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Abstract

Origin of the COVID-19 virus (SARS-CoV-2) has been intensely debated in the scientific community since the first infected cases
were detected in December 2019. The disease has caused a global pandemic, leading to deaths of thousands of people across the
world and thus finding origin of this novel coronavirus is important in responding and controlling the pandemic. Recent research
results suggest that bats or pangolins might be the hosts for SARS-CoV-2 based on comparative studies using its genomic sequences.
This paper investigates the SARS-CoV-2 origin by using artificial intelligence (AlI)-based unsupervised learning algorithms and raw
genomic sequences of the virus. More than 300 genome sequences of COVID-19 infected cases collected from different countries
are explored and analysed using unsupervised clustering methods. The results obtained from various Al-enabled experiments using
clustering algorithms demonstrate that all examined SARS-CoV-2 genomes belong to a cluster that also contains bat and pangolin
coronavirus genomes. This provides evidence strongly supporting scientific hypotheses that bats and pangolins are probable hosts
for SARS-CoV-2. At the whole genome analysis level, our findings also indicate that bats are more likely the hosts for the COVID-
19 virus than pangolins.
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1. Introduction and isolating the source and preventing further transmissions to
the human population. This will also help to understand the
. ) : F outbreak dynamics, leading to the creation of informed plans
countries and disturbed lives qf millions of pef)p}e around the for public health responses (WHO, 2020). Origin of SARS-
globe. There have been approximately 148.5 million confirmed  ~y_5 however is a controversial topic with some uncertainty

cases of COVID-19 globally, including morg th_an 3.1 million even after the WHO investigation commenced in October 2020
deaths, reported to the World Health Organization (WHO) at (Mallapaty, 2020).

the end of April 2021 (WHO, 2021). Studies on understanding
the virus, which was named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), are important to propose appro-
priate intervention strategies and contribute to the therapeutics
and vaccine development. Finding origin of SARS-CoV-2 is
crucial as it helps to understand where the virus comes from
via its evolutionary relationships with other biological organ-
isms and species. This will facilitate the process of identifying

The COVID-19 pandemic has rapidly spread across many

A study by Wu et al. (2020) using a complete genome ob-
tained from a patient who was a worker at a seafood market
in Wuhan city, Hubei province, China shows that the virus is
closely related to a group of SARS-like CoVs that were pre-
viously found present in bats in China. It is believed that bats
are the most likely reservoir hosts for SARS-CoV-2 as it is very
similar to a bat coronavirus. These results are supported by a
separate study by Lu et al. (2020) using genome sequences ac-
quired from nine COVID-19 patients who were among early
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tients at the beginning of the outbreak in Wuhan, China. One of
these sequences shows 96.2% similarity to a genome sequence
of a coronavirus, denoted RaTG13, which was previously ob-
tained from a Rhinolophus affinis bat found in Yunnan province
of China. Zhang and Holmes (2020) also highlight a similar-
ity of about 85% between SARS-CoV-2 and RaTG13 in their
receptor binding domain, which is an important region of the
viral genomes for binding the viruses to the human angiotensin-
converting enzyme 2 receptor.

In another study, Lam et al. (2020) found two related lineages
of CoVs in pangolin genome sequences sampled in Guangxi
and Guangdong provinces in China, which have similar ge-
nomic organizations to SARS-CoV-2. That study suggests that
pangolins could be possible hosts for SARS-CoV-2 although
they are solitary animals in an endangered status with rela-
tively small population sizes. These findings are corroborated
by Zhang et al. (2020) who assembled a pangolin CoV draft
genome using a reference-guided scaffolding approach based
on contigs taxonomically annotated to SARS-CoV-2, SARS-
CoV, and bat SARS-like CoV. Xiao et al. (2020) furthermore
suggest that SARS-CoV-2 may have been formed by a re-
combination of a pangolin CoV-like virus with one similar to
RaTG13, and that pangolins are potentially the intermediate
hosts for SARS-CoV-2. On the other hand, by analysing ge-
nomic features of SARS-CoV-2, i.e. mutations in the receptor
binding domain portion of the spike protein and distinct back-
bone of the virus, Andersen et al. (2020) determined that this
novel coronavirus originated through natural processes rather
than through a laboratory manipulation.

This paper applies artificial intelligence (Al)-based unsuper-
vised clustering methods to a dataset of SARS-CoV-2 genomic
sequences to provide quantitative evidence on the origin of the
virus. We propose the use of hierarchical clustering algorithm
and density-based spatial clustering of applications with noise
(DBSCAN) method for this purpose. Two pairwise evolution-
ary distances between sequences based on the Jukes-Cantor
method and the maximum composite likelihood method are
used to enable the execution of the clustering methods. Using
unsupervised clustering methods, we have been able to anal-
yse a large dataset including 334 genomes of SARS-CoV-2 col-
lected from different countries. Clustering results suggest that
1) SARS-CoV-2 belongs to the Sarbecovirus sub-genus of the
Betacoronavirus genus, 2) bats and pangolins may have served
as the hosts for SARS-CoV-2, and 3) bats are more likely the
original hosts for SARS-CoV-2 than pangolins. The findings
of this research provide more insights about SARS-CoV-2 and
thus facilitate the progress on discovering medicines and vac-
cines to mitigate its impacts and prevent a similar pandemic in
the future.

2. Materials and Methods

We downloaded 334 complete genome sequences of SARS-
CoV-2 available from the GenBank database, which is main-
tained by the National Center for Biotechnology Information
(NCBI), in early April 2020. Among these sequences, 258
were reported from USA, 49 were from China and the rest

were distributed through various countries from Asia to Europe
and South America. Detailed distribution of these genome se-
quences across 16 countries is presented in Table 1.

