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Abstract  
The Recursive Auto-Associative Memory (RAAM) has 
come to dominate connectionist investigations into 
representing compositional structure. Although an 
adequate model when dealing with limited data, the 
capacity of RAAM to scale-up to real-world tasks has 
been frequently questioned. RAAM networks are 
difficult to train (due to the moving target effect) and as 
such training times can be lengthy. Investigations into 
RAAM have produced many variants in an attempt to 
overcome such limitations. We outline how one such 
model ((S)RAAM) is able to quickly produce context-
sensitive representations that may be used to aid a 
deterministic parsing process. By substituting a symbolic 
stack in an existing hybrid parser, we show that 
(S)RAAM is more than capable of encoding the real-
world data sets employed. We conclude by suggesting 
that models such as (S)RAAM offer valuable insights 
into the features of connectionist compositional 
representations.  

Introduction 
Connectionist architectures, such as the feed-forward 
back-propagation network (Rumelhart & McClelland 
1986), can form non-linear associations between input 
and output data. However, they are limited inasmuch as 
they fail to capture any combinatorial structure in which 
the data belongs. This compositional gauntlet laid at the 
feet of connectionists (Fodor & Pylyshyn 1988), 
sparked a multitude of techniques that allow recursive 
structures to be encoded (Pollack 1990; Smolensky 
1990; Touretzky 1990; Plate 1995). Of these 
techniques, it is Pollack's (1990) Recursive Auto-
Associative Memory (RAAM) that has dominated 
research activities involving connectionist 
compositional representations. Many studies concerned 
with achieving a better understanding of RAAM based 
models and the properties of their representations have 
been undertaken (Chalmers 1990; Blank, Meeden, & 
Marshall 1992; Balogh 1994; Bodén & Niklasson 1995; 
Kwasny & Kalman 1995; Hammerton 1998). Even so, it 
is well known that connectionism is a difficult medium 
to work with when dealing with large amounts of data. 
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Long and difficult training may ultimately lead to poor 
learning and limited, if any, generalization capabilities. 
In order to utilize recursive, structured connectionist 
representations, in non-trivial applications (such as 
natural language processing), we must address both the 
underlying compositional representation and the storage 
capacity of the network. 

Recursive Auto-Associative Memory -
RAAM 

Essentially a feed-forward network, RAAM is able to 
encode symbolic structures, such as sequences and 
trees, by deriving compressed internal representations 
recursively. The network learns to produce on the 
output layer whatever is presented on the input layer, 
and in doing so, constructs a compressed representation 
of the input on the hidden layer. This compressed 
representation is then fed back into the network with 
more input, which creates a further compressed 
representation that is a composition of the initial 
compressed representation and the new input. Retrieval 
of encoded structures is achieved by presenting the 
compressed representation to the decoder (hidden layer 
+ output layer), which then performs the decode 
operation (recursively). Unfortunately, the recursion 
within RAAM results in the network having to learn 
input patterns that are constantly changing. This 
property, known as the moving target effect, means that 
the output layer can never perfectly match what is 
presented on the input layer. It is therefore necessary to 
cease training when a certain tolerance is reached. 
Achieving this stopping condition can be difficult and 
is, for the most part, inordinately time consuming. 
Another problem with RAAM is that the identification 
of terminals (leaf nodes of a structure) within the 
structured representations can be difficult upon 
reconstruction, and this problem seems to increase with 
the depth and complexity of a structure that is encoded 
(Blair 1997). A final limitation with RAAM is that it is 
only able to encode fixed-valance trees, thus precluding 
the use of certain types of data.  
 Many variants of the original RAAM model have 
been proposed in an effort to overcome the initial 



shortcomings of the technique. For instance, Sequential 
RAAM (SRAAM)(Kwasny & Kalman 1995) uses pre-
processing to transform any input tree into a sequence. 
However, although this addresses the fixed-valance 
constraint and reduces structure complexity it does not 
resolve the depth issue - indeed, it actually exacerbates 
the problem. More recent work on RAAM identifies the 
main failing being with the terminal test (usually a 
simple distance measure) which, during the decode 
operation tests to see if the output from a RAAM is a 
terminal or whether it is a sub-tree representation that 
requires further decoding. This lead to the development 
of Infinite RAAM (IRAAM) (Melnik, Levy, & Pollack 
2000) which uses fractal geometry to remove the 
ambiguity of terminal identification and therefore 
allows much larger data sets to be encoded.  
 In conclusion, a useful RAAM model would be one 
that not only has the capacity to encode large amounts 
of data, but also trains relatively quickly.  

