Functional Observability

Tyrone Fernando
School of Electrical Electronic and
Computer Engineering, University of WA,
Crawley, WA 6009, Australia.
E-mail: tyrone@ee.uwa.edu.au

Less Jennings
School of Mathematics and
Statistics, University of WA,
Crawley, WA 6009, Australia.
E-mail: les@maths.uwa.edu.au

Hieu Trinh
School of Engineering,
Deakin University, Geelong,
VIC 3217, Australia.
E-mail: hmt@deakin.edu.au

Abstract—A simple theorem for Functional Observability is presented considering the observable and unobservable states of a system based on Kalman decomposition. The proposed theorem is also consistent with two other theorems on Functional Observability which was based on eigen decomposition [6]. The paper also reports a new definition for Functional Observability which is consistent with previously reported definitions and theorems [4], [5], [6].

I. INTRODUCTION

While state Observability is a precondition to design state observers, state Observability is not a necessary precondition to design functional observers, it should be Functional Observability instead. When the system is not entirely observable it is still possible design functional observers. Consider a system in statespace form with with A being the system matrix, C being the output matrix and L_0 being the functions to be estimated. The concept of Functional Observability, and also a necessary and sufficient condition for a triple (A, C, L_0) to be Functional Observable was introduced in [4]. The concept of Functional Observability is a generalization of the concept of Observability i.e., when L_0 is chosen as the identity matrix then the concept of Functional Observability reduces to state Observability. In [6], two theorems for a triple (A, C, L_0) to be Functional Observable was presented based on eigen decomposition. The contribution of this paper is in reporting a new equivalent definition for Functional Observability and also a simple theorem for Functional Observability considering observable and unobservable states of a system based on Kalman decomposition. Both, the definition and the theorem for Functional Observability reported in this paper are intuitive and draws a connection to our previously reported results.

II. MAIN RESULTS

Consider an n-th order linear time-invariant dynamical system, without loss of generality we can assume that the dynamical system is in the following Kalman decomposition form:

$$
\begin{bmatrix}
\dot{x}_o(t) \\
\bar{x}_o(t)
\end{bmatrix} =
\begin{bmatrix}
A_{11} & 0 \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
x_o(t) \\
x_\bar{o}(t)
\end{bmatrix} +
\begin{bmatrix}
B_1 \\
B_2
\end{bmatrix} u(t) \tag{1}
$$

$$
y(t) =
\begin{bmatrix}
C_1 & 0
\end{bmatrix}
\begin{bmatrix}
x_o(t) \\
x_\bar{o}(t)
\end{bmatrix} \tag{2}
$$

where $x_o(t) \in \mathbb{R}^m$ and $x_\bar{o}(t) \in \mathbb{R}^{(n-m)}$ represent the observable and unobservable states of the system respectively. Let the function to be estimated given by:

$$
z(t) = L_0 \begin{bmatrix} x_o(t) \\ x_\bar{o}(t) \end{bmatrix} = \begin{bmatrix} L_0' & L''_0 \end{bmatrix} \begin{bmatrix} x_o(t) \\ x_\bar{o}(t) \end{bmatrix} \tag{3}
$$

where L_0' represent the linear combinations of the observable states and L''_0 represent the linear combinations of the unobservable states in the function to be estimated $z(t)$. Let us consider the following definitions:

Definition 1: The linear function $L_0 x(t)$ is Functional Observable if and only if there exists a finite time T such that the initial value of the function $L_0 x(t)$ can be determined from the observation history $y(t)$ given the control $u(t), 0 \leq t \leq T$.

Definition 2: The entire state vector $x(t)$ is Observable if and only if there exists a finite time T such that the initial value of the state vector $x(0)$ can be determined from the observation history $y(t)$ given the control $u(t), 0 \leq t \leq T$.

Definition 3: The entire state vector $x(t)$ is Unobservable if and only if the initial value of the state vector $x(0)$ (and hence any functional relationship of $x(0)$) cannot be determined from the system output $y(t)$ that has been observed through any finite time interval T given the control $u(t), 0 \leq t \leq T$.

Theorem 1: The triple (A, C, L_0) is Functional Observable if and only if the linear function to be estimated is a function of observable states only.

Proof: According to Definition 2 all the initial observable states $x_o(0)$ can be determined from the output $y(t)$ that has been observed through a finite time interval T, hence any linear combination of $x_o(0)$ can also be determined, and furthermore according to Definition 1 it follows that any linear combination of $x_o(t)$ is Functional Observable. The necessity of the proof follows from Definition 3.

Now consider the following definition for Functional Observability.

Definition 4: The triple (A, C, L_0) is Functional Observable if and only if there exists an $L \in \mathbb{R}^{m \times n}$, rows$(L_0) \leq m \leq n$, such that $\mathcal{R}(L) \supseteq \mathcal{R}(L_0)$ and L satisfies conditions 1 and 2 below (the row space of a matrix is written using the symbol \mathcal{R} and rows(\cdot) represents the number of rows of (\cdot)).
Based on Definition 4 and the existence of a minimum dimension matrix \(L \) that satisfies Condition 1 and 2, a necessary and sufficient condition for the triple \((A, C, L_0)\) to be Functional Observable was reported in [4]. Based on Definition 4 a necessary and sufficient condition for the triple \((A, C, L_0)\) to be Functional Observable was reported in [6].

