320aa, N310aa, N318aa, N319aa and F317aa (SFL) in the transmembrane 

region that could be the potential Cr binding sites. Amino acids G, C, D, E and/or N 

are present in chromodulin, a low molecular weight chromium-binding peptide 

known to bind Cr (III) (Chen et al., 2011). Aromatic amino acid phenylalanine (F) is 

also known to complex with Cr (III) (Yang et al., 2005). Aromatic amino acids are 
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involved in electron transfer reactions (Xiao et al., 2014, Nunthaboot et al., 2016) 

therefore, may reduce Cr (VI) to Cr (III). The expression of Atm1gene was induced 

by Cr at both 50 mg L-1 and 100 mg L-1in SFL strain with the highest level of 

expression at 24 h. The induction of mitochondrial Atm1 gene by Cr (VI) with the 

increase in treatment time as well as concentration, suggests the increased need of 

the encoded protein with the increase in toxicity. Atm1 proteins are implicated in 

heavy metal detoxification processes and mediate heavy metal resistance (Lee et al., 

2014). Consistent with the present study, upregulation of Cds1 gene encoding a 

mitochondrial half size ATM1 transporter by cadmium has been reported in 

Chlamydomonas reinhardtii (Hanikenne et al., 2005). Chromate reduction 

takes place in mitochondria with the involvement of electron transport chain. 

This process generates reactive intermediates like Cr (V) and/or Cr (IV) that 

contribute to Cr carcinogenicity (Rossi et al., 1988). Thus, an increased expression 

of mitochondrial Atm1 might protect SFL from the deleterious effects of Cr by 

exporting the Cr from mitochondria to the cytosol and hence required for Cr 

tolerance in SFL. This cytosolic Cr is either exported out of the cell via efflux 

transporters or may form complex with the chelating compounds and transported to 

vacuoles. On the contrary, there was no change in expression of Atm1 in A1120 

indicating the inability of A1120 to detoxify Cr out of the mitochondria that 

probably cause mitochondrial dysfunction and induce cell death/cell lysis 

(Monaselidze et al., 2006). This suggests the sensitivity of A1120 to Cr (VI).  

  Sequence similarity analysis of vacuolar heavy metal transporter, Hmt1 

from A1120 and SFL showed 100 % similarity to unnamed protein product from A. 

oryzae and hypothetical protein AOR_1_1188014 from A. oryzae respectively. 

Multiple sequence alignment showed the presence of highly conserved ABC 

transmembrane domain followed by a nucleotide binding ABCC ATM1 transporter 
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domain (ATP-binding cassette domain of iron-sulphur clusters transporter, 

subfamily C; ATM1). This indicates Hmt1 is structurally related to Atm1 proteins 

(Mendoza-Cózatl et al., 2010, Iwaki et al., 2005), a half size ABC transporter. 

Membrane topology analysis observations indicated that A1120 Hmt1 possessed 10 

TMHs with N and C terminal outside the cell. On the other hand, SFL Hmt1 

possessed 4 TMH with N and C terminal outside the cell. TMH1 to TMH6 toward 

the N terminal region of A1120 Hmt1 were not found in SFL Hmt1 indicating 

structural differences between A1120 and SFL Hmt1, nonetheless TMH7,TMH8, 

TMH9 and TMH10 were identical to TMH1 to TMH4 and highly conserved that 

might impart similar functional property. In Shizosaccharomyces pombe, Hmt1 is 

known to confer cadmium (Cd) tolerance by transporting the cytosolic 

phytochelatin-Cd and glutathione-Cd complex to the vacuole (Preveral et al., 2009, 

Ortiz et al., 1995). It is likely that Hmt1 gene might be involved in vacuolar 

compartmentalisation of cytosolic Cr as a mode of Cr detoxification, however, when 

the responsiveness of Hmt1 gene was tested against Cr exposure, the expression of 

Hmt1 gene, was found to be reduced significantly below the basal level after 1 h and 

6 h. There was a slight increase in expression after 24 h but with no significant 

change. This suggests that there is either no or a very slow sequestration of Cr to the 

vacuole by Hmt1 gene. This further indicates the need of a long term Cr exposure to 

completely understand the vacuolar sequestration phenomena. The proteins 

homologous to Hmt1 demonstrated Cd tolerance in different organisms from 

bacteria to humans (Preveral et al., 2009) including Caenorhabditis elegans 

(Vatamaniuk et al., 2005), Chlamydomonas reinhardtii (Hanikenne et al., 2001).  

