
	 	

	

This is the published version

Flackert, John C., Tait, John and Littlefair, Guy 2004, Scaling connectionist
compositional representations, in Compositional Connectionism in Cognitive
Science : 2004 AAAI Fall Symposium, AAAI Press, Menlo Park, Calif., pp. 20-
24.

Available from Deakin Research Online

http://hdl.handle.net/10536/DRO/DU:30038892	
	
	
	

Reproduced with the kind permission of the copyright owner

Copyright: 2004, American Association for Artificial Intelligence

Scaling Connectionist Compositional Representations

John C. Flackett

Faculty of Technology
Southampton Institute

Southampton, SO14 0RD, UK
john.flackett@solent.ac.uk

John Tait

School of Computing and Technology
University of Sunderland

Sunderland, SR6 0DD, UK
john.tait@sunderland.ac.uk

Guy Littlefair

Faculty of Technology
Southampton Institute

Southampton, SO14 0RD, UK
guy.littlefair@solent.ac.uk

Abstract
The Recursive Auto-Associative Memory (RAAM) has
come to dominate connectionist investigations into
representing compositional structure. Although an
adequate model when dealing with limited data, the
capacity of RAAM to scale-up to real-world tasks has
been frequently questioned. RAAM networks are
difficult to train (due to the moving target effect) and as
such training times can be lengthy. Investigations into
RAAM have produced many variants in an attempt to
overcome such limitations. We outline how one such
model ((S)RAAM) is able to quickly produce context-
sensitive representations that may be used to aid a
deterministic parsing process. By substituting a symbolic
stack in an existing hybrid parser, we show that
(S)RAAM is more than capable of encoding the real-
world data sets employed. We conclude by suggesting
that models such as (S)RAAM offer valuable insights
into the features of connectionist compositional
representations.

Introduction
Connectionist architectures, such as the feed-forward
back-propagation network (Rumelhart & McClelland
1986), can form non-linear associations between input
and output data. However, they are limited inasmuch as
they fail to capture any combinatorial structure in which
the data belongs. This compositional gauntlet laid at the
feet of connectionists (Fodor & Pylyshyn 1988),
sparked a multitude of techniques that allow recursive
structures to be encoded (Pollack 1990; Smolensky
1990; Touretzky 1990; Plate 1995). Of these
techniques, it is Pollack's (1990) Recursive Auto-
Associative Memory (RAAM) that has dominated
research activities involving connectionist
compositional representations. Many studies concerned
with achieving a better understanding of RAAM based
models and the properties of their representations have
been undertaken (Chalmers 1990; Blank, Meeden, &
Marshall 1992; Balogh 1994; Bodén & Niklasson 1995;
Kwasny & Kalman 1995; Hammerton 1998). Even so, it
is well known that connectionism is a difficult medium
to work with when dealing with large amounts of data.

Copyright (c) 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Long and difficult training may ultimately lead to poor
learning and limited, if any, generalization capabilities.
In order to utilize recursive, structured connectionist
representations, in non-trivial applications (such as
natural language processing), we must address both the
underlying compositional representation and the storage
capacity of the network.

Recursive Auto-Associative Memory -
RAAM

Essentially a feed-forward network, RAAM is able to
encode symbolic structures, such as sequences and
trees, by deriving compressed internal representations
recursively. The network learns to produce on the
output layer whatever is presented on the input layer,
and in doing so, constructs a compressed representation
of the input on the hidden layer. This compressed
representation is then fed back into the network with
more input, which creates a further compressed
representation that is a composition of the initial
compressed representation and the new input. Retrieval
of encoded structures is achieved by presenting the
compressed representation to the decoder (hidden layer
+ output layer), which then performs the decode
operation (recursively). Unfortunately, the recursion
within RAAM results in the network having to learn
input patterns that are constantly changing. This
property, known as the moving target effect, means that
the output layer can never perfectly match what is
presented on the input layer. It is therefore necessary to
cease training when a certain tolerance is reached.
Achieving this stopping condition can be difficult and
is, for the most part, inordinately time consuming.
Another problem with RAAM is that the identification
of terminals (leaf nodes of a structure) within the
structured representations can be difficult upon
reconstruction, and this problem seems to increase with
the depth and complexity of a structure that is encoded
(Blair 1997). A final limitation with RAAM is that it is
only able to encode fixed-valance trees, thus precluding
the use of certain types of data.
 Many variants of the original RAAM model have
been proposed in an effort to overcome the initial