Table 1: Number of COVID-19 sequences collected from different countries

Countries Number of | Countries Number of
sequences sequences
USA 258 India 2
China 49 Brazil 1
Japan 5 Italy 1
Spain 4 Peru 1
Taiwan 3 Nepal 1
Vietnam 2 South Korea 1
Israel 2 Australia 1
Pakistan 2 Sweden 1

Most of reference sequences, e.g. ones within the Al-
phacoronavirus and Betacoronavirus genera, are also
downloaded from the NCBI GenBank and Virus-Host
DB  (https://www.genome.jp/virushostdb/)  that  covers
NCBI Reference Sequences (RefSeq, release 99, March
2, 2020). Genome sequences of Guangxi pangolin CoVs
(Lam et al.,, 2020) are downloaded from the GISAID
database (https://www.gisaid.org) with accession numbers
EPI ISL 410538 - EPI.ISL 410543. A Guangdong pangolin
CoV genome (Xiao et al., 2020) is also downloaded from
GISAID with accession number EPI_ISL_410721. We employ
three sets of reference sequences in this study with details
presented in Tables 2-4. The selection of reference genomes
at different taxonomic levels is based on a study in Randhawa
et al. (2020) that uses the Al-based supervised decision tree
method to classify novel pathogens, which include SARS-
CoV-2 sequences. We aim to traverse from higher to lower
taxonomic levels in searching for the SARS-CoV-2 origin by
discovery of its genus, sub-genus taxonomy and its closest
genome sequences.

Unsupervised clustering methods are employed to cluster
datasets comprising both query sequences (SARS-CoV-2) and
reference sequences into clusters. In this paper, we propose the
use of hierarchical clustering algorithm (Rokach and Maimon,
2005) and density-based spatial clustering of applications with
noise (DBSCAN) method (Ester et al., 1996) for this purpose.
With these two methods, we perform two steps to observe the
clustering results that lead to interpretations about the taxon-
omy and origin of SARS-CoV-2. In the first step, we apply
clustering algorithms to cluster the set of reference sequences
only, and then use the same settings (i.e. values of parame-
ters) of clustering algorithms to cluster a dataset that merges
reference sequences and SARS-CoV-2 sequences. Through this
step, we can find out reference sequences by which SARS-CoV-
2 sequences form a group with. In the second step, we vary
the settings of the clustering algorithms and observe changes
in the clustering outcomes. With the second step, we are able
to discover the closest reference sequences to the SARS-CoV-2
sequences and compare the similarities between genomes.

In the hierarchical clustering method, the cut-off parameter



Table 2: Reference viruses from major virus classes at a high taxonomic level - Set 1

Virus (Accession Number) Taxonomy Virus (Accession Number) Taxonomy

Human adenovirus D8 (AB448767) Adenoviridae Murine leukemia virus (AB187566) Ortervirales
TT virus sle1957 (AM711976) Anelloviridae Human papillomavirus type 69 (AB027020) Papillomaviridae

Staphylococcus phage S13” (AB626963) Caudovirales Adeno-associated virus - 6 (AF028704) Parvoviridae

Chili leaf curl virus-Oman (KF229718)

Geminiviridae

Cotesia plutellae polydnavirus (AY651828)

Polydnaviridae

Meles meles fecal virus (JN704610) Genomoviridae Aves polyomavirus 1 (AF118150) Polyomaviridae
Chlamydia phage 3 (AJ550635) Microviridae Middle East respiratory syndrome (MERS) CoV (NC_019843) Riboviria
Table 3: Reference viruses within the Riboviria realm - Set 2
Virus (Accession Number) Taxonomy Virus (Accession Number) Taxonomy
Grapevine rupestris stem pitting-associated | Betaflexiviridae Lymantria dispar cypovirus 14 (AF389452) Reoviridae

virus (GRSPV) 1 (AF057136)

Cucumber mosaic virus (AJ276479)

Bromoviridae

Hybrid snakehead virus (KC519324)

Rhabdoviridae

Chiba virus (AB042808)

Caliciviridae

Rice tungro spherical virus (NC-.001632)

Secoviridae

Mercadeo virus (NC_027819)

Flaviviridae

Bulbul CoV HKU11-796 (FJ376620)

Coronaviridae; DeltaCoV

Bunyamwera virus (NC_001925) Peribunyaviridae | Avian infectious bronchitis virus (AIBV) (AY646283) Coronaviridae; GammaCoV
Rice grassy stunt tenuivirus (NC_002323) Phenuiviridae Human CoV NL63 (NC_005831) Coronaviridae; AlphaCoV
Theiler’s-like virus of rats (AB090161) Picornaviridae SARS CoV BJO1 (AY278488) Coronaviridae; BetaCoV
Turnip mosaic virus (AB194796) Potyviridae

Table 4: Reference viruses in the genus AlphaCoV and BetaCoV - Set 3

Virus (Accession Number) Taxonomy Virus (Accession Number) Taxonomy

Transmissible gastroenteritis virus (TGEV) (NC_038861) AphaCoV SARS CoV BJO1 (AY278488) BetaCoV; Sarbecovirus

Mink CoV WD1127 (NC_023760) AlphaCoV Bat SARS CoV RsSHCO014 (KC881005) BetaCoV; Sarbecovirus

Porcine epidemic diarrhea virus (PEDV) (NC_003436) AlphaCoV Bat SARS CoV WIV1 (KF367457) BetaCoV; Sarbecovirus

Rhinolophus bat CoV HKU2 (NC_009988) AlphaCoV Bat SARS CoV Rp3 (DQ071615) BetaCoV; Sarbecovirus

Human CoV 229E (NC_002645) AlphaCoV Bat SARS CoV Rs672/2006 (FJ588686) BetaCoV; Sarbecovirus

Human CoV NL63 (NC_005831) AlphaCoV Bat SARS CoV Rf1 (DQ412042) BetaCoV; Sarbecovirus

Human CoV OC43 (NC_006213) BetaCoV; Bat SARS CoV Longquan-140 (KF294457) | BetaCoV; Sarbecovirus
Embecovirus

Murine hepatitis virus (MHV) (AC_000192) BetaCoV; Bat SARS CoV HKU3-1 BetaCoV; Sarbecovirus
Embecovirus

Rousettus bat CoV HKU9 (NC_009021) BetaCoV; Bat SARS CoV ZXC21 (MG772934) BetaCoV; Sarbecovirus
Nobecovirus

Rousettus bat CoV GCCDC1 (NC_030886) BetaCoV; Bat SARS CoV ZC45 (MG772933) BetaCoV; Sarbecovirus
Nobecovirus

MERS CoV (NC_019843) BetaCoV; Bat CoV RaTG13 (MN996532) BetaCoV; Sarbecovirus
Merbecovirus

