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Abstract— Today, having a good flatness control in steel 
industry is essential to ensure an overall product quality, 
productivity and successful processing. Flatness error, given as 
difference between measured strip flatness and target curve, 
can be minimized by modifying roll gap with various control 
functions. In most practical systems, knowing the definition of 
the model in order to have an acceptable control is essential. In 
this paper, a fuzzy Petri net method for modeling and control 
of flatness in cold rolling mill is developed. The method 
combines the concepts of Petri net and fuzzy control theories. It 
focuses on the fuzzy decision making problems of the fuzzy rule 
tree structures. The method is able to detect and recover 
possible errors that can occur in the fuzzy rule of the 
knowledge-based system. The method is implemented and 
simulated. The results show that its error is less than that of a 
PI conventional controller. 

I. INTRODUCTION 
O improve product quality and accuracy in steel 
industry, modeling and control of flatness has become 

important. Flatness systems have nonlinear time varying 
dynamics. Therefore, a proper model and also an improved 
control method would help decrease the error of the flatness 
system. To evaluate the quality of a steel strip, flatness 
control and the gauge accuracy are the most important 
parameters in cold rolling mill [1]. 

Measurement in flatness control systems is not 
identified in a quantitative form. Also, flatness control is not 
straightforward [1]. Therefore, measurement and 
manipulation of control parameters in cold rolling mill 
flatness control are complicated [2]. An intelligent control 
approach has a good potential to tackle these issues. In 
addition, Petri net can be employed as an alternative 
modeling and analysis formulation to make the system 
model simpler and more legible. 

Conventional fuzzy control and coupled fuzzy-PID 
control algorithms are used to control flatness in hot strip 
mill [3]. It used the flatness prediction as the controlled 
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objective in a back-propagation neural network model. The 
results showed that the coupled fuzzy-PID control algorithm 
reduced the flatness error significantly and achieved better 
stability at steady state.  

A self-tuning PI control system was used for the flatness 
control of hot strip [4]. A flatness sensing system was 
employed to design a self-tuning PI control algorithm that 
improved the flatness of hot strip in finishing mill processes.  

Dynamic effective matrix was used for flatness control 
in cold strip mills [5]. The influence of the change of 
parameters in rolling processes on the effective matrix was 
considered, and the approach was validated by industrial 
trials. Then, a fuzzy neural network effective matrix model 
was built, and then the network structure was optimized to 
solve the calculation problem of the dynamic effective 
matrix. The flatness control scheme for cold strip mills was 
proposed based on the dynamic effective matrix. 

Fuzzy control method was employed for flatness control 
in cold rolling mill [6]. Strip flatness was described by an 
orthogonal polynomial regression based on measurement of 
output stress distribution. Two fuzzy logic controllers were 
developed: (i) skewing compensation controller to adjust the 
linear flatness error, and (ii) bending controller to eliminate 
parabolic flatness error. 

A neural network-based method was realized for 
flatness control in cold rolling mill [1]. The ability to adapt 
and learn from environment, and the approximation of any 
non-linear function to a desired degree of accuracy are the 
important benefits of neural network approaches. The 
achieved results were compared against those of a 
conventional-error-decomposition function for flatness 
control. 

In this paper, the fuzzy Petri net (FPN) method is chosen 
to model and control flatness in cold rolling mill. FPN has 
knowledge expression ability for designing dynamic 
knowledge expert system [7]. Generally, a FPN is based on 
fuzzy production rules, which have powerful modeling and 
analysis ability. FPN has a high ability to provide a basis for 
modeling and variant purposes such as knowledge 
representation [8], reasoning mechanisms [9], knowledge 
acquisition [10], etc. 

Web based learning using FPN was introduced in [11], 
and a complete course generation platform in e-learning is 
developed. A fuzzy reasoning Petri net (FRPN) was 
developed [12] to represent decision making rules in a 
disassembly process. A formal reasoning algorithm based on 
FPRN was formed to perform fuzzy reasoning automatically 
allowing one to exploit maximum parallel reasoning 
potential embedded in the model. 
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A fuzzy timed Petri net approach was introduced in [13] 
to show how the time factor can be added as an integral part 
of the model of transition and place. A FPN model was 
developed by adding and quantifying the concept of 
information that is affected by the aging factor. Also, a 
discrete-FTPN was considered as an algorithm to compute 
reachable states for discrete-FTPN models [14]. Properties 
of the continuous-FTPN model, which are used to describe 
the system’s behavior, were presented. 