Therefore, it can be concluded that Hmt1 gene may not be related to vacuolar 

compartmentalisation of Cr in A. flavus. A different detoxification 

mechanism/transporter gene might be involved in Cr tolerance in this fungus for 
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example, an ATPase. S. cerevisiae mutants lacking vacuolar (V)-H(+)-ATPase 

showed high sensitivity to tellurite and chromate (Gharieb and Gadd, 1998) 

displaying their potential role in Cr tolerance. 

Sequence similarity analysis of the ABC efflux transporter from A1120 and 

SFL showed its closed similarity with pleotropic drug resistance PDR family protein 

from A. parasiticus SU-1. Putative domains, identified during the multiple sequence 

alignment analysis were found highly conserved across all the species. The P-loop 

NTPase domain (from 64aa-285aa) is the nucleotide binding domain (NBD) of ABC 

transporter and is characterised by the presence of conserved Walker A motif 

(GxxxxGK[S/T] where x is any residue) also known as nucleotide phosphate 

binding motif, the Walker B motif (hhhh[D/E], where h is a hydrophobic residue), 

ABC signature motif (LSGGQ), Q-loop, H-loop (Marchler-Bauer A et al., 2015). 

These conserved motifs are involved in ATP driven transport of substrate. Members 

of this family of proteins are involved in many different cellular functions including 

intracellular trafficking, membrane transport etc., (Aravind et al., 2004). ABC2 

membrane domain from (376aa-588aa) is the transmembrane region of ABC2 type 

transporters (Marchler-Bauer A et al., 2015). Predicted membrane topology analysis 

revealed a reverse ABC transporter topology i.e., the domains are arranged in 

(NBD-TBD) manner which resembles the domain organisation of fungal pleotropic 

drug resistance (PDR) transporters (Lamping et al., 2010, Kovalchuk and Driessen, 

2010). These observations suggest that ABC efflux transporter gene encodes a 

pleotropic drug resistance protein that might have a role in conferring resistance to 

Cr in A. flavus. Individual sequence analysis of each transporter showed that in 

A1120, two NBDs and two TMDs [(NBD-TMD)2] were present and only one set 

was found to be highly conserved (NBD-TMD) where as in SFL only one conserved 

unit of each domain (NBD-TMD) was found. One set of NBD-TMD towards the C 
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terminal of A1120 transporter was not found in SFL indicating that A1120 ABC 

efflux transporter is a full size ABC transporter where as SFL ABC efflux 

transporter is a half molecule transporter that may function as homodimer of two 

half transporters (Higgins 2001, Piehler et al., 2012). A prototypic full size ABC 

transporter possess four core domains; two NBD and two TMD arranged in (TBD-

NBD)2 manner where each TMD is represented by 6 transmembrane helices (TMH) 

(Wilkens et al., 2015, Paumi et al., 2009). However, in A1120, the transmembrane 

domain prediction demonstrated the presence of 2 TMD each containing 5 and 2 

transmembrane helices (TMH) [total 7 TMHs] where as in SFL one TMD with 4 

TMHs were found.  

Time dependent gene regulation studies showed the expression of ABC 

efflux transporter significantly reduced upon exposure to Cr after 1 h and 6 h in SFL 

at both 50 mg L-1 and 100 mg L-1. The initial decrease in expression of ABC efflux 

transporter indicates accumulation of Cr in the cell. At this stage, the uptake 

mechanism is activated and chromate may be accumulated inside the cell via the 

sulphate uptake transporter. After 24 h, the mRNA expression level of this efflux 

transporter reverted back to approximately the basal level at 50 mg L-1 indicating 

efflux mechanism might get switched on. There is a possibility that beyond 24 h the 

expression goes further up in order to initiate the efflux process. However at 100 mg 

