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A B S T R A C T

General recommenders and sequential recommenders are two modeling paradigms of recom-
mender. The main focus of a general recommender is to identify long-term user preferences,
while the user’s sequential behaviors are ignored and sequential recommenders try to capture
short-term user preferences by exploring item-to-item relations, failing to consider general
user preferences. Recently, better performance improvement is reported by combining these
two types of recommenders. However, most of the previous works typically treat each item
separately and assume that each user–item interaction in a sequence is independent. This
may be a too simplistic assumption, since there may be a particular purpose behind buying
the successive item in a sequence. In fact, a user makes a decision through two sequential
processes, i.e., start shopping with a particular intention and then select a specific item
which satisfies her/his preferences under this intention. Moreover, different users usually have
different purposes and preferences, and the same user may have various intentions. Thus,
different users may click on the same items with an attention on a different purpose. Therefore,
a user’s behavior pattern is not completely exploited in most of the current methods and
they neglect the distinction between users’ purposes and their preferences. To alleviate those
problems, we propose a novel method named, CAN, which takes both users’ purposes and
preferences into account for the next-item recommendation. We propose to use Purpose-Specific
Attention Unit (PSAU) in order to discriminately learn the representations of user purpose and
preference. The experimental results on real-world datasets demonstrate the advantages of our
approach over the state-of-the-art methods.

. Introduction

Due to the information explosion, people are surrounded by too many options and services. Therefore, there is a need for
tool to help customers with their decision-making process, find their interested items and alleviate the information overload

roblem. Recommendation systems have emerged as a platform which automatically recommends a small set of items in order to
elp users find their desired items in online services. Based on how the users’ preferences are modeled, there are two types of
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recommenders: general recommenders and sequential recommenders (Dong, Zheng, Zhang, & Wang, 2018; Rendle, Freudenthaler,
& Schmidt-Thieme, 2010; Wang et al., 2015).

General recommenders aim to learn what items a user is typically interested in. Matrix factorization is one of the most widely used
ethods in this setting, which learns user–item interactions in a latent vector space to model the general user preferences (Koren,
ell, & Volinsky, 2009). While sequential recommenders try to capture sequential patterns from previously visited items. Markov
hains-based classic sequential recommenders assume that the next visited item highly depends on the only most recent visited

tems (Grbovic et al., 2015).
Soon after, convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have become dominant paradigms

n modeling complex relations over user–item interaction sequences (Hidasi, Karatzoglou, Baltrunas & Tikk, 2016; Tang & Wang,
018; Yuan, Karatzoglou, Arapakis, Jose, & He, 2019; Zogan, Razzak, Jameel, & Xu, 2021; Zogan, Razzak, Wang, Jameel, & Xu,
020). Lately, an attention-based approaches such as SHAN (Ying et al., 2018) can surpass the traditional methods due to the strong
apability of attention mechanism in highlighting the selective parts in a user and item interaction sequence (Bahdanau, Cho, &
engio, 2015).

Both the aforementioned classes of approaches have their strengths and shortcomings (Wang et al., 2015). Although general
ecommenders have been widely adopted to capture long-term user preferences, their performance is limited due to ignoring short-
erm user preferences. A major advantage of the sequential recommenders is their capability to model sequential dependencies,
.g. a customer who has recently purchased an iPhone is more likely to buy an iWatch next. However, sequential recommenders
iscard prior user–item interactions within user behaviors, and thus failing to capture general user preferences (Dong et al., 2018).