Pipistrellus bat CoV HKUS (NC_009020) BetaCoV; Guangxi pangolin CoV GX/P4L | BetaCoV; Sarbecovirus
Merbecovirus (EPI_ISL_410538)

Tylonycteris bat CoV HKU4 (NC_009019) BetaCoV; Guangxi pangolin CoV GX/P1E | BetaCoV; Sarbecovirus
Merbecovirus (EPI_ISL_410539)

Bat Hp-betaCoV/Zhejiang2013 (NC_025217) BetaCoV; Hi- | Guangxi pangolin CoV GX/P5L | BetaCoV; Sarbecovirus
becovirus (EPI_ISL_410540)

SARS CoV BtKY72 (KY352407) BetaCoV; Guangxi pangolin CoV GX/PSE | BetaCoV; Sarbecovirus
Sarbecovirus (EPIISL_410541)

Bat CoV BM48-31/BGR/2008 (GU190215) BetaCoV; Guangxi pangolin CoV GX/P2V | BetaCoV; Sarbecovirus
Sarbecovirus (EPI_ISL_410542)

SARS CoV LC5 (AY395002) BetaCoV; Guangxi pangolin CoV GX/P3B | BetaCoV; Sarbecovirus
Sarbecovirus (EPI_ISL_410543)

SARS CoV SZ3 (AY304486) BetaCoV; Guangdong pangolin CoV | BetaCoV; Sarbecovirus
Sarbecovirus (EPILISL_410721)

SARS CoV Tor2 (AY274119) BetaCoV;
Sarbecovirus




C plays as a threshold in defining clusters and thus C is allowed
to change during our experiments. With regard to the DBSCAN
method, the neighbourhood search radius parameter & and the
minimum number of neighbours parameter, which is required
to identify a core point, are crucial in partitioning observations
into clusters. In our experiments, we set the minimum number
of neighbours to 3 and allow only the search radius parameter
€ to vary. Outputs of the DBSCAN method may also include
outliers, which are normally labelled as cluster “-1”. The un-
weighted pair group method with arithmetic mean (UPGMA)
method is applied to create hierarchical cluster trees, which are
used to construct dendrogram plots for the hierarchical cluster-
ing method. The UPGMA method is also employed to generate
phylogenetic trees in order to show results of the DBSCAN al-
gorithm.

To facilitate the execution of the clustering methods, we pro-
pose the use of pairwise distances between sequences based on
the Jukes-Cantor method (Jukes et al., 1969) and the maximum
composite likelihood method (Tamura et al., 2004). The Jukes-
Cantor method estimates evolutionary distances by the maxi-
mum likelihood approach using the number of substitutions be-
tween two sequences. With nucleotide sequences, the distance
is defined as d = —3/4 = In(1 — p % 4/3) where p is the ratio be-
tween the number of positions where the substitution is to a dif-
ferent nucleotide and the number of positions in the sequences.
On the other hand, the maximum composite likelihood method
considers the sum of log-likelihoods of all pairwise distances
in a distance matrix as a composite likelihood because these
distances are correlated owing to their phylogenetic relation-
ships. Tamura et al. (2004) showed that estimates of pairwise
distances and their related substitution parameters such as those
of the Tamura-Nei model (Tamura and Nei, 1993) can be ob-
tained accurately and efficiently by maximizing this compos-
ite likelihood. In this study, we aim to conduct a comparison
between a simple method (i.e., the Jukes-Cantor method) and
a complex method (i.e., the maximum composite likelihood
method) in estimating the evolutionary distances. While the
Jukes-Cantor method is one of the simplest models for estimat-
ing evolutionary distances, the maximum composite likelihood
method has many advantages over other methods that use the
independent estimation approach (Tamura et al., 2007). In the
independent estimation methods, each pairwise distance is esti-
mated independently of others which often leads to rather large
errors. The maximum composite likelihood method can reduce
these errors significantly because it first estimates a single set
of parameters using all sequence pairs and then applies this set
of parameters to each distance estimation (Tamura et al., 2007).

3. Results and Discussion

In this section, we report results of hierarchical clustering
algorithm and DBSCAN, each using either of the two evolu-
tionary distance methods, i.e. the Jukes-Cantor distance and
the maximum composite likelihood distance.

3.1. Results obtained by using the Jukes-Cantor distance

We start the experiments to search for taxonomy and ori-
gin of SARS-CoV-2 with the first set of reference genome se-
quences (Set 1 in Table 2). This set consists of much more
diversified viruses than the other two sets (Sets 2 and 3 in Ta-
bles 3 and 4) as it includes representatives from major virus
classes at the highest available virus taxonomic level. With a
large coverage of various types of viruses, the use of this ref-
erence set minimizes the probability of missing out any known
virus types. Outcomes of the hierarchical clustering and DB-
SCAN methods are presented in Figs. 1 and 2, respectively.
In these experiments, we use 16 SARS-CoV-2 sequences rep-
resenting 16 countries in Table 1 for demonstration purpose.
The first released SARS-CoV-2 genome of each country is se-
lected for these experiments. Clustering outcomes on all 334
sequences are similar to those reported here. Both clustering
methods consistently demonstrate that SARS-CoV-2 sequences
form a cluster with a representative virus of Riboviria among
12 major virus classes (Adenoviridae, Anelloviridae, Caudovi-
rales, Geminiviridae, Genomoviridae, Microviridae, Ortervi-
rales, Papillomaviridae, Parvoviridae, Polydnaviridae, Poly-
omaviridae, and Riboviria). The Middle East respiratory syn-
drome (MERS) CoV, which caused the MERS outbreak in
2012, is chosen as a representative of the Riboviria realm. In
hierarchical clustering (Fig. 1), when combined with reference
genomes, SARS-CoV-2 genomes do not create a new cluster
on their own but form a cluster with the MERS CoV, i.e. clus-
ter “8”. With the DBSCAN method (Fig. 2), SARS-CoV-2
genomes also do not create their own cluster but form the clus-
ter “1” with the MERS CoV. These clustering results suggest
that SARS-CoV-2 belongs to the Riboviria realm.

