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Blind Source Separation by Fully Nonnegative
Constrained Iterative Volume Maximization

Zuyuan Yang, Shuxue Ding, Member, IEEE, and Shengli Xie, Senior Member, IEEE

Abstract—Blind source separation (BSS) has been widely dis-
cussed in many real applications. Recently, under the assumption
that both of the sources and the mixing matrix are nonnegative,
Wang et al. develop an amazing BSS method by using volume max-
imization. However, the algorithm that they have proposed can
guarantee the nonnegativities of the sources only, but cannot obtain
a nonnegative mixing matrix necessarily. In this letter, by intro-
ducing additional constraints, a method for fully nonnegative con-
strained iterative volume maximization (FNCIVM) is proposed.
The result is with more interpretation, while the algorithm is based
on solving a single linear programming problem. Numerical exper-
iments with synthetic signals and real-world images are performed,
which show the effectiveness of the proposed method.

Index Terms—Blind source separation, fully nonnegative con-
strained iterative volume maximization.

I. INTRODUCTION

B LIND source separation (BSS) is an attractive technology
which can separate the sources only from their mixtures,

i.e., observations. Due to its wide applications, such as in spec-
tral unmixing [1], biomedical image processing [2], etc., BSS
is a commonly hot topic in the areas of signal processing, ma-
chine learning, etc. As many real-world sources are nonnega-
tive, blind separation of nonnegative sources, i.e., nonnegative
BSS (nBSS), has also been extensively discussed.

Among the various approaches to BSS, independent com-
ponent analysis (ICA) plays an important role [3]–[5]. With
merging the intrinsic nonnegativity to ICA based methods,
some reasonable progresses have been made in these years. Oja
and Plumbley exploited the nonnegativity and independence of
the sources and analyzed the identifiability of well-grounded
sources [6]. Astakhov et al. introduced a stochastic nonnegative
ICA algorithm [7]. The methods above aim to recover the
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independent components from the mixtures, but may fail to
solve BSS problem with statistically dependent sources.

Nonnegative matrix factorization (NMF) is a newly devel-
oped method which aims to Decompose a nonnegative matrix
into the product of two nonnegative matrices or factors [8]. As it
does not rely on the mutual independence between the sources,
NMF (with some constraints) shows some potentials to perform
nBSS no matter the sources are mutually dependent or indepen-
dent [9]. However, a well known problem of NMF is that it may
not directly yield a unique decomposition [10]. Although the
uniqueness may be improved by imposing some constraints to
the factors, it is still a challenging problem to uniquely identify
the sources in general cases [11].

For separating the positive dependent sources, Wang et al.
developed an amazing method, i.e., nonnegative least-corre-
lated component analysis by iterative volume maximization
(nLCA-IVM) [12]. Although it has been derived under
the assumptions that both of the mixing matrix and the
sources are nonnegative, problematically, developed algorithm,
nLCA-IVM, cannot ensure the nonnegativity of the estimated
mixing matrix. In this letter, a method of fully nonnegative con-
strained iterative volume maximization (FNCIVM) is proposed,
and the results of which satisfy the assumptions completely.
Because of this, the results become more interpretive. We show
that the nBSS problem can be converted into a single linear
programming (LP) problem under some constraints that are
essence of nonnegativities of the mixing matrix and the sources.

II. BSS USING FNCIVM

Typical BSS mixing and unmixing models are as following,
respectively (neglecting the background noise):

(1)

(2)

where denotes the observations, de-
notes the mixing matrix; denotes the latent sources;

denotes the separated signals; denotes
the unmixing matrix; and , , denote the number of the ob-
servations, sources, and samples, respectively.

Recently, due to the widely applications, the determined or
over-determined BSS (i.e., ) has attracted sustaining
attentions. For simplicity, we will mainly discuss the case of

(for , the observations can be prepro-
cessed using the rank reduction method in [12]). To be practical
in imaging applications, it is assumed that the sources are non-
negative, the mixing matrix is nonnegative, with full rank, unit
row sum (i.e., , , ) [12].

Based on the analysis in [12], recovering the sources can be
posed as this optimization problem with respect to
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(3)

where denotes the all-one column vector of -dimension.
A problem is, however, that only the nonnegativity of the

components is constrained in (3). It does not necessarily gen-
erate a nonnegative mixing matrix. In order to obtain more in-
terpretative results, we will introduce additional constraints to

such that the estimation of is also nonnegative. Let
be the submatrix of with the th row and th column re-
moved and be the algebraic complement of , then

. Let be the adjoint matrix of , then
. Based on the analysis in [13],

it holds that . Therefore

(4)

To present a more clear relationship between elements in
and , we factorize in (4) by the co-factor expan-
sion. For , let if and if ,
then

(5)

where denotes the algebraic complement of .