Based on the above observation, it is better to build a recommender system which benefits from the advantages of both general-
nd sequential recommenders. FPMC as an example, is a combination of MC and MF, in which instead of using the same transition
atrix for all users, an individual transition matrix is used for each user (Rendle et al., 2010). FPMC can well capture both sequential

ehavior and general taste of the users and then linearly combine them (Rendle et al., 2010). HRM takes one step forward to make
rogress by using different types of aggregation operations, especially non-linearity into its model (Wang et al., 2015). However,
sers decision-making pattern is not exploited thoroughly by the existing models as they mainly take each user–item interaction
ndependently and consider each item in a sequence as a separated entity. Hence, the current studies may fail to capture local
ontexts in a session and ignore a user’s purpose which is reflected by a set of clicked successive items in a session. The same user may
ave various purposes and different users may have different purposes by clicking on the same items. Furthermore, different items
ithin a session may also have different informativeness for revealing purposes and preferences of different users. Therefore, the
revious works neglect the hierarchical distinction between user purposes and user preferences, which in turn makes it a challenging
ask to fully exploit users’ decision-making patterns.

Usually, a user’s decision-making process is a combination of two sequential steps; a user’s main purpose and his/her preference.
aking the shopping event of a user as an example, she/he starts shopping with a specific purpose and then keeps looking into
ifferent items until she/he finds items that satisfy her/his preference. Suppose Alice is a Ph.D. student and her previous actions
re mostly related to her field of study such as looking for a workshop, and finding an article. Alice has a plan to travel overseas
or presenting her work in an international conference. She starts booking her flight and hotel and her next action may be visiting
ome universities or institutions. While current systems may recommend tourist attractions or car rental companies to her because
any users may look for them after booking a hotel and a flight, ignoring her educational purpose of this travel which is hidden

nside her long-term interacted item set. Based on this observation, we can see that the user’s main purpose may be hidden inside
er/his very previous actions, while analyzing her/his very current actions can show her/his preferences on particular items.

The above illustrations reveal the difficulty of capturing collective dependency in a session. In the other words, the next choice
f item may not be only affected by a part of current session, but all items need to be taken into consideration as a collective of
nteracted items may have a particular purpose. Moreover, most of these works have taken user–item relationships into consideration
rom the static views and the dynamic property of users’ preferences are ignored. More importantly, the users’ main purposes are
ot only forgotten, but also there is no difference between the contributions of the same items in modeling preferences of different
sers. Therefore, how to fully exploit users decision-making process and completely take both the users’ motivations along with
heir current interests are still largely unexplored.

To address the above issues, we propose a novel model called CAN, A convolutional attention network for unifying general
nd sequential recommenders, which unifies the benefits of both general- and sequential recommenders. CAN consists of two main
odules: purpose encoder and preference encoder. In the purpose encoder we first embed users and items into low-dimensional

ectors and then use the CNN network to identify user purposes by capturing the local and high-level information of the long-term
nteracted item set. Then, we propose to use a Purpose-Specific Attention Unit (PSAU) to differently attend to different items and
ully exploit different informativeness of different items. Next, at preference encoder we also utilize PSAU in order to learn the items’
nformativeness in the short-term interacted item set to better understand users’ preferences. Lastly, the final user representation is
earned through coupling user long-term and short-term preferences. The model’s parameters are learned by employing the Bayesian
ersonalized ranking optimization criterion to generate a pair-wise loss function (Rendle, Freudenthaler, Gantner, & Schmidt-Thieme,
009). From the experiments, we can observe the superiority of our model over the state-of-the-art algorithms on two datasets. The
ey contributions of the paper are summarized as follows:

• We introduce a unified framework, named CAN, integrating a CNN network and attention-based PSAU module to model the
2

users’ purposes and personal preferences.
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• We propose a Purpose-Specific Attention Unit, PSAU, which takes user embedding as the query vector of the purpose-
and personal preference-level attention networks to differentially attend to important items according to user purposes and
preferences.

• We use the PSAU in both the long- and short-term interacted item set to generate a high-level hybrid user representation.
• We conduct extensive experiments on two real-world datasets. The experimental results demonstrate the superiority of our

proposed model compared to the state-of-the-art methods.

The rest of the paper is organized as follows: we discuss the related works in Section 2. The proposed methodology and our
xperiments are presented in Section 3 and Section 4, respectively, before we conclude the paper in Section 5.