In order to have a stable FPN model, necessary and 
sufficient conditions were introduced in [15]. Fuzzy control 
system modeling tools were employed and stability theorem 
of the fuzzy control system was developed based on the 
necessary and sufficient conditions under which the fuzzy 
control system was stable. 

In this paper, a fuzzy Petri net method for modeling and 
control of flatness in cold rolling mill is developed. The 
method combines the concepts of Petri net and fuzzy control 
theories. It focuses on the fuzzy decision making problems 
of the fuzzy rule tree structures. The method is able to detect 
and recover possible errors that can occur in the fuzzy rule 
of the knowledge-based system. 

This paper is organized as follows. Section II provides 
an overview of fuzzy control and strip shape pattern. Section 
III describes Petri nets. Section IV provides an overview of 
fuzzy Petri net. Section V explains FPN modeling and 
control of flatness in a cold rolling mill. Also, the results are 
presented and compared against those of a PI conventional 
control. Finally, conclusions are given in Section VI.  

II. FUZZY CONTROL AND STRIP SHAPE PATTERN 
The block diagram description of the proposed control 

system for a cold rolling mill is shown Fig. 1. 
 

 
The flatness of the output strip can be presented by 

rolling mill output stress distribution across the strip width 
[6]. In the cold rolling mill, this stress distribution is 
measured by a shape meter in the width direction. The 
derivation equation of stress distribution using an orthogonal 
polynomial regression can be considered as follows [6]: 
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Considering these equations, it is clear that the backup 
skewing can affect ��, and the work roll bending can affect 
�
. Also �	 represents the stress coefficient. Let the desired 
output stress be: 
��!��� � �	!
	 � ��!
� � �
!

 (5) 

The aim of flatness control using fuzzy control is to 
minimize the flatness error, ��!��� " �����. 

The fuzzy rule, that is used to control the flatness 
system, is considered as follows: 
# � $% �	 �& '� '() ��*�
 �& +��,-.(�/�*/
��& 0� (6) 

where �	 � �	! " �	, the mean stress error signal, �� � ��! "��, the linear flatness error signal, and �
 � �
! " �
, the 
parabolic flatness error signal, are the inputs, '�, +�, and 0� 
are fuzzy sets, and /� and /
 are the outputs signals for the 
fuzzy control system. 

Input and output membership functions are shown in 
Fig. 2, and the associated symbols are described in Table I. 

 
All rules of the fuzzy skewing and bending controller 

are shown in Table II and III. The fuzzy rules of the decision 
tree structure of the flatness control for skewing controller is 
shown in Fig. 3. Also, the fuzzy rules of the decision tree 
structure of the flatness control for bending controller can be 
carried out in the same manner. 

 
Fig. 2.  Membership functions 

Fig. 1.  Proposed system for flatness control in cold rolling mill 
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In this work, we use the basic concept of an actual fuzzy 

technique Sugeno fuzzy procedure [16]. This procedure was 
used in making decisions for fuzzy rules. 

III. PETRI NETS 
A Petri net is a mathematical modeling language for the 

description of discrete distributed systems [17]. A Petri net 
is a directed bipartite graph. It offers a graphical notation for 
stepwise processes that include choice, iteration, and 
concurrent execution. However, Petri net has an exact 
mathematical definition of their execution semantics, with 
mathematical theory for process analysis. 

A Petri net is a graph that consists of p, t, F, W, M, and 
INH where 

- 12 3 1 indicates the place in the net where 1 is all 
available places in the net. Inputs, outputs, and 
various states of the systems are defined as 12. 

- 4� 3 4 is a transition of a system where 4 is a set of 
accepted transitions. It shows the events of the 
system. Each event includes some pre conditions 
which are represented with a place. Each transition 
is a set of input and output places. Places at the 
source of incoming arcs are called input places. On 
the other hand, places at the destination of outgoing 
arcs are called output places. 