shortcomings of the technique. For instance, Sequential
RAAM (SRAAM)(Kwasny & Kalman 1995) uses pre-
processing to transform any input tree into a sequence.
However, although this addresses the fixed-valance
constraint and reduces structure complexity it does not
resolve the depth issue - indeed, it actually exacerbates
the problem. More recent work on RAAM identifies the
main failing being with the terminal test (usually a
simple distance measure) which, during the decode
operation tests to see if the output from a RAAM is a
terminal or whether it is a sub-tree representation that
requires further decoding. This lead to the development
of Infinite RAAM (IRAAM) (Melnik, Levy, & Pollack
2000) which uses fractal geometry to remove the
ambiguity of terminal identification and therefore
allows much larger data sets to be encoded.
 In conclusion, a useful RAAM model would be one
that not only has the capacity to encode large amounts
of data, but also trains relatively quickly.

SimplifiedRAAM -(S)RAAM
Pollack (1990) cited, as a concern for further research
into RAAM, the need for:

Developing...a general representational scheme
which could be analytically derived for a particular
representational task without relying on slow,
gradient-descent learning. (p.101)

 In an effort to realize this, SimplifiedRAAM
((S)RAAM) was developed (Callan 1996). (S)RAAM
offers a simplification to the training of a RAAM by
analytically deriving internal network representations
via Principal Component Analysis (PCA). The
(S)RAAM model derives two matrices which imitate
the first and second layers of weights (encoder and
decoder) in a RAAM. These are called the constructor
and reconstructor matrices. The constructor matrix in
(S)RAAM is basically the set of eigenvectors retained
from performing PCA on an initial training matrix1.
Given the two trees shown in Figure 1 as our data set,
we generate the training matrix by replacing all
terminals in each of the trees with unique bit patterns.
As opposed to RAAM, (S)RAAM does not use an
external stack to re-circulate sub-trees back to the input
layer therefore we must provide all trees and sub-trees
as part of the training matrix (with smaller trees padded
with zeros so all initial tree patterns are the same
width). PCA is then performed on the training matrix
and all principal components retained. The product of
the training matrix and eigenvectors is then taken to
produce internal (S)RAAM representations for each
[sub-]tree. A new training matrix is then defined with

1 The reconstructor is an approximate inverse of the constructor
therefore we concentrate here on derivation of the constructor.
Figure 1: The trees ((D(AN))(V(P(DN)))) and
(D(A(A(AN)))). A (S)RAAM training representation is
generated by performing a breadth-first scan of each tree
((a) and (b)) and replacing each terminal with a unique bit
pattern.
any sub-trees being replaced with the internal
representation for that sub-tree. PCA is then applied
again and the whole process continues until the number
of eigenvalues stabilizes. The final set of eigenvectors
become the constructor matrix. Since (S)RAAM does
not rely on normal gradient decent learning, the amount
of time it takes to learn is decreased considerably (as an
example, whereas RAAM took approximately 50
minutes to learn a small data set, (S)RAAM took just 1
minute). (S)RAAM exhibits some favorable properties
which makes it an interesting vehicle for deriving
compositional connectionist representations:
• analytical technique which facilitates representational

analysis;
• reliable reconstruction of constituent parts;
• representational width is discovered automatically;
• representations are suited to holistic processing;
• structure generalization can be safely predicted

without the need for explicit testing as (S)RAAM
generalizes to linear combinations of structures
seen during training; and

• no theoretical limit on size of data that may be
encoded (only computational limit).

Some of the work that we have carried out to investigate
these characteristics is now detailed.