Once we have been able to identify SARS-CoV-2 as belong-
ing to the Riboviria realm, we move to the next lower taxo-
nomic level that consists of 12 virus families within Riboviria.
These families are presented in Set 2 (Table 3) that includes
Betaflexiviridae, Bromoviridae, Caliciviridae, Coronaviridae,
Flaviviridae, Peribunyaviridae, Phenuiviridae, Picornaviridae,
Potyviridae, Reoviridae, Rhabdoviridae, and Secoviridae. Re-
sults of the two clustering methods presented in Figs. 3 and 4
show that SARS-CoV-2 sequences form a group with viruses in
the Coronaviridae family. As we also include in Set 2 represen-
tatives of four genera in the Coronaviridae family (i.e. Alpha-
coronavirus - AlphaCoV, Betacoronavirus - BetaCoV, Delta-
coronavirus, Gammacoronavirus), we are able to look further
to the next taxonomic level within this experiment and observe
that SARS-CoV-2 belongs to the Betacoronavirus genus (see
Figs. 3 and 4).

There are 5 sub-genera in the Betacoronavirus genus, includ-
ing Embecovirus, Nobecovirus, Merbecovirus, Hibecovirus,
Sarbecovirus. In the next lower taxonomic level, we investi-
gate which of these sub-genera that SARS-CoV-2 belongs to
or whether SARS-CoV-2 genomes create a new cluster on their
own. We use Set 3 (Table 4) that includes 37 reference se-
quences for this investigation. Six representatives of the Alpha-
coronavirus genus, which is proximal to the Betacoronavirus
genus, are also included in Set 3. The rest of Set 3 comprises



9 - Riboviria - Middle East respiratory syndrome CoV
2 - Polydnaviridae - Cotesia plutellae polydnavirus

5 - Caudovirales - Staphylococcus phage S13'

7 - Adenoviridae - Human adenovirus D8

10 - Papillomaviridae - Human papillomavirus type 69

4 - Ortervirales - Murine leukemia virus

6 - Polyomaviridae - Aves polyomavirus 1

3 - Genomoviridae - Meles meles fecal virus
1 - Geminiviridae - Chili leaf curl virus-Oman
8 - Anelloviridae - TT virus sle1957

8 - Parvoviridae - Adeno-associated virus - 6

8 - Microviridae - Chlamydia phage 3

19 - Papillomaviridae - Human papillomavirus type 69
13 - Ortervirales - Murine leukemia virus
1 4 - Polyomaviridae - Aves polyomavirus 1
i 1 - Genomoviridae - Meles meles fecal virus
7 - Geminiviridae - Chili leaf curl virus-Oman
17 - Parvoviridae - Adeno-associated virus - 6
17 - Microviridae - Chlamydia phage 3
17 - Anelloviridae - TT virus sle1957
16 - Adenoviridae - Human adenovirus D8
15 - Caudovirales - Staphylococcus phage S13'
12 - Polydnaviridae - Cotesia plutellae polydnavirus
18 - Riboviria - Middle East respiratory syndrome CoV
18 - SARS-CoV-2/ESP/Valencia003/2020
18 - SARS-CoV-2/NPL/61-TW/2020
18 - SARS-CoV-2/PAK/Gilgit1/2020
18 - SARS-CoV-2/PER/Peru-10/2020
18 - SARS-CoV-2/IND/166/2020
18 - SARS-CoV-2/BRA/SP02/2020
18 - SARS-CoV-2/ITA/INMI1/2020
18 - SARS-CoV-2/ISR/ISR_IT0320/2020
18 - SARS-CoV-2/NTU02/TWN/2020
18 - SARS-CoV-2 SNUO1
18 - SARS-CoV-2 Wuhan-Hu-1
18 - SARS-CoV-2/Hu/DP/Kng/19-027 RNA
18 - SARS-CoV-2 Australia/VIC01/2020
18 - SARS-CoV-2/USA-WA1/2020
18 - SARS-CoV-2/VNM/nCoV-19-025/2020
18 - SARS-CoV-2/SWE/01/2020

1 0

Figure 1: Dendrogram plots showing hierarchical clustering results using only
the reference sequences in Set 1 (Table 2) with the cut-off parameter C equal
to 5 107 (top), and using a set that merges 16 representative SARS-CoV-2
sequences and reference sequences with C also set to 5 * 10™* (bottom). A
number at the beginning of each virus name indicates the cluster that virus
belongs to after clustering.
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M 1 - SARS-CoV-2/ITA/INMI1/2020

M 1 - SARS-CoV-2/BRA/SP02/2020

I 1 - SARS-CoV-2/PER/Peru-10/2020

I 1 - SARS-CoV-2/ISR/ISR_IT0320/2020

M 1 - SARS-CoV-2/Hu/DP/Kng/19-027 RNA

I 1 - SARS-CoV-2 Wuhan-Hu-1

B 1 - SARS-CoV-2 SNU01

F 1 - SARS-CoV-2 Australia/\VIC01/2020

B 1 - SARS-CoV-2/IND/166/2020

F 1 - SARS-CoV-2/PAK/Gilgit1/2020

1 - Riboviria - Middle East respiratory syndrome CoV
-1 - Adenoviridae - Human adenovirus D8

0 5 10
Figure 2: Phylogenetic trees showing DBSCAN results using only the refer-
ence sequences in Set 1 (Table 2) with the search radius parameter € equal to
0.7 (top), and using a set that merges SARS-CoV-2 sequences and reference
sequences with ¢ also set to 0.7 (bottom). As Set 1 includes representatives of
major virus classes and the minimum number of neighbours is set to 3 while &
is set to 0.7, DBSCAN considers individual viruses as outliers (top). When the
dataset is expanded to include SARS-CoV-2 sequences, DBSCAN forms clus-
ter “1” that includes all SARS-CoV-2 sequences and the MERS CoV, which
represents the Riboviria realm (bottom).



11 - Riboviria; Potyviridae - Turnip mosaic virus

6 - Riboviria; Phenuiviridae - Rice grassy stunt tenuivirus
4 - Riboviria; Peribunyaviridae - Bunyamwera virus

9 - Riboviria; Picornaviridae - Theiler's-like virus of rats

1 - Riboviria; Caliciviridae - Chiba virus

12 - Riboviria; Reoviridae - Lymantria dispar cypovirus 14

2 - Riboviria; Bromoviridae - Cucumber mosaic virus

3 - Riboviria; Betaflexiviridae - GRSPV 1

10 - Riboviria; Secoviridae - Rice tungro spherical virus

5 - Riboviria; Rhabdoviridae - Hybrid snakehead virus

8 - Riboviria; Flaviviridae - Mercadeo virus
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Figure 4: Phylogenetic trees showing DBSCAN results using only the refer-
ence sequences in Set 2 (Table 3) with the search radius parameter & equal to
0.6 (top), and using a set that merges SARS-CoV-2 sequences and reference
sequences with & also set to 0.6 (bottom).