In the following we draw a connection to previously reported results by using Definition 1 and also Theorem 1 to provide simple proofs to the two theorems reported in [6] which in turn also shows that all the three theorems on Functional Observability and also the definitions for Functional Observability are equivalent.

Theorem 2: [5] The triple \((A, C, L_0)\) is Functional Observable if and only if

\[
\text{rank} \begin{bmatrix} L_0 & C \\ sI - A & sI - A \end{bmatrix} = \text{rank} \begin{bmatrix} C \\ C \end{bmatrix} \quad \forall s \in \mathbb{C}.
\]

Proof: Clearly, if \(L_0'' = 0 \) (i.e., \(z(t) \) is a linear combination of observable states only) then LHS and RHS of (6) is \(q \). If \(L_0'' \neq 0 \) (i.e., \(z(t) \) includes a linear combination of unobservable states) then LHS of (6) is greater than \(q \) but the RHS of (6) is \(q \).

Theorem 3: [6] The triple \((A, C, L_0)\) is Functional Observable if and only if

\[
\text{rank} \begin{bmatrix} C \\ CA \\
\vdots \\
CA^{n-1} \\
L_0 \\
L_0A \\
\vdots \\
L_0A^{n-1} \end{bmatrix} = \text{rank} \begin{bmatrix} C \\ CA \\
\vdots \\
CA^{n-1} \end{bmatrix}.
\]

Proof: Clearly, if \(L_0'' = 0 \) then LHS and RHS of (7) is \(q \). If \(L_0'' \neq 0 \) then LHS of (7) is greater than \(q \) but the RHS of (7) is \(q \).

Remark 1: To test Functional Observability of a triple \((A, C, L_0)\) based on Theorem 1 or 2 it does not require any special structure for \(A, C \) or \(L_0 \), however requires the computation of eigen values and matrix ranks for Theorem 2 and matrix ranks only for Theorem 3. On the other hand ascertaining Functional Observability based on Theorem 1 requires transforming the system based on Kalman decomposition and checking if unobservable states are present in \(z(t) \) (i.e., requires checking if \(L_0'' \neq 0 \)), no rank computation is required.

Remark 2: When \(L_0 \) is chosen as the identity matrix then Definition 1 reduces to the state observability as in Definition 2. Furthermore, when \(L_0 \) is chosen as the identity matrix Condition 1 is satisfied for \(L = L_0 \) and Condition 2 reduces to the well known state Observability condition

\[
\begin{bmatrix} C \\ sI - A \end{bmatrix} = n, \forall s \in \mathbb{C},
\]

so Definition 4 also reduces to state Observability just as Definition 1.

Remark 3: When \(L_0 \) is chosen as the identity matrix then all three theorems reduces to the well known theorems in state Observability. Theorem 1 reduces to the system having no uncontrollable states, and also Theorem 2 and 3 reduces to (8) because the LHS of (6) and (7) is \(n \).

Ascertaining Functional Observability of a triple \((A, C, L_0)\) is a first step in the design of a Functional Observer just like ascertaining observability is a first step in the design of a state observer. However, it provides no information about the minimum order possible for the functional observer. Designing the minimum order functional observer requires finding the minimum dimension matrix \(L \) which satisfies Condition 1 and 2, and it requires the computation of some auxiliary matrices for a given \(A, C \) and \(L_0 \) on which the Functional Observability criteria is also based in [4]. Ascertaining Functional Observability based on Theorems 1 or 2 or 3 servers as a quick check of Functional Observability of a triple \((A, C, L_0)\).

III. NUMERICAL EXAMPLES

Example 1: Consider \(A = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -2 & 0 \\ 1 & -1 & 2 \end{bmatrix} \), \(C = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \) and \(L_0 = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} \). The pair \((A, C)\) is not Observable. The system has 2 observable states and one unobservable state, so \(q = 2 \). According to Theorem 1 the triple \((A, C, L_0)\) is Functional Observable because the linear function to be estimated is only a linear combination of Observable states. We also note that Theorem 2 and 3 also provide the same conclusion regrading the Functional Observability of the triple \((A, C, L_0)\) because the LHS and RHS of both (6) and (7) is \(q = 2 \).

Example 2: Now consider the same \(A \) and \(C \) as in Example 1 with \(L_0 = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \). Still the system has 2 observable states and one unobservable state, so \(q = 2 \). According to Theorem 1 the triple \((A, C, L_0)\) is not Functional Observable because the linear function to be estimated is a function of unobservable states. We also note that Theorem 2 and 3 also provide the same conclusion regrading the Functional Observability of the triple \((A, C, L_0)\) because the LHS of both (6) and (7) is 3 while the RHS of both (6) and (7) is only 2.

IV. CONCLUSION

The paper presents a new definition for Functional Observability and also presents a simple theorem for Functional
Observability in terms of observable and unobservable states of a system. We also show that the proposed theorem is consistent with previously reported two theorems, Theorem 2 and 3, on Functional Observability and provides simple proofs based on the results of this paper.

REFERENCES