Constituents?
Experiments outlined in Bodén & Niklasson (1995) can
be used to show how it is possible to perform structure
sensitive processing on (S)RAAM representations. A
set of trees are created using data that is fully
representative and complete. These trees contain the six
different constituents a, b, c, d, e and f along with a
terminating nil token. Each constituent is assigned a 1-
in-6 binary bit pattern (with nil as all zeros).
Constituents appear in every possible position in a tree
and there are 3 tree structures (left, right or well-
balanced). Each tree may have a depth of either 2 or 3
e.g., the left-balanced tree (((e nil)a)c) with depth 3.
This gives a total of 540 unique trees.

 In contrast to RAAM, (S)RAAM automatically
generates the size of the internal representations -
determined by the number of principal components
(eigenvalues) retained. If all principal components are
retained (S)RAAM is a lossless representational
scheme. Encoding the 540 trees in (S)RAAM produced
a network equivalent of 24x36x24. That is, (S)RAAM
derived an internal representation width of 36 elements
(24 elements larger than Bodén & Niklasson's RAAM).
It is important to note however, that (S)RAAM could
fully encode and decode all 540 trees successfully and
at the first attempt. Given the same set of data to learn,
(S)RAAM creates the same external-to-internal
mapping every time therefore, we only needed to train
one (S)RAAM to provide a full set of internal
representations. To identify the properties encoded
within the compositional representations (without
decoding), Bodén & Niklasson proposed five different
experiments on the set of representations:
Tree Depth: determine the depth of an encoded tree,
Balance: determine balance of a tree,
Last Leaf: determine final tree leaf constituent,
2nd Last Leaf: determine 2nd to last leaf constituent,
Initial State: determine the initial tree state.

To extract the necessary information from the
encodings, 10 feed-forward, backpropagation networks
were trained to classify the internal (S)RAAM
representations according to the feature being tested.
Although all the above experiments were carried out
(and the results obtained were much more favorable for
(S)RAAM than for RAAM) of most relevance (in the
context of this paper) is the identification of the Last
Leaf constituent. All ten networks correctly learnt the
complete training set (300 of the 540 trees). However,
upon testing the networks with the remaining 204 trees2
there were between 31 and 40 misclassifications. It is
known that RAAM models dedicate most effort into
retaining information about the last item encoded
(Pollack 1990; Callan 1996). Considering this, it is
surprising that no network was able to fully identify all
the last leaf constituents.

To evaluate this failing we looked closely at the
representations created by (S)RAAM. Balogh (1994)
showed that RAAM representations are localist in
nature therefore, it would follow that (S)RAAM
representations also exhibit a similar property.
Theoretically, it should be possible to isolate the
particular elements of an internal representation, which
go to form individual constituents. The question is how?

The answers lies in analysis of (S)RAAMs
constructor. A clue as to which elements in an internal

2 You cannot test for the existence of last leaf constituent(s) with
well-balanced trees therefore they are removed from the data set.

representation make up a constituent is given in the
form of a large weighting in the constructor matrix.
From close analysis we can identify which elements in
an (S)RAAM representation must be present for the last
terminal to be fully reconstructed. For example, to be
able to recover the terminal c from the internal
representation for the tree (((nil b)d)c), the elements 1,
5, 7, 8, 11 and 21 are required. This means that all the
information about the c terminal is held in these six
elements of the (S)RAAM representation for the whole
tree. This makes it possible to extract terminal
representations analytically (see Flackett (1998) for full
experimental details and results). However, using
simple vector subtraction is an easier method to produce
an internal (S)RAAM representation for an encoded
terminal. For instance, if we encode the sentence The
man put money in the bank, we can extract an internal
representation for the word bank by subtracting the
encoded sub-tree representation for The man put money
in the from the original representation. Interestingly, the
resulting representation is context sensitive. Using
spatial similarity measures (i.e., clustering) of extracted
terms, we can show that tokens used in similar contexts
have similar representations. In a nutshell, it is possible
to extract some kind of semantic information from both
trees and tokens encoded in (S)RAAM. This work
indicates that (S)RAAM provides us with useful
strategy(s) with which to investigate connectionist
compositional representations.