2 viruses of the Embecovirus sub-genus, 2 viruses of the Nobe-
covirus sub-genus, 3 viruses of the Merbecovirus sub-genus, 1
virus of the Hibecovirus sub-genus and 23 viruses of the Sar-
becovirus sub-genus. Most of the representatives of the Sarbe-
covirus sub-genus are SARS CoVs and bat SARS-like CoVs.
Notably, we also include in this set 6 sequences of Guangxi
pangolin CoVs deposited to the GISAID database by Lam et al.
(2020) and a sequence of Guangdong pangolin CoV by Xiao
et al. (2020).

Evolutionary distances between each of the reference
genomes in Set 3 (Table 4) to the 334 SARS-CoV-2 genomes
based on the Jukes-Cantor method are presented in Fig. 5.
We can observe that these distances are almost constant across
334 SARS-CoV-2 sequences, which are collected in 16 coun-
tries (Table 1) over approximately 3 months since late De-
cember 2019. This implies that not much variation of SARS-
CoV-2 genomes has occurred over time and across countries.
As in Fig. 5, there are several groups of reference genomes
shown via the closeness of the distance lines. For example,
the top group contains genomes of AlphaCoV viruses (refer
to the taxonomy in Table 4) that are quite evolutionarily di-
vergent from SARS-CoV-2 sequences. The middle group of
lines comprises most of the BetaCoV viruses, especially those
in the Sarbecovirus sub-genus. The bottom lines identify ref-
erence viruses that are closest to SARS-CoV-2, which include
bat CoV RaTG13, Guangdong pangolin CoV, bat SARS CoV
Z(C45 and bat SARS CoV ZXC21. The bat CoV RaTG13 line
at the bottom is notably distinguished from other lines while the
Guangdong pangolin CoV line is the second closest to SARS-
CoV-2. The similarities between bat CoV RaTG13, Guang-
dong pangolin CoV and Guangxi pangolin CoV GX/P4L with
SARS-CoV-2/Australia/VIC01/2020, produced by the SimPlot
software (Lole et al., 1999), are displayed in Fig. 6. Consistent
with the results presented in Fig. 5, bat CoV RaTG13 is shown
closer to SARS-CoV-2 than pangolin CoVs.

Fig. 7 shows outcomes of the hierarchical clustering method
using Set 3 of reference sequences in Table 4. When the cut-off
parameter C is set equal to 0.7, the hierarchical clustering algo-
rithm separates the reference sequences into 6 clusters in which
cluster “5” comprises all examined viruses of the Sarbecovirus
sub-genus, including many SARS CoVs, bat SARS-like CoVs
and pangolin CoVs (Fig. 7A). It is observed that the algorithm
reasonably groups viruses into clusters, for example, the genus
AlphaCoV is represented by cluster “4” while the sub-genera
Embecovirus, Nobecovirus, Merbecovirus, and Hibecovirus are
labelled as clusters “3”, “6”, “2”, and “1”, respectively. Using
the same cut-off value of 0.7, we next perform clustering on
a dataset that merges reference sequences and 16 representa-
tive SARS-CoV-2 sequences (see Fig. 7B). Results on all 334
SARS-CoV-2 sequences are similar to those on the 16 represen-
tative sequences. The outcome presented in Fig. 7B shows that
the 16 representative SARS-CoV-2 sequences fall into cluster
“5”, which comprises the Sarbecovirus sub-genus. The number
of clusters is still 6 and the membership structure of the clusters
is the same as in the case of clustering reference sequences only
(Fig. 7A), except that the Sarbecovirus cluster now has been ex-
panded to also contain SARS-CoV-2 sequences. By comparing

Figs. 7A and 7B, we believe that SARS-CoV-2 is naturally part
of the Sarbecovirus sub-genus. This realization is substantiated
by moving to Fig. 7C that shows a clustering outcome when
the cut-off parameter C is decreased to 0.1. In Fig. 7C, while
3 members of the Merbecovirus sub-genus (i.e. Pipistrellus bat
CoV HKUS, Tylonycteris bat CoV HKU4 and MERS CoV) are
divided into 3 clusters (“12”, “2” and “4”’) or members of the
Sarbecovirus cluster separate themselves into 2 clusters “’1”
and “11”, sequences of SARS-CoV-2 still join the cluster “11°
with other members of Sarbecovirus such as 3 bat viruses (bat
SARS CoV ZC45, bat SARS CoV ZXC21, bat CoV RaTG13)
and 7 pangolin CoVs.

As the cut-off parameter C decreases, the number of clus-
ters increases. This is an expected outcome because the cut-off
threshold line moves closer to the leaves of the dendrogram.
When the cut-off C is reduced to 0.03 (Fig. 7D), there are only
2 viruses (bat CoV RaTG13 and Guangdong pangolin CoV)
that can form a cluster with SARS-CoV-2 (labelled as cluster
“15”). These are 2 viruses closest to SARS-CoV-2 based on
the whole genome analysis. Results in Figs. 7C and 7D there-
fore provide evidence that bats or pangolins could be possible
hosts for SARS-CoV-2. We next reduce the cut-off C to 0.01
as in Fig. 7E. At this stage, only bat CoV RaTG13 is within
the same cluster with SARS-CoV-2 (cluster “17””). We thus be-
lieve that bats are the more probable hosts for SARS-CoV-2
than pangolins. The inference of our Al-enabled analysis is in
line with a result in Cérdenas-Conejo et al. (2020) that inves-
tigates the polyprotein lab of SARS-CoV-2 and suggests that
this novel coronavirus has more likely been arisen from viruses
infecting bats rather than pangolins.