SimplifiedRAAM -(S)RAAM  
Pollack (1990) cited, as a concern for further research 
into RAAM, the need for:  

Developing...a general representational scheme 
which could be analytically derived for a particular 
representational task without relying on slow, 
gradient-descent learning. (p.101) 

 

 In an effort to realize this, SimplifiedRAAM 
((S)RAAM) was developed (Callan 1996). (S)RAAM 
offers a simplification to the training of a RAAM by 
analytically deriving internal network representations 
via Principal Component Analysis (PCA). The 
(S)RAAM model derives two matrices which imitate 
the first and second layers of weights (encoder and 
decoder) in a RAAM. These are called the constructor 
and reconstructor matrices. The constructor matrix in 
(S)RAAM is basically the set of eigenvectors retained 
from performing PCA on an initial training matrix1. 
Given the two trees shown in Figure 1 as our data set, 
we generate the training matrix by replacing all 
terminals in each of the trees with unique bit patterns. 
As opposed to RAAM, (S)RAAM does not use an 
external stack to re-circulate sub-trees back to the input 
layer therefore we must provide all trees and sub-trees 
as part of the training matrix (with smaller trees padded 
with zeros so all initial tree patterns are the same 
width). PCA is then performed on the training matrix 
and all principal components retained. The product of 
the training matrix and eigenvectors is then taken to 
produce internal (S)RAAM representations for each 
[sub-]tree. A new training matrix is then defined with 

                                                 
1 The reconstructor is an approximate inverse of the constructor 
therefore we concentrate here on derivation of the constructor. 
Figure 1: The trees ((D(AN))(V(P(DN)))) and
(D(A(A(AN)))). A (S)RAAM training representation is
generated by performing a breadth-first scan of each tree
((a) and (b)) and replacing each terminal with a unique bit
pattern. 
any sub-trees being replaced with the internal 
representation for that sub-tree. PCA is then applied 
again and the whole process continues until the number 
of eigenvalues stabilizes. The final set of eigenvectors 
become the constructor matrix. Since (S)RAAM does 
not rely on normal gradient decent learning, the amount 
of time it takes to learn is decreased considerably (as an 
example, whereas RAAM took approximately 50 
minutes to learn a small data set, (S)RAAM took just 1 
minute). (S)RAAM exhibits some favorable properties 
which makes it an interesting vehicle for deriving 
compositional connectionist representations:  
• analytical technique which facilitates representational 

analysis; 
• reliable reconstruction of constituent parts; 
• representational width is discovered automatically;  
• representations are suited to holistic processing;  
• structure generalization can be safely predicted 

without the need for explicit testing as (S)RAAM 
generalizes to linear combinations of structures 
seen during training; and 

• no theoretical limit on size of data that may be 
encoded (only computational limit).  

 

Some of the work that we have carried out to investigate 
these characteristics is now detailed.  

Constituents?  
Experiments outlined in Bodén & Niklasson (1995) can 
be used to show how it is possible to perform structure 
sensitive processing on (S)RAAM representations. A 
set of trees are created using data that is fully 
representative and complete. These trees contain the six 
different constituents a, b, c, d, e and f along with a 
terminating nil token. Each constituent is assigned a 1-
in-6 binary bit pattern (with nil as all zeros). 
Constituents appear in every possible position in a tree 
and there are 3 tree structures (left, right or well-
balanced). Each tree may have a depth of either 2 or 3 
e.g., the left-balanced tree (((e nil)a)c) with depth 3. 
This gives a total of 540 unique trees. 