L-1, expression of ABC transporter significantly increased above the basal level 

indicating the fungal cell start detoxifying process by exporting Cr out of the cell. In 

contrast to SFL, the expression of efflux transporter in A1120 significantly 

decreased throughout indicating that this efflux mechanism is not functioning in this 

strain. Despite higher expression of efflux transporter, SFL displayed higher Cr 

tolerance and accumulation than A1120. Although the SFL strain accumulates and 

tolerates Cr it may still need to efflux Cr from the cells in order to prevent toxicity. 
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A similar result to this was seen where high upregulation of a PDR like ABC 

transporter gene (Os07g33780) under Cr (VI) stress has been reported in rice root 

inspite of  high Cr accumulation  capacity (Dubey et al., 2010). Thus, instead of 

vacuolar storage Cr is expelled out of the cell by ABC transporter. The reason for 

the reduction in expression of the ABC efflux transporter in A1120 over 24 hours, 

both at 50 and 100 mg L-1 is not clear, but it may be a toxicity effect. 

To summarise, an increase in expression of sulphate uptake transporter 

mRNA in both SFL and A1120 strain suggests a potential role for these transporters 

in Cr accumulation. The data suggest that induction of mitochondrial Atm1 gene 

may be a main defence mechanism identified in SFL, to confer tolerance to Cr by 

preventing mitochondrial damage. In contrast, in A1120, the Atm1 gene was not 

active, which may confer Cr sensitivity via mitochondrial damage. Pleotropic drug 

resistance ABC efflux transporter might play a role in effluxing Cr out of the cell.  

The significant finding of this study was the increase in Atm1 in SFL in 

response to Cr treatment, not seen in A1120. This may indicate that mitochondrial 

toxicity is an important consequence of Cr damage and that the tolerance to Cr 

shown by the SFL strain is due to its capacity to remove Cr from the mitochondria. 

However, apart from the four studied genes, there could be other genes as well that 

might play a role in conferring Cr tolerance in SFL strain. Based on all the 

observations a model of Cr tolerance mechanism is proposed in Cr tolerant SFL 

strain of A. flavus as described in the Figure 6.23. 
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Figure 6.23 Schematic representation of Cr interaction mechanism in SFL strain of 

A. flavus. 
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CHAPTER 7 
 

Summary and Conclusion 
 

Microorganisms are known to develop tolerance to toxic metals under unfavourable 

conditions and adapt specific strategies for survival. The ability of microorganisms 

to tolerate and survive under toxic conditions makes them a potential tool for 

bioremediation purpose.  The mechanisms of metal-microbe interaction play a key 

role in conferring tolerance to microorganisms.  

During this study, the underlying mechanism of interactions of Cr with A. 

flavus was described and the processing of Cr at physiological, topographical and 

molecular level was compared in a Cr tolerant (SFL) and non-tolerant (A1120) 

strain of fungus. Divergent functioning of SFL and A1120 with respect to Cr 

processing was unveiled. The Cr tolerance study suggested that the SFL strain 

exhibits remarkably high tolerance over a broad range of Cr (VI) concentrations 

compared to A1120. The dose response study indicated that SFL strain grows and 

survives well at high Cr (VI) concentrations of 100 mg L-1 whereas the growth of 

A1120 was impaired in the presence of Cr. The SFL strain was found to be more 

efficient in depleting Cr from the extracellular medium than A1120 and other 

reported Aspergillus species including A.  niger, A. parasiticus, A, foetidus and  A. 

tubingensis The Cr depletion study also suggested that toxic Cr (VI) may be 

transformed to less toxic Cr (III) during the reduction process as seen by the 

diminished pale yellow colour of the medium and appearance of greenish colour 

indicative of Cr (III). The two strains demonstrated differences in Cr uptake 

mechanism. The tolerant SFL strain displayed metabolism dependent Cr (VI) uptake 

by sequestration of high Cr inside the cell. On the other hand A1120 showed 
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metabolism independent Cr adsorption. The decreased uptake of Cr in the presence 

of metabolic inhibitors confirmed that Cr uptake in the SFL strain is a metabolism 

driven energy dependent process.   

By investigating the physico-chemical interactions between Cr and the 

fungal cell occurring at the cell surface it was established that the fungal cell surface 

plays a significant role during the interaction with Cr but there was no significant 

difference observed between SFL and A1120 strain. SEM-EDX analysis indicated 

the deposition of Cr on the hyphae as a result of Cr binding to the cell wall. 