When the cut-off C is reduced to 0.001 as in Fig. 7F, we
observe that the total number of clusters now increases to 29
and more importantly, SARS-CoV-2 sequences do not combine
with any other reference viruses but form its own cluster “19”.
Could we use this clustering result (Fig. 7F) to infer that SARS-
CoV-2 might not originate in bats or pangolins? This is a debat-
able question because the answer depends on the level of details
we use to differentiate between the species or organisms. The
cut-off parameter in hierarchical clustering can be considered
as the level of details. With the results obtained in Fig. 7D
(and also in the experiments with the DBSCAN method pre-
sented next), we support a hypothesis that bats or pangolins
are the probable origin of SARS-CoV-2. This is because we
observe considerable similarity between SARS-CoV-2 and bat
CoV RaTG13 (or Guangdong pangolin CoV) compared to the
similarity between viruses that originated in the same host. For
example, bat SARS-like CoVs such as bat SARS CoV Rfl,
bat SARS CoV Longquan-140, bat SARS CoV HKU3-1, bat
SARS CoV Rp3, bat SARS CoV Rs672/2006, bat SARS CoV
RsSHCO14, bat SARS CoV WIVI, bat SARS CoV ZC45 and
bat SARS CoV ZXC21 had the same bat origin. In Fig. 7D,
these viruses however are separated into 2 different clusters (“3”
and “2”) while all 16 SARS-CoV-2 representatives are grouped
together with bat CoV RaTG13 and Guangdong pangolin CoV
in cluster “15”. This demonstrates that the difference between
the same origin viruses (e.g. bat SARS CoV WIV1 and bat
SARS CoV ZC45) is larger than the difference between SARS-
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Figure 5: Distances between each of the reference genomes in Set 3 (Table 4) with 334 SARS-CoV-2 genomes where the latter are ordered by the released date
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334 SARS-CoV-2 genomes.
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Figure 6: Similarities between genomes of bat CoV RaTG13, Guangdong
2/Australia/VIC01/2020 genome sequence.

CoV-2 and bat CoV RaTG13 (or Guangdong pangolin CoV).
Therefore, SARS-CoV-2 is deemed to have very likely origi-
nated in the same host with bat CoV RaTG13 or Guangdong
pangolin CoV, which is bat or pangolin, respectively.

Clustering outcomes of the DBSCAN method via phyloge-
netic trees using Set 3 of reference sequences (Table 4) are
presented in Fig. 8. We first apply DBSCAN to reference se-
quences only, which results in 3 clusters and several outliers
(Fig. 8A). The search radius parameter € is set equal to 0.55.
As we set the minimum number of neighbours parameter to
3, it is expected that viruses of the sub-genera Embecovirus,
Nobecovirus and Hibecovirus are detected as outliers “-1” be-
cause there are only 1 or 2 viruses in these sub-genera. Three

pangolin CoV and Guangxi pangolin CoV GX/P4L with the SARS-CoV-

viruses of the Merbecovirus sub-genus (i.e. Tylonycteris bat
CoV HKU4, Pipistrellus bat CoV HKUS and MERS CoV) are
grouped into the cluster “2”. All examined viruses of the Sar-
becovirus sub-genus are joined in cluster “1” while the Alpha-
CoV viruses are combined into cluster “3”. Fig. 8B shows an
outcome of DBSCAN with the same & value of 0.55 and the
dataset has been expanded to include 16 representative SARS-
CoV-2 sequences. We observe that genomes of SARS-CoV-2
fall into the cluster “1”, which includes all the examined Sar-
becovirus viruses. When ¢ is decreased to 0.3 in Fig. 8C, all
members of the Merbecovirus cluster or the AlphaCoV clus-
ter become outliers while 16 SARS-CoV-2 genomes still stick
with the Sarbecovirus cluster. In line with the results obtained
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Figure 7: Set 3 of reference sequences - results obtained by using hierarchical clustering via dendrogram plots. Numbers at the beginning of each virus label indicate
the cluster that virus is a member of as a result of the clustering algorithm. (A) when the cut-off C is equal to 0.7 and using Set 3 of reference sequences only:
there are 6 clusters where cluster “5” covers all examined viruses in the Sarbecovirus sub-genus. (B) when cut-off C is still equal to 0.7 and the dataset now merges
between reference sequences and 16 representative SARS-CoV-2 sequences (merged set). (C) using the merged set with C = 0.1. (D) using the merged set with
C = 0.03. (E) using the merged set with C = 0.01. (F) using the merged set with C = 0.001.
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Figure 8: Set 3 of reference sequences - results obtained by using DBSCAN via phylogenetic trees. Numbers at the beginning of each virus label indicate the cluster
that virus is a member of as a result of the clustering algorithm. (A) when the search radius parameter ¢ is equal to 0.55 and using Set 3 of reference sequences only:
there are 3 clusters where the cluster “1” covers all examined viruses in the Sarbecovirus sub-genus. (B) when search radius ¢ is still equal to 0.55 and the dataset
now merges between reference sequences and 16 representative SARS-CoV-2 sequences (merged set). (C) using the merged set with & = 0.3. (D) using the merged
set with & = 0.15. (E) using the merged set with £ = 0.1. (F) using the merged set with € = 0.01.
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Figure 9: Evolutionary distances between reference genomes and 16 representative SARS-CoV-2 genomes of 16 countries based on the maximum composite
likelihood method. Each line is composed of 16 data points representing 16 pairwise distances. The bottom line, for instance, shows the distances between bat CoV

RaTG13 and each of 16 representative genomes on the x-axis.