 
- In addition, each place is a set of input and output 

transitions. Input transitions are located at the 
source of incoming arcs, and output transitions are 
those at the destination of outgoing arcs. A 
transition can be enabled if each input place of the 
transition is marked with a token [18]. An enabled 
transition fires by removing a token from each input 
place and adding a token to each output place.  

Fig. 3.  Decision tree structure of skewing 

TABLE III 
RULES OF FUZZY BENDING CONTROLLER 

 

5
  
5	  

NB NM NS ZE PS PM PB 

NB PB PM ZE ZE ZE NM PB 
NM PB PM PS ZE NS NM PB 
ZE PM PS PS ZE NS NS PM 
PM PS PS PS ZE NS NS PM 
PB PS PS ZE ZE ZE NS PS 

TABLE II 
RULES OF FUZZY SKEWING CONTROLLER 

 

5�  
5	  

NB NM NS ZE PS PM PB 

NB PM PS ZE ZE ZE NS NM 
NM PB PM PS ZE NS NM NB 
ZE PB PM PS ZE NS NM NB 
PM PB PM PS ZE NS NM NB 
PB PM PS ZE ZE ZE NS NM 

TABLE I 
FUZZY DESCRIPTIONS SYMBOLS 

Symbol Description 

NB Negative Big 
NM Negative Medium 
NS Negative Small 
ZE Zero 

PS Positive Small 
PM Positive Medium 
PB Positive Big 
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A dead transition is one that never enabled. Also a 
transition without any input place is called a source 
transition, and a sink transition is a transition 
without any output place. A source transition is 
unconditionally enabled, and on the other hand, 
firing of a sink transition consumes tokens without 
producing any [19]. 

- % is the set of arcs where each arc connects a place 
and a transition. A weight function associated with 
each arc of the net is defined as 67% 8 (9, where 
(9 is a set of non negative integers. If there is no 
digit on an arc, 6 is equal to 1. Also in a Petri net, 
the following conditions should be satisfied: 

1. 1 : 4 � ;, 
2. 1 < 4 � ;, 
3. % = �1 > 4� < �4 > 1�, the flow relation 

between the sets of places and transitions, 
4. 1 � ; and 4 � ;, i.e. there should be at least 

one place and one transition. 
- $(- is an inhibition function, where $(- ? �1 >

4�, represented by circle headed arcs connecting 
every place 12 3 1 contained $(-�4�� to a 
transition 4� 3 4. An inhibitor arc disables a 
transition 4� 3 4 of a place 12 3 1 has 6 or more 
tokens. An inhibitor arc does not change the 
marking of a place 12 3 1 when the associated 
transition 4� 3 4 fires. 

When a token exists in a place, it shows the condition or 
the state indicating the place. A marking is an assignment of 
an integer to each place in the net that represents the number 
of tokens at that place [18]. Tokens and marking are used to 
record the state of a Petri net. @ is a vector of order A, the 
number of places in the net, and B�, ith member of M, 
denotes the number of tokens at place 1�.  

A marking of a Petri net is reachable if there exists a 
series of transition firings that leads from @	 to the marking. 
Therefore, a Petri net generates a graph whose nodes are 
reachable and whose edges represent transition firings using 
consecutive firing of enabled transitions. 

To have a reasonable graph for a system using Petri net, 
terms of the system states and their changes and dynamic 
behavior of the system can be employed as a state or 
marking in a Petri net. Firing rule in a Petri net is described 
as follows [19]: 

Firing rule: A transition 4� is said to be enabled if each 
input place 12 of 4� is marked with at least 6�12� 4�� 
tokens, where 6�12� 4�� is the weight value of the arc 
from 12 to 4�. On the other hand, depending on the event 
that actually takes place or not, an enabled transition 4� 
may or may not fire. After firing, 6�1C� 4�� tokens from 
each input place 1C of 4� is removed, and then 6�4�� 1C� 
tokens are added to each output place 1C. 6�4�� 1C� is the 
weight value of the arc from 4� to 1C. 

 
 

As an example, Fig. 4 shows the graph of a well known 
chemical reaction: D-
 � E
 8 D-
E using Petri net.  