Scaling (S)RAAM
As a technique for qualitative analysis of RAAM based
models, (S)RAAM proves to be a practical approach
and provides a mechanism that is both fast and reliable.
However, in order for it to be a useful technique that
connectionists may actually apply (rather than just a
reductionist tool), the ability to scale-up to large data
sets is of the utmost importance. One area in which the
capacity to encode large amounts of data can be tested,
is in natural language processing (NLP).

Using an annotated natural language corpora, Tepper
(Tepper, Powell, & Palmer-Brown 2002) presented a
hybrid, connectionist, deterministic, shift-reduce parser.
This architecture (shown in Figure 2) parses in a right-
to-left fashion and consists of the following modules:
RLD: right-to-left delimiter. Recurrent network that

identifies the start of a phrase to be reduced.
LRD: left-to-right delimiter. Recurrent network that

identifies the end of a phrase to be reduced.
PSR: feed-forward network that reduces the group of

words (identified above) to the appropriate phrase.
Input Stack: pre-tagged sentence to be parsed. Words

are 'popped' to the RLD and reduced phrases 'pushed'
from the PSR.

succeeded in learning the data perfectly, converging in
just under two weeks. This task would be unthinkable
with a conventional RAAM network. On the face of it,
the initial stage of scaling (S)RAAM seems complete.
 The results presented throughout this paper indicate
that (a) meaningful, context-sensitive, compositional,
connectionist representations, offer advantages over
traditional symbolic approaches, and (b) using real-
world data (S)RAAM is able to learn effectively enough
to be a useful module in a hybrid parsing architecture.
However, certain obstacles remain. The internal
representations generated by (S)RAAM are ~1800
elements in length. This obviously poses problems for
other networks that attempt to make use of them e.g.,
Figure 2: Tepper's shift-reduce, hybrid parsing architecture.

Taken from (Tepper, Powell, & Palmer-Brown 2002, p.98).
Tag Database: a list of all possible words and phrases
and their associated bit-pattern representations.

Scheduler: controls the transfer of data around the
parser.

Parse Stack: used to hold the current state of the parse.
Reductions made by the PSR are stored in this
module.

 The stacks, database and scheduler are all symbolic
components, whilst the RLD, LRD and PSR are
connectionist modules. The implementation of a
traditional stack to maintain the current parse state
(Parse Stack) is justified by Tepper on the grounds that

...existing connectionist approaches to structure
representation...have not been shown to generalize
effectively [and]...do not offer significant
advantages over symbolic approaches. (p.97)

 We disagree and argue that (S)RAAM
representations lend themselves well to the task of shift-
reduce parsing and may replace the Parse Stack in the
current architecture. Substituting the traditional
symbolic component for (S)RAAM in maintaining the
current parse state, removes the requirement for a
profusion of stack operations (pushes and pops) during
the parsing process. The PSR can be taught to output an
internal (S)RAAM representation that models the
required reduction of terms. More importantly these
internal representations carry context sensitive
information that may be used by the parser (RLD, LRD
and PSR) to aid the deterministic parsing process.
Instead of re-circulating meaningless symbolic tokens
back onto the Input Stack, internal (S)RAAM
representations may be employed.
 In the first instance however, we need to ensure
(S)RAAM is capable of encoding the necessary amount
of data required for the application. Tepper makes use
of the Lancaster Parsed Corpus (LPC) (Garside &
Varadi 1987) with a training set of 654 sentences (a
total of 3706 unique trees and sub-trees). (S)RAAM

LRD, RLD and PSR. Although it is possible to reduce
the length of the representations by ‘dropping' minor
components, it is unclear what effect this actually has
on the learning and generalization capabilities when
dealing with large data sets. Certainly, initial input
encodings play a major part in how (S)RAAM learns (in
both time and resources). We are currently investigating
whether it is possible to encourage (S)RAAM to
represent data structures in a more compact manner by
paying close attention to the input.