. Related work

Based on different aspects of user behavior, there are two types of paradigms that are applied to recommendation tasks: general
ecommender and sequential recommender. Both paradigms have strengths and weaknesses, which in the following discussion, we
ill analyze each paradigms.

.1. General recommender

The main goal of general recommenders is to discover the users’ long-term preferences by exploiting their past items interactions.
arly works on this kind of recommenders mostly use Collaborative Filtering (CF) to model users’ preferences (Koren & Bell, 2011;
arwar, Karypis, Konstan, & Riedl, 2001). Matrix factorization (MF) is one of the widely adopted techniques in CF, which aims to
earn user and item latent vectors in order to compute a user’s preference on an item (Koren et al., 2009; Salakhutdinov & Mnih,
007). Basically there are two different types of data with which MF-based approaches deal: explicit feedback, e.g., given ratings,
nd implicit feedback, e.g., mouse clicking. The first one treats making a recommendation as a rating prediction problem, referring
o the approaches that try to predict users’ preference scores by utilizing their rating patterns (Koren et al., 2009). Unlike approaches
elonging to the first class, implicit feedback oriented methods formulate making a recommendation as a ranking problem based
n the idea of the Learning to-Rank technique (Karatzoglou, Baltrunas, & Shi, 2013). Although general recommenders may better
odel the long-term user preferences, their performance is limited due to ignoring short-term user preferences.

.2. Sequential recommender

Different from general recommenders, sequential recommenders try to understand the sequential user behaviors and model the
hort-term user preferences (Wang et al., 2019). Markov chain (MC) has been known as a typical solution in this setting. For instance,
PMC exploits both sequential and social information to make a more personalized recommendation model (Cai, He, & McAuley,
017). In the past few years, deep learning methods have shown their great capability in modeling the complex interactions between
sers and items. Among deep neural networks techniques, Recurrent Neural Network (RNN) is one of the widely adopted methods in
equential recommenders due to its capability in sequence modeling. Apart from using basic RNN (Hidasi, Karatzoglou et al., 2016;
hang et al., 2014), improved architectures like long short-term-memory (LSTM) (Wu, Ahmed, Beutel, Smola, & Jing, 2017) and
ated recurrent unit (GRU) (Hidasi, Quadrana, Karatzoglou & Tikk, 2016) have also been introduced to better model dependencies
n a longer sequence. Different from RNN, Convolutional Neural Network (CNN) stores the embedding of the user–item interaction
equences in a matrix and then treats this matrix as an image (Tang & Wang, 2018; Yuan et al., 2019). Although the basic deep neural
etworks (i.e., RNN, CNN) have shown a great success in modeling sequential dependencies, they may have some shortcomings in
odeling complex relations between users and items. Thus, three advanced models have been introduced to overcome this problem:

i)attention mechanism: by more focusing on relevant and important interactions in a sequence (Kang, Wan, & McAuley, 2018; Ying
et al., 2018); (ii) memory networks: by incorporating an external memory matrix (Chen et al., 2018; Hu, He, Sha, & Niu, 2019); and
(iii) mixture models: by combining the strength of the current deep neural models (Tang et al., 2019).

Inspired by the outperformance of Transformer (Naseem, Razzak, Khushi, Eklund, & Kim, 2021; Naseem, Razzak, Musial, &
Imran, 2020; Wolf et al., 2020; Zogan et al., 2021) in NLP tasks, SRs have motivated to use self-attention technique to better
capture sequential dependency. BERT4Rec (Sun et al., 2019) for instance, has used the deep bidirectional self-attention algorithm
to model the sequences of users’ behaviors. Except these methods, Graph Neural Network (GNN) has emerged as a solid structure
With the strong capability of modeling complex transition patterns of items (Wu, Zhang, Sun, & Cui, 2020). SURGE is an example of
GNN-based model,in which different types of users’ preferences are modeled. The authors have also used graph network to model
users’ dynamic behavior.