 

IV. FUZZY PETRI NETS 
Generally, Petri nets cannot have sufficient power to 

represent and handle approximate and uncertain information 
[20,21]. To have fuzzy production rules, the basic concepts 
of fuzzy reasoning and propositional logic have been 
combined with the graphical representation of Petri nets. 
Here, fuzzy Petri net is used to model the fuzzy decision rule 
tree structure of practical fuzzy systems. The presented 
method structure consists of six parameters as follows [22]: 
%F( � ��F(� 1GH�@%� %I�6%I� %@� (7) 

where PN is a Petri net as described in the previous section.  
pro: Suppose 1GH � J1GH�� 1GH
� K � 1GHLM is a finite set of 
propositions that a proposition 1GH�� � � ��D� K � N, is mapped 
on a place 12 3 1. 
MF: is a membership function which describes the 
properties of the fuzzy set. Each membership function is 
described by a transition. For instance, OP��� is a 
membership function for the proposition “Q��&�'”. 
FS: is a firing strength function. Suppose �HB17@'Q*
@$( 8 4 is a fuzzy composite function that uses the 
@'Q*@$( fuzzy operators to compose the membership 
grades of the required propositions. Therefore, %I27 �HB1 8
4 is a firing strength function of a rule #2. It represents the 
strength of belief in a rule #2. A larger value of %I2 
increases the degree of belief for rule #2. Let the rule #2 has 
a general form with two antecedent parameters and one 
consequent parameter such as: 
$% Q �& ' '() E# R �& + ,-.(�S��&�0���I%2� (8) 

where Q and R are premise parameters as input objects, S is 
a consequent parameter as a decision output object, '() 
and E# are fuzzy operators, and ', +, and 0 are fuzzy sets. 
“Q��&�'” or “Y��&�+” are fuzzy propositions and I%2 is the 
confidence value of the rule #2. Based on the fuzzy 
operators E#*'() shown in the antecedent part of a rule 
#2, I%2 that is associated with the conclusion of the rule #2 
is measured as follows: 
I%2 � @'QTOP���� OU�V�W � OP X OU (9) 

or 
I%2 � @$(TOP���� OU�V�W � OP Y OU (10) 

 
 

 
Fig. 4.  Petri net model for -
E 
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WFS: is a winning rule. Suppose #�� #
� K � #Lare the rules 
which constitute a fuzzy decision rule tree structure. 
 Z�[�� Z�[
�K � Z�[� are the j level structures of the tree and 
%I�� %I
�K � %I\ are the firing strength of the B rules of 
Z�[�. 6%I27@'Q�%I�� %I
� K � %I\� 8 4, is the firing 
strength of the winning rule #2 8 #\. 6%I2 is used to 
select the winning rule #2 that has the highest confidence 
among all rules in a level. 
FM: is a fuzzy marking of FPN that represents the 
distribution of tokens, fuzzy values, and over places. 
%@7 1 8 (9 illustrates the degree of completion of the 
fuzzy event as a result of the processes of the fuzzy 
reasoning rules. In a FPN, a transition 42 is enabled at a 
fuzzy marking %@, if and only if %@�12� ] 6�12� 42�, $(-�12� 42� � ;, a token that represents the required input 
fuzzy variable or value must reach a place 12 to fire a 
transition 42, and the fuzzy rule condition associated with 
each transition must be true. 

V. FPN DESIGN FOR FLATNESS CONTROL 
In FPN, rules become active when their inputs receive 

new values. Membership functions of the antecedent 
propositions of each rule are calculated to determine the 
confidence of each of them. Each rule uses the fuzzy 
operator '() to combine its antecedent membership grades. 
These combination processes give the firing strength value 
for each fuzzy rule. The firing strengths of all rules are 
combined by a @'Q composition function to determine the 
highest one. A highest firing strength rule describes the 
winning rule from the whole rules. 

The following steps are employed to design a fuzzy 
Petri model to control the flatness system in cold rolling mill 
[22]. In this work, we describe only a FPN model to 
minimize the linear flatness error signal, ��. The FPN model 
to minimize the parabolic flatness error signal �
 can be 
devised in the same manner. 

Step1. Submit the input signals of the desired fuzzy 
rules. 1^_� and 1^_
 are input places, respectively, for �	 and 
��, and 4^_`� and 4^_`
 are the input transitions. In the model 
shown in Fig. 5, the transitions 4^_`� and 4^_`
 are used to 
distribute the input objects �	 and �� to activate the 
construction step of the propositions of the first and second 
antecedent parts of the rules. 