Note that is a subset of

. So, is independent of
[13]. Let

(6)

Then, it holds that . Let

(7)

Based on (6) and (7), we can rewrite (5) as

(8)

Thus, substituting (8) to (4), we obtain

(9)

On the other hand, by the co-factor expansion of
with respect to the th row of , it holds that

(10)

It is a linear function with respect to . So, the
objective function in (3) may be optimized line-by-line by using
LP. For updating , the nonnegativity constraint to

is:

(11)

where , .
Note that for , is independent of and

keeps constant when is updated. Therefore, in order to en-
sure nonnegativity of in each iteration, the algorithm must
keeps the sign of the same to that of . Based on
the assumptions about , we can conclude that

, where the equality holds if and only if
. Therefore, to obtain the maximization of , it

is reasonable to initialize . If so, can be
satisfied in every following iteration and (11) can be simplified
as

(12)

So, under the fully nonnegativity constraints to both of and
, (3) can be reformulated as

(13)

where denotes the th column of .
In (13), both of the objective function and the con-

straints are linear functions with respect to .
Therefore, LP based methods can be used to solve this
problem directly [14]. In this letter, the LP toolbox in
Matlab software is invoked (Here is the construction of
the posed LP problem for references: ,

, ,
, ,

, where for ,

, and

). Note that
the number of the constraints can be reduced significantly
by eliminating the redundant inequalities in prior by using
extreme point finding algorithms [12].

III. NUMERICAL RESULTS

Two numerical experiments, in which one is with synthetic
signals and another is with real-world images, are performed
to evaluate the proposed FNCIVM algorithm. And its perfor-
mance is compared with that of several conventional algorithms
such as, the volume based nLCA-IVM [12], the ICA based
algorithms: KernelICA [5], FastICA [3], and nonnegative ICA
(NICA) [6], the NMF based algorithms: normal NMF [15] and
FlexNMF [16]. The signal-to-interference ratio (SIR) index
( , and

denotes the source and the corresponding recovered
source, respectively, and they are normalized with zero-mean



YANG et al.: BLIND SOURCE SEPARATION 801

Fig. 1. Synthetic source signals, mixtures, and recoveries by FNCIVM,
nLCA-IVM, KernelICA, FastICA, NICA, NMF and FlexNMF, respectively.
(a) Sources. (b) Mixtures. (c) Recoveries by FNCIVM. (d) Recoveries by
nLCA-IVM. (e) Recoveries by KernelICA. (f) Recoveries by FastICA. (g)
Recoveries by NICA. (h) Recoveries by NMF. (i) Recoveries by FlexNMF.

TABLE I
TRUE VALUE AND THE ESTIMATIONS OF THE MIXING MATRIX

IN THE EXPERIMENTS OF SYNTHETIC SIGNALS

and unit variance) is used to evaluate the performance on source
recoveries [17]. And the Amari performance index (PI) in [18]
is used to evaluate the performance on the mixing matrix
estimation.

A. Synthetic Signals

Three random nonnegative signals are used to evaluate the
proposed FNCIVM in this experiment [see Fig. 1(a)]. We
have made 50 Monte Carlo experiments with various, random
nonnegative mixing matrices, and the averaged elapsed times
(s) of the above algorithms FNCIVM, nLCA-IVM, KernelICA,
FastICA, NICA, NMF, FlexNMF are 0.9016, 1.4094, 3.9859,
0.0969, 0.7703, 0.1397, 0.1422, respectively. The proposed
FNCIVM is faster than nLCA-IVM, although there exist
slightly more constraints. The reason may be that only one LP
problem needs to be solved in each iteration for FNCIVM.
For simplicity, here we only analyze the result with one rand
nonnegative matrix for example (the row labeled “True” in
Table I shows this mixing matrix and Fig. 1(b) shows the
corresponding mixtures).