While sequential recommender models are good at capturing the sequential dependency, they mostly recommend items similar
3

to those that a user currently visited and the general user preference is ignored.
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2.3. Unified recommender

There are some recent attempts to combine both general- and sequential recommenders in a unified system. For instance, FPMC
s one of the pioneering works in the literature which fuse MF and MC into one model in order to learn the both users’ long- and
hort-term preferences (Rendle et al., 2010). Soon after, Hierarchical Representation Model (HRM) is proposed by Wang et al. (2015)
hich non-linearly models both sequential behaviors and users’ general taste to make a better recommendation. While FPMC and
RM have exploited user long-term preferences to improve the performance of sequential recommenders, CoFactor benefits from

ntegrating a co-occurrence item-to-item matrix into an MF model (Liang, Altosaar, Charlin, & Blei, 2016). BINN which is proposed
y Li et al. (2018), is another attempt in unifying both types of users’ preferences. The authors have stated that different types
f users’ actions (e.g., browse, click, collect, cart, and purchase) need to be treated differently. Their proposed model consists of
wo main components: Neural Item Embedding and Discriminative Behaviors Learning. At first component, BINN tries to find the
tems’ similarities by analyzing users’ sequential behaviors. While at second component, two alignments Session Behaviors Learning
SBL) and Preference Behaviors Learning (PBL) are introduced to learn discriminative behaviors (Li et al., 2018). Although BINN
an record a significant improvement over several state-of-the-art models, it uses LSTM for discriminative behaviors learning part,
hich may limit the performance of their recommender system as it may not be able to capture the dynamic property of users’
references. Moreover, BINN only considers purchase behavior for modeling users’ historical preferences. This may not only cause
n losing some useful information by exploiting other types of users’ behaviors (e.g., click, add to cart, and etc.), but also may fail
o learn latent users’ purposes which is hidden in a collection of successive user–item interaction

Our model falls under this category and the difference of our method over the existing works can be seen in three different
spects. First, the main purpose of a user’s shopping behavior is ignored in most of the current unified recommenders, which in turn
ay lead to performance degradation as it plays an important role in the user’s decision-making. Second, current methods mostly

onsider the same informativeness for clicked items in the sequence of user–item interaction, which may result in uncompleted
xploited short-term users’ preferences. Third, we propose to use a PSAU component to apply in both long-and short term interacted
tem set in order to dynamically recognize important items for recommendation based on user preferences.

. Proposed methodology: Convolutional attention network

Before introducing the details of our proposed model, we first define and formulate the research problem and basic concepts
nd then we present the optimization procedures.

.1. Notations and problem formulation

In this section, we investigate the next-item recommendation problem with implicit feedback data. Let us consider 𝑈 =
{𝑢1, 𝑢2,… , 𝑢

|𝑢|} as the user set and 𝑉 = {𝑣1, 𝑣2,… , 𝑣
|𝑣|} as the item set, where |𝑢| and |𝑣| are the total number of users and items,

espectively. For each user 𝑢, we define 𝐺𝑢 = {𝑆𝑢
1 , 𝑆

𝑢
2 ,… , 𝑆𝑢

𝑇 } as her/his transaction history, where 𝑇 is the total number of sessions
nd each session 𝑆𝑢

𝑡 ⊆ 𝑉 (𝑡 ∈ [1, 𝑇 ]), where 𝑆𝑢
𝑡 represents a set of interacted items for users 𝑢 at time step 𝑡. We denote 𝑆𝑢

𝑡 as
he short-term preference of user 𝑢 (i.e., her/his sequential behavior) at specific time step 𝑡. In addition to short-term preference,
ong-term preference of user 𝑢 is also important for identifying items that users will interact in the near future. Therefore, we consider
𝑢
𝑡−1 =

⋃𝑡−1
𝑡=1 𝑆

𝑢
𝑡 to reflect the long-term preference of user 𝑢 (i.e., general preference), where 𝐺𝑢

𝑡−1 is a set of interacted item sets
efore time step 𝑡. For the rest of this paper, we call 𝐺𝑢

𝑡−1 and 𝑆𝑢