by using hierarchical clustering in Fig. 7, those obtained in Fig.
8B and 8C using the DBSCAN method give us the confidence
to confirm that SARS-CoV-2 is part of the Sarbecovirus sub-
genus. Fig. 8D shows that bat CoV RaTG13 and Guangdong
pangolin CoV are closest to SARS-CoV-2 as they join with 16
SARS-CoV-2 representatives in cluster “2”. This again substan-
tiates the probable bat or pangolin origin of SARS-CoV-2. By
reducing € to 0.1 as in Fig. 8E, the Guangdong pangolin CoV
becomes an outlier whilst SARS-CoV-2 sequences form a clus-
ter (“3”) with only bat CoV RaTG13. This further confirms our
findings when using the hierarchical clustering in Fig. 7 that
bats are more likely the hosts for the SARS-CoV-2 than pan-
golins. When ¢ is decreased to 0.01 as in Fig. 8F, SARS-CoV-2
genomes form its own cluster “3”, which is separated with any
bat or pangolin genomes. As with the result in Fig. 7F by the
hierarchical clustering, this result also raises a question whether
SARS-CoV-2 really originated in bats or pangolins. In Fig. 8D,
it is again observed that the similarity between SARS-CoV-2
and bat CoV RaTG13 (or Guangdong pangolin CoV) is larger
than the similarity between bat SARS CoVs, which share the
same bat origin. Specifically, SARS-CoV-2, bat CoV RaTG13
and Guangdong pangolin CoV are grouped together in cluster
“2” while bat SARS CoVs are divided into 2 clusters, i.e. bat
SARS CoV ZXC21 and bat SARS CoV ZC45 are in cluster
“2” whereas other bat SARS CoVs are in cluster “3”. We thus
suggest that SARS-CoV-2 probably has the same origin with
bat CoV RaTG13 or Guangdong pangolin CoV. In other words,
bats or pangolins are the probable origin of SARS-CoV-2.

All results presented above are obtained using the pairwise
distances estimated by the Jukes-Cantor method. The following
subsection reports clustering results obtained using evolution-
ary distances calculated by the maximum composite likelihood
method.

3.2. Results obtained by using the maximum composite likeli-
hood distance method

This subsection presents results of two clustering meth-
ods, i.e. hierarchical clustering and DBSCAN, using the se-
quence distances computed by the maximum composite likeli-
hood method (Tamura et al., 2004), which was conducted in
the MEGA X software (Kumar et al., 2018). These results
are greatly similar to those obtained by using the Jukes-Cantor
distance method shown throughout the paper. In these experi-
ments, the clustering methods are applied to a dataset that com-
bines reference sequences in Set 3 (Table 4) and 16 representa-
tive genomes of 16 countries in Table 1. When a country has
more than one collected genome, the first released genome of
that country is selected for this experiment. Fig. 9 demonstrates
the distances estimated by the maximum composite likelihood
method between each of the reference sequences and 16 rep-
resentative SARS-CoV-2 genomes. The lines are almost par-
allel indicating that SARS-CoV-2 genome is not altered much
across countries, which is in line with the results obtained us-
ing the Jukes-Cantor distance estimates in Fig. 5. The bat CoV
RaTG13 is again shown much closer to SARS-CoV-2 than pan-
golin CoVs and other reference viruses although the distance
range in Fig. 9 is larger than that in Fig. 5, i.e. [0, ~1.6] versus
[0, ~0.7], respectively.

In Fig. 10A, when the hierarchical clustering cut-off pa-
rameter is set equal to 0.1, all 16 representative SARS-CoV-
2 genomes are grouped into cluster “12”, which also includes
other viruses of the Sarbecovirus sub-genus of the BetaCoV
genus. When moving from Fig. 10A to Fig. 10B, even though
members of the Sarbecovirus cluster (“12” in Fig. 10A) are
split into 2 clusters “1” and “2” in Fig. 10B, the SARS-CoV-2
sequences are still grouped into cluster “14” with other mem-
bers of the Sarbecovirus sub-genus such as bat CoV RaTG13,
Guangdong pangolin CoV, bat SARS CoV ZXC21 and bat
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Figure 10: Hierarchical clustering results using pairwise distances based on the maximum composite likelihood method, (A) the cut-off parameter is set to 0.1, (B)
cut-off equal to 0.01, (C) cut-off is 0.001, and (D) cut-off is 0.0001.
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SARS CoV ZC45. These results provide us with a confidence
on confirming the Sarbecovirus sub-genus of the SARS-CoV-
2. This is consistent with the result based on the Jukes-Cantor
distances shown in Fig. 7. Fig. 10C shows that SARS-CoV-
2 genomes are combined only with that of bat CoV RaTG13
when the cut-off parameter is decreased to 0.001. This again in-
dicates that bats are the more likely origin of SARS-CoV-2 than
pangolins. When we reduce the cut-off parameter to 0.0001, the
SARS-CoV-2 sequences create their own cluster “22” and this
questions the probable bat or pangolin origin of SARS-CoV-2.
However, in Fig. 10B, we also find that the similarity between
SARS-CoV-2 and bat CoV RaTG13 (or Guangdong pangolin
CoV) is larger than the similarity between viruses having the
same origin. For example, bat SARS CoV WIV1 and bat SARS
CoV Z(C45 have the same bat origin but they are divided into
2 clusters (“1” and “14”) while all 16 SARS-CoV-2 representa-
tives are grouped into cluster “14” with bat CoV RaTG13 and
Guangdong pangolin CoV. This implies that SARS-CoV-2 may
have originated in bats or pangolins.

Results of the DBSCAN algorithm using distances estimated
by the maximum composite likelihood method are similar to
those obtained by the Jukes-Cantor distance method in Fig. 8.
In summary, these Al-based quantitative results using the unsu-
pervised hierarchical clustering and DBSCAN methods provide
consistent evidence to suggest that 1) SARS-CoV-2 belongs to
the Sarbecovirus sub-genus of the Betacoronavirus genus, 2)
bats and pangolins may have served as the hosts for SARS-
CoV-2, and 3) bats are the more probable origin of SARS-CoV-
2 than pangolins.

4. Conclusions

The severity of COVID-19 pandemic has initiated a race in
finding origin of SARS-CoV-2. Studies on genome sequences
obtained from early patients in Wuhan city in China suggest
the probable bat origin of the virus based on similarities be-
tween these sequences and those obtained from bat CoVs pre-
viously reported in China. Other studies afterwards found that
SARS-CoV-2 genome sequences are also similar to pangolin
CoV sequences and accordingly raised a hypothesis on the pan-
golin origin of SARS-CoV-2. This paper has investigated ori-
gin of SARS-CoV-2 using two unsupervised clustering algo-
rithms with two evolutionary distance estimation methods, and
more than 300 raw genome sequences of SARS-CoV-2 col-
lected from various countries around the world. Outcomes of
these Al-enabled methods are analysed, leading to a confir-
mation on the Coronaviridae family of SARS-CoV-2. More
specifically, the SARS-CoV-2 belongs to the sub-genus Sarbe-
covirus within the genus Betacoronavirus that includes SARS-
CoV, which caused the global SARS pandemic in 2002-2003
(Drosten et al., 2003; Wolfe et al., 2007). The results of var-
ious clustering experiments show that SARS-CoV-2 genomes
are more likely to form a cluster with the bat CoV RaTG13
genome than pangolin CoV genomes, which were constructed
from samples collected in Guangxi and Guangdong provinces
in China. This indicates that bats are more likely the hosts for
SARS-CoV-2 than pangolins.