 In contrast to RAAM, (S)RAAM automatically 
generates the size of the internal representations - 
determined by the number of principal components 
(eigenvalues) retained. If all principal components are 
retained (S)RAAM is a lossless representational 
scheme. Encoding the 540 trees in (S)RAAM produced 
a network equivalent of 24x36x24. That is, (S)RAAM 
derived an internal representation width of 36 elements 
(24 elements larger than Bodén & Niklasson's RAAM). 
It is important to note however, that (S)RAAM could 
fully encode and decode all 540 trees successfully and 
at the first attempt. Given the same set of data to learn, 
(S)RAAM creates the same external-to-internal 
mapping every time therefore, we only needed to train 
one (S)RAAM to provide a full set of internal 
representations. To identify the properties encoded 
within the compositional representations (without 
decoding), Bodén & Niklasson proposed five different 
experiments on the set of representations:  
Tree Depth: determine the depth of an encoded tree, 
Balance: determine balance of a tree, 
Last Leaf: determine final tree leaf constituent, 
2nd Last Leaf: determine 2nd to last leaf constituent, 
Initial State: determine the initial tree state. 
 

To extract the necessary information from the 
encodings, 10 feed-forward, backpropagation networks 
were trained to classify the internal (S)RAAM 
representations according to the feature being tested. 
Although all the above experiments were carried out 
(and the results obtained were much more favorable for 
(S)RAAM than for RAAM) of most relevance (in the 
context of this paper) is the identification of the Last 
Leaf constituent. All ten networks correctly learnt the 
complete training set (300 of the 540 trees). However, 
upon testing the networks with the remaining 204 trees2 
there were between 31 and 40 misclassifications. It is 
known that RAAM models dedicate most effort into 
retaining information about the last item encoded 
(Pollack 1990; Callan 1996). Considering this, it is 
surprising that no network was able to fully identify all 
the last leaf constituents.  

To evaluate this failing we looked closely at the 
representations created by (S)RAAM. Balogh (1994) 
showed that RAAM representations are localist in 
nature therefore, it would follow that (S)RAAM 
representations also exhibit a similar property. 
Theoretically, it should be possible to isolate the 
particular elements of an internal representation, which 
go to form individual constituents. The question is how?  

The answers lies in analysis of (S)RAAMs 
constructor. A clue as to which elements in an internal 

                                                 
2 You cannot test for the existence of last leaf constituent(s) with 
well-balanced trees therefore they are removed from the data set. 

representation make up a constituent is given in the 
form of a large weighting in the constructor matrix. 
From close analysis we can identify which elements in 
an (S)RAAM representation must be present for the last 
terminal to be fully reconstructed. For example, to be 
able to recover the terminal c from the internal 
representation for the tree (((nil b)d)c), the elements 1, 
5, 7, 8, 11 and 21 are required. This means that all the 
information about the c terminal is held in these six 
elements of the (S)RAAM representation for the whole 
tree. This makes it possible to extract terminal 
representations analytically (see Flackett (1998) for full 
experimental details and results). However, using 
simple vector subtraction is an easier method to produce 
an internal (S)RAAM representation for an encoded 
terminal. For instance, if we encode the sentence The 
man put money in the bank, we can extract an internal 
representation for the word bank by subtracting the 
encoded sub-tree representation for The man put money 
in the from the original representation. Interestingly, the 
resulting representation is context sensitive. Using 
spatial similarity measures (i.e., clustering) of extracted 
terms, we can show that tokens used in similar contexts 
have similar representations. In a nutshell, it is possible 
to extract some kind of semantic information from both 
trees and tokens encoded in (S)RAAM. This work 
indicates that (S)RAAM provides us with useful 
strategy(s) with which to investigate connectionist 
compositional representations.  

Scaling (S)RAAM  
As a technique for qualitative analysis of RAAM based 
models, (S)RAAM proves to be a practical approach 
and provides a mechanism that is both fast and reliable. 
However, in order for it to be a useful technique that 
connectionists may actually apply (rather than just a 
reductionist tool), the ability to scale-up to large data 
sets is of the utmost importance. One area in which the 
capacity to encode large amounts of data can be tested, 
is in natural language processing (NLP).  