At first, the estimated precisions of the mixing matrix are
compared. Table I shows the estimated mixing matrices by the
proposed FNCIVM, the mentioned nLCA-IVM, KernelICA,
FastICA, NICA, NMF, and FlexNMF, respectively (neglecting
the indeterminacies of scale and permutation). And the cor-
responding PI indices are 17.4700, 13.9627, 15.3921, 9.3100,
3.8181, 0.4672, 4.1385, respectively. From these values and
the results in Table I, one can see that FNCIVM indeed gives

TABLE II
SIRS OF DIFFERENT ALGORITHMS IN THE

EXPERIMENTS OF SYNTHETIC SIGNALS

Fig. 2. Real-world source images, mixtures, and recoveries by FNCIVM,
nLCA-IVM, KernelICA, FastICA, NICA, NMF and FlexNMF, respectively.
(a) Sources. (b) Mixtures. (c) Recoveries by FNCIVM. (d) Recoveries by
nLCA-IVM. (e) Recoveries by KernelICA. (f) Recoveries by FastICA. (g)
Recoveries by NICA. (h) Recoveries by NMF. (i) Recoveries by FlexNMF.

a nonnegative solution, i.e., the condition must be satisfied by
the assumption. NMF, FlexNMF, NICA, and KernelICA also
generate nonnegative results, but the corresponding PI indices
are lower than that of FNCIVM. The estimated mixing matrices
of nLCA-IVM and FastICA have negative elements, although
their PI indices are comparable.

Then, the estimated precisions of the sources are compared.
Table II shows the SIR indices of the mentioned algorithms
above, where “Mean” denotes the averaged SIRs and “-” de-
notes that the SIR index is below 8 dB (in general, SIR levels
below 8–12 dB thresholds are indicative a failure in obtaining
the desired source separation [19], [20]). One can see that the
proposed FNCIVM has the highest SIR index. Fig. 1(c)–(i)
shows the estimated sources by these algorithms. By visual
comparison, the proposed FNCIVM, together with nLCA-IVM,
NICA, NMF, and FlexNMF, generates nonnegative recoveries.
However, KernelICA and FastICA obtain the recoveries with
some negative elements.

B. Real-World Images

Four real-world images [21] that are mixed by a nonneg-
ative mixing matrix are as the sources for the evaluation of
the proposed FNCIVM in this experiment. We mainly compare
the precisions of the estimated sources. Fig. 2(a)–(i) show the
sources, mixtures, and the recoveries by FNCIVM, nLCA-IVM,
KernelICA, FastICA, NICA, NMF, FlexNMF, respectively. By
visual comparison, the proposed FNCIVM performs the best.
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TABLE III
SIRS OF DIFFERENT ALGORITHMS IN THE

EXPERIMENTS OF REAL-WORLD IMAGES

Fig. 3. PIs of different algorithms under different local noise levels.

Table III shows the corresponding SIR and the averaged SIR
indices. From these values, the proposed FNCIVM is superior
to the rest algorithms. The reason that FNCIVM is better than
nLCA-IVM is that the former one obtains a nonnegative es-
timated mixing matrix, which satisfies the assumptions com-
pletely.

Furthermore, the cases of additive noises with different
signal-noise-ratio (SNR) levels are tested. As in many sce-
narios, only local parts of the images may be corrupted by the
noise, this case is mainly discussed in this Section. Fig. 3 shows
the PIs of different algorithms under different Gaussian noise
levels (about 25% of the pixels are corrupted by the noise).
For better visual comparison, only the algorithms whose PI
is above 5 dB are displayed. From Fig. 3, one can see that
the volume based algorithms (FNCIVM and nLCA-IVM)
tend to be affected more seriously than that of the ICA based
algorithms (KernelICA and FastICA). The reason may be that
the additive noise is Gaussian and it degrades the extreme point
finding process in the volume based algorithms. However, in
the case of lower noise, the volume based algorithms show
some superiorities and FNCIVM performs better.

IV. CONCLUSION

In this letter, a BSS method is presented that has been
posed as the fully nonnegative constrained iterative volume
maximization problem. It can give solutions that satisfy the
nonnegative assumptions both for the sources and for the
mixing matrix, while the later nonnegativity cannot be sat-

isfied in the conventional nLCA-IVM algorithm. Since this
reason, the proposed can improve the nLCA-IVM algorithm
for recovering the nonnegative sources from the nonnegative
mixtures. Based on the numerical experiments with synthetic
signals and with real-world images, the proposed FNCIVM are
more interpretative than nLCA-IVM, and the source estimation
precisions have also become considerably higher. Compared
with the other conventional algorithms, such as KernelICA,
FastICA, NICA, NMF, and FlexNMF, the proposed FNCIVM
performs much better, especially for the case of weak noise.
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