Step 2. Construct the antecedent propositions and 
calculate the membership grade for each of them. In this 
problem, 1abcd�� K � 1abcd�
 are antecedent propositions, 
where 1abcd� is used to model the �th common antecedent 
proposition of the rules. Also, 4aef��K � 4aef�
 are 
antecedent membership function transitions, where the 
transition 4aef� uses the membership function of the �th 
proposition to compute the degree of truth of this 
proposition. 1aeg��K � 1aeg�
 are antecedent membership 
grade places, where the token that could be shown in the 
place 1aeg� represents the value of the membership grade of 
the �th antecedent proposition.  

Note that the number of tokens in a place 1aeg�, is 
proportional to the number of the common propositions of 
the first or second antecedent part of the rules.  

Step 3. Calculate the firing strength for each rule. 
4fh�� K � 4fhij are firing strength transitions, where 4fh� uses 
the fuzzy operator '() of a rule #� to perform the @$( 
composition operation on the antecedent propositions of this 
rule. The result of this calculation represents the firing 
strength of the rule #�. Also, 1fh�� K � 1fhij are firing 
strength places. The token that could mark the place 1fh�, 
represents the firing strength value of the rule #�. As shown 
in Fig. 5, firing a transition 4fh� represents the construction 
of the antecedent part of the rule #�. Since a transition 4fh� 
must fire one time, an inhibitor arc from the place 1fh� to 
transition 4fh�is attached. 

 

 
Step 4. Perform a @'Q composition operation on the 

firing strengths of the activated rules to select the winning 
rule among the whole activated rules. In order to have the 
winning rule, 4ePk � @'Q�1fh�� K � 1fhij� is used as a 
@'Q composition transition. Also 1lfh is the winning 
firing strength place of the winning rule among all activated 
rules. 

Step 5. Determine the winning rule that has the highest 
confidence among the activated rules. 4fhm�� K � 4fhmij are 
firing strength comparison transitions, where the transition 
4fhm� is used to compare the firing strength %I� of the rule #� 
with the winning firing strength 6%I�. 1ln��K � 1lnij are 
winning rile places, where the token that could be marked a 
place 1ln� denotes that the rule #� is selected to fire. 

 
 

 
Fig. 5.  FPN model of skewing controller 
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Step 6. To determine the conclusion of the winning rule, 
4`�� K � 4`ij, decision transitions that are used to specify the 
decision of the winning rules, #��K � #ij, 1mo, a place to 
model a common consequent parameter of the rules, and 
1m_p�� K � 1m_pq, conclusion places to describe the various 
decisions of the rules, are used. In addition, only one of the 
1m_p�� K � 1m_pq places will contain a token. 

Step 7. Determine the final decision for the desired rule 
tree. 4f`r�� K � 4f`rq are final decision tree transitions where 
the conclusion places 1m_p��K � 1m_pq use these transitions 
to transfer the token that represents the final decision of the 
tree to the final decision tree place 1f`r to model the final 
result for the entire decision tree. 

Fig. 5 shows the FPN model to control the flatness 
system in cold rolling mill. The simulation using this 
approach is based on the estimated model of a sample cold 
rolling mill in Esfahan’s Mobarakeh Steel Company 
Enterprise, Esfahan, Iran. The models of skewing and 
bending controller are estimated and used in the simulation. 
To have a tuned gain for controllers, the simulation is 
performed when actuators are held constant. Therefore, both 
FPN and PI conventional controllers are tuned in this way 
[1]. The results are shown in Fig.6.  

 

 
According to Fig. 6, the results show that the proposed 

FPN method is effective for control and modeling of flatness 
control of cold rolling mill, and the error using the present 
method is less than PI conventional control. 

VI. CONCLUSION 
In this paper, the fuzzy Petri net approach was used for 

flatness control and modeling of a cold rolling mill. The 
method is based on fuzzy production rules, which has 
powerful modeling and analysis ability. FPN has a high 
ability to provide a basis for modeling and control. 
Simulation results show that the error using FPN was lower 
that of a PI conventional control. 
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