Table 5: Accession numbers of 334 SARS-CoV-2 genome sequences obtained
from NCBI GenBank, sorted by date released

MN908947, MN985325, MN975262, MN938384, MN988713, MN997409, MN994468,
MN994467, MN988669, MN988668, MN99653 1, MN996530, MN996529, MN996528,
MN996527, MT007544, MT019533, MT019532, MT019531, MT019530, MT019529,
MT020881, MT020880, MT027064, MT027063, MT027062, MT039890, MT039888,
MTO039887, MT039873, MT049951, MT044258, MT044257, MT066176, MT066175,
MTO072688, MT093631, MT093571, MT106054, MT106053, MT106052, MT118835,
MT123293, MT123292, MT123291, MT123290, LC528233, LC528232, MT126808,
MT135044, MT135043, MT135042, MT135041, MT152824, MT050493, MT012098,
LC529905, MT159722, MT159721, MT159720, MT159719, MT159718, MT159717,
MT159716, MT159715, MT159714, MT159713, MT159712, MT159711, MT159710,
MT159709, MT159708, MT159707, MT159706, MT159705, MT121215, MT066156,
MT163719, MT163718, MT163717, MT163716, MT184913, MT184912, MT184911,
MT184910, MT184909, MT184908, MT184907, MT188341, MT188340, MT188339,
MT192773, MT192772, MT192765, MT192759, MT198652, MT226610, MT233523,
MT233522, MT233519, MT240479, MT246667, MT246490, MT246489, MT246488,
MT246487, MT246486, MT246485, MT246484, MT246482, MT246481, MT246480,
MT246479, MT246478, MT246477, MT246476, MT246475, MT246474, MT246473,
MT246472, MT246471, MT246470, MT246469, MT246468, MT246467, MT246466,
MT246464, MT246462, MT246461, MT246460, MT246459, MT246458, MT246457,
MT246456, MT246455, MT246454, MT246453, MT246452, MT246451, MT246450,
MT246449, MT233526, MT253710, MT253709, MT253708, MT253707, MT253706,
MT253705, MT253704, MT253703, MT253702, MT253701, MT253700, MT253699,
MT253698, MT253697, MT253696, MT251980, MT251979, MT251978, MT251977,
MT251976, MT251975, MT251974, MT251973, MT251972, LC534419, LC534418,
MT259287, MT259286, MT259285, MT259284, MT259282, MT259281, MT259280,
MT259278, MT259277, MT259275, MT259274, MT259273, MT259271, MT259269,
MT259268, MT259267, MT259266, MT259264, MT259263, MT259261, MT259260,
MT259258, MT259257, MT259256, MT259254, MT259253, MT259252, MT259251,
MT259250, MT259249, MT259248, MT259247, MT259246, MT259245, MT259244,
MT259243, MT259241, MT259239, MT259237, MT259236, MT259235, MT259231,
MT259230, MT259229, MT259228, MT259227, MT259226, MT258383, MT258382,
MT258381, MT258380, MT258379, MT258378, MT258377, MT263469, MT263468,
MT263467, MT263465, MT263464, MT263463, MT263462, MT263459, MT263458,
MT263457, MT263456, MT263455, MT263454, MT263453, MT263452, MT263451,
MT263450, MT263449, MT263448, MT263447, MT263446, MT263445, MT263444,
MT263443, MT263442, MT263441, MT263440, MT263439, MT263438, MT263437,
MT263436, MT263435, MT263434, MT263433, MT263432, MT263431, MT263430,
MT263429, MT263428, MT263426, MT263425, MT263424, MT263423, MT263422,
MT263421, MT263420, MT263419, MT263418, MT263417, MT263416, MT263415,
MT263414, MT263413, MT263412, MT263411, MT263410, MT263408, MT263406,
MT263405, MT263404, MT263403, MT263402, MT263400, MT263399, MT263398,
MT263396, MT263395, MT263394, MT263392, MT263391, MT263390, MT263388,
MT263387, MT263386, MT263384, MT263383, MT263382, MT263381, MT263074,
MT262993, MT262916, MT262915, MT262914, MT262913, MT262912, MT262911,
MT262910, MT262909, MT262908, MT262907, MT262906, MT262905, MT262904,
MT262903, MT262902, MT262901, MT262900, MT262899, MT262898, MT262897,
MT262896, MT276598, MT276597, MT276331, MT276330, MT276329, MT276328,
MT276327, MT276326, MT276325, MT276324, MT276323.

This study uses only two benchmark clustering methods
that belong to two different types: the hierarchical clustering
method belongs to the connectivity model type, while the DB-
SCAN belongs to the density model type. There are more ad-
vanced clustering methods in the literature, and they may pro-
vide a more accurate representation of the clustered data. Fu-
ture research focusing on experiments with the more advanced
clustering methods would be interesting. Nevertheless, the find-
ings of this research on the large dataset of 334 SARS-CoV-2
genomic sequences provide more insights about SARS-CoV-2
and thus facilitate the progress on discovering medicines and
vaccines to mitigate its impacts and prevent a similar pandemic
in future. This study among many Al studies in the challenging
battle against the COVID-19 pandemic (Nguyen et al., 2020)
has shown the power and capabilities of Al, especially from the
computational biology and medicine perspective. The race to
produce effective treatment drugs and vaccines is ongoing and
much needed in the fight against the COVID-19 pandemic. Fur-
ther study in this direction is strongly encouraged by a recent



success of Al in identifying powerful new kinds of antibiotic
from a pool of more than 100 million molecules (Stokes et al.,
2020). With the capability of analyzing large datasets and ex-
tracting knowledge in an intelligent and efficient manner, dis-
covery of newer therapeutics and vaccine strategies using Al is
becoming ever more realistic (Etzioni, 2020).

5. Appendix

Table 5 in this appendix presents accession numbers of 334
SARS-CoV-2 complete genomes obtained from the NCBI Gen-
Bank database.
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