TEM-EDX study further confirmed the localisation of Cr on the fungal cell surface. 

Intracellular localisation studies in bacteria and filamentous fungi to date have 

reported the presence of Cr in the cell cytoplasm. This study sheds light for the first 

time on Cr localisation in the intracellular membrane bound organelles like 

mitochondria. The different functional groups present on the fungal cell wall serve 

as binding site to Cr as revealed by FTIR analysis. The XPS study indicated the 

presence of only one form of Cr i.e., Cr (III) on the cell surface which further 

suggested prior to its aggregation on the cell surface Cr (VI) is reduced to Cr (III) in 

the extracellular medium in both SFL and A1120 strain. But at the cellular 

(proteomic) level, significant differences between SFL and A1120 were observed as 

suggested by the differential protein expression pattern during the proteomic 

analysis. With the existing information on the induction of (~25kDa and ~29kDa) 

protein possibly ‘chromate reductase’ in Cr treated A1120 and SFL strain and 

differential expression of (~35kDa) protein possibly ‘glutathione synthetase’ in 

A1120 and SFL, it may be assumed that these proteins may have a potential role in 

the chromate reduction (in both SFL and A1120 strains) and conferring Cr (VI) 

tolerance (in SFL) by protection against the oxidative damage. For a realistic 

conclusion, identification, characterisation and functional validation of proteins 
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expressed under Cr stress need to be examined and would be the area of future 

research.  

The genetic response of A1120 and SFL strain was also studied for a better 

understanding of the Cr interaction mechanism. Gene regulation studies of short 

term Cr exposure suggested a potential role of sulphate uptake transporters in 

chromate uptake process in both SFL and A1120 strain.  The main defence 

mechanism identified in SFL strain was the upregulation of Atm1 gene, which may 

mediate Cr tolerance by protecting against the mitochondrial damage, as Atm1is 

known to be localised to mitochondria. Thus the activity of Atm1 in the SFL strain 

suggests that the Atm1 protein may help SFL cells to tolerate and survive at high Cr 

(VI) concentrations, by avoiding mitochondrial damage. This gene was non-

responsive in A1120 after Cr exposures and thus confers chromate sensitivity by 

mitochondrial toxicity. In contrast to the proposed hypothesis, Hmt1 gene was not 

found to be responsible for vacuolar sequestration of Cr, atleast not during the short 

term exposures.  ABC efflux transporter might play a role in exporting excessive Cr 

out of the cell in SFL strain after a certain degree of chromate accumulation may be 

after 24 h of Cr exposure. However, in A1120 the function of this gene is not 

completely understood during the study. For conclusive evidence further 

investigations are needed. The involvement of sulphate transporters in chromate 

accumulation can be validated by investigating the influence of sulphate anion on Cr 

uptake capacity of fungi by supplementing the media with sulphate anion. Another 

approach can be the generation of sulphate transporter knock out mutants and 

comparison of Cr uptake and reduction rates in the wild type and mutant strains. 

Similarly, the knock out studies with Atm1 gene would give a definitive conclusion 

to its role in stress response to tolerate Cr (VI). To completely understand the 

function of Hmt1 gene and ABC efflux genes, gene expression study with long term 
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Cr (VI) exposure (up to 72 h) is required. Further it would be interesting to study 

how these Cr tolerance genes are regulated, including analysis of the regulatory 5’ 

regions of the genes and identification of conserved regulatory sequences such as 

metal binding domains. 

Overall this study provided a basic understanding of Cr resistance 

mechanism in filamentous fungus A. flavus and confirms the hypothesis that Cr 

tolerant SFL strain possesses intrinsic defence mechanism (Cr resistant genes) for 

high Cr (VI) tolerance, reduction and intracellular accumulation. Overexpression of 

Cr tolerance genes may help in development of a novel strain best suitable for 

bioremediation purpose with enhanced Cr accumulation properties and this Cr 

hyperaccumulator strain may further be used for biomining purpose for the recovery 

of Cr in nanoform which may have potential applications in pharmaceutical 

industries. In this direction, further research is needed to explore the possibilities of 

Cr nanoparticle sysnthesis by SFL strain.  
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