Using an annotated natural language corpora, Tepper 
(Tepper, Powell, & Palmer-Brown 2002) presented a 
hybrid, connectionist, deterministic, shift-reduce parser. 
This architecture (shown in Figure 2) parses in a right-
to-left fashion and consists of the following modules:  
RLD: right-to-left delimiter. Recurrent network that 

identifies the start of a phrase to be reduced.  
LRD: left-to-right delimiter. Recurrent network that 

identifies the end of a phrase to be reduced.  
PSR: feed-forward network that reduces the group of 

words (identified above) to the appropriate phrase.  
Input Stack: pre-tagged sentence to be parsed. Words 

are 'popped' to the RLD and reduced phrases 'pushed' 
from the PSR.  



succeeded in learning the data perfectly, converging in 
just under two weeks. This task would be unthinkable 
with a conventional RAAM network. On the face of it, 
the initial stage of scaling (S)RAAM seems complete.  
 The results presented throughout this paper indicate 
that (a) meaningful, context-sensitive, compositional, 
connectionist representations, offer advantages over 
traditional symbolic approaches, and (b) using real-
world data (S)RAAM is able to learn effectively enough 
to be a useful module in a hybrid parsing architecture. 
However, certain obstacles remain. The internal 
representations generated by (S)RAAM are ~1800 
elements in length. This obviously poses problems for 
other networks that attempt to make use of them e.g., 
Figure 2: Tepper's shift-reduce, hybrid parsing architecture.

Taken from (Tepper, Powell, & Palmer-Brown 2002, p.98). 
Tag Database: a list of all possible words and phrases 
and their associated bit-pattern representations.  

Scheduler: controls the transfer of data around the 
parser.  

Parse Stack: used to hold the current state of the parse. 
Reductions made by the PSR are stored in this 
module.  

 
 The stacks, database and scheduler are all symbolic 
components, whilst the RLD, LRD and PSR are 
connectionist modules. The implementation of a 
traditional stack to maintain the current parse state 
(Parse Stack) is justified by Tepper on the grounds that 

...existing connectionist approaches to structure 
representation...have not been shown to generalize 
effectively [and]...do not offer significant 
advantages over symbolic approaches. (p.97) 

 

 We disagree and argue that (S)RAAM 
representations lend themselves well to the task of shift-
reduce parsing and may replace the Parse Stack in the 
current architecture. Substituting the traditional 
symbolic component for (S)RAAM in maintaining the 
current parse state, removes the requirement for a 
profusion of stack operations (pushes and pops) during 
the parsing process. The PSR can be taught to output an 
internal (S)RAAM representation that models the 
required reduction of terms. More importantly these 
internal representations carry context sensitive 
information that may be used by the parser (RLD, LRD 
and PSR) to aid the deterministic parsing process. 
Instead of re-circulating meaningless symbolic tokens 
back onto the Input Stack, internal (S)RAAM 
representations may be employed.  
 In the first instance however, we need to ensure 
(S)RAAM is capable of encoding the necessary amount 
of data required for the application. Tepper makes use 
of the Lancaster Parsed Corpus (LPC) (Garside & 
Varadi 1987) with a training set of 654 sentences (a 
total of 3706 unique trees and sub-trees). (S)RAAM 

LRD, RLD and PSR. Although it is possible to reduce 
the length of the representations by ‘dropping' minor 
components, it is unclear what effect this actually has 
on the learning and generalization capabilities when 
dealing with large data sets. Certainly, initial input 
encodings play a major part in how (S)RAAM learns (in 
both time and resources). We are currently investigating 
whether it is possible to encourage (S)RAAM to 
represent data structures in a more compact manner by 
paying close attention to the input.  

Compositionality and (S)RAAM 
Since the inception of (S)RAAM, there has been little 
(presented) research detailing the capabilities of the 
technique. One of the major problems faced by 
connectionists is the long and difficult training of 
traditional network approaches. (S)RAAM overcomes 
this problem by deriving internal compositional 
representations via PCA. Additionally, the network 
topology is determined automatically and therefore 
relieves the practitioner of this (sometimes) difficult 
design task. Incorporating (S)RAAM in an existing 
parsing framework, allows us to measure the benefits of 
utilizing structured connectionist representations in 
place of traditional symbolic techniques. The ability to 
scale-up to real-world data may also be evaluated. 
Additionally, if we are to fully understand the features 
of connectionist generated compositional 
representations then we need a mechanism that 
facilitates low-level investigation. (S)RAAM provides 
one such approach.  
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