Compositionality and (S)RAAM
Since the inception of (S)RAAM, there has been little
(presented) research detailing the capabilities of the
technique. One of the major problems faced by
connectionists is the long and difficult training of
traditional network approaches. (S)RAAM overcomes
this problem by deriving internal compositional
representations via PCA. Additionally, the network
topology is determined automatically and therefore
relieves the practitioner of this (sometimes) difficult
design task. Incorporating (S)RAAM in an existing
parsing framework, allows us to measure the benefits of
utilizing structured connectionist representations in
place of traditional symbolic techniques. The ability to
scale-up to real-world data may also be evaluated.
Additionally, if we are to fully understand the features
of connectionist generated compositional
representations then we need a mechanism that
facilitates low-level investigation. (S)RAAM provides
one such approach.

References
Balogh, I. L. 1994. An analysis of a connectionist
internal representation: Do RAAM networks produce
truly distributed representations? Ph.D. Dissertation,
New Mexico State University, Las Cruces, NM.

Blair, A. 1997. Scaling-up RAAMs. Tech. Report CS-
97-192, University of Brandeis.

Blank, D. S.; Meeden, L. A.; and Marshall, J. B. 1992.
Exploring the symbolic/subsymbolic continuum: A case
study of RAAM. In Dinsmore, J., ed., The Symbolic and
Connectionist Paradigms: Closing the gap. Hillsdale,
NJ: Lawrence Erlbaum.

Bodén, M., and Niklasson, L. 1995. Features of
distributed representations for tree-structures: A study
of RAAM. In Current Trends in Connectionism-
Proceedings of the 1995 Swedish Conference on
Connectionism. Skövde: Lawrence Erlbaum.

Callan, R. E. 1996. Netting the Symbol: Analytically
Deriving Recursive Connectionist Representations of
Symbol Structures. Ph.D. Dissertation, Systems
Engineering Faculty, Southampton Institute, England.

Chalmers, D. J. 1990. Why Fodor and Pylyshyn were
wrong: The simplest refutation. In Proceedings of The
Twelfth Annual Conference of the Cognitive Science
Society, Cambridge, MA, July 1990, 340-347.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Flackett, J. C. 1998. Features of (S)RAAM
representations. Internal Poster Presentation, SERC'98,
Southampton Institute.

Fodor, J. A., and Pylyshyn, Z. W. 1988. Connectionism
and cognitive architecture: a critical analysis. In Pinker,
S., and Mehler, J., eds., Connections and Symbols.
Cambridge, Mass.: MIT Press.

Garside, R., L. G., and Varadi, T. 1987. Manual of
Information to Accompany the Lancaster Parsed
Corpus. Department of English, University of Oslo.

Hammerton, J. 1998. Exploiting Holistic Computation:
An evaluation of the Sequential RAAM. Ph.D.
Dissertation, School of Computer Science, University of
Birmingham.

Kwasny, S. C., and Kalman, B. L. 1995. Tail-recursive
distributed representations and simple recurrent
networks. Connection Science 7(1):61-80.

Melnik, O.; Levy, S.; and Pollack, J. B. 2000. RAAM
for infinite context-free languages. In International
Joint Conference on Neural Networks. Como, Italy:
IEEE Press.

Plate, T. 1995. Holographic reduced representations.
IEEE Transactions on Neural Networks 6(3):623-641.

Pollack, J. B. 1990. Recursive distributed
representations. Artificial Intelligence 46:77-105.

Rumelhart, D. E., and McClelland, J. L. 1986. Parallel
Distributed Processing: Explorations in the
Microstructure of Cognition. Vol. I: Foundations.
Cambridge, MA: MIT Press.

Smolensky, P. 1990. Tensor product variable binding
and the representation of symbolic structures in
connectionist systems. In Hinton, G., ed., Artificial
Intelligence, volume 46. 159-216.

Tepper, J. A.; Powell, H. M.; and Palmer-Brown, D.
2002. Corpus-based connectionist parsing. Connection
Science, 93-114.

Touretzky, D. S. 1990. Boltzcons: Dynamic symbol
structures in a connectionist network. Artificial
Intelligence 46(1&2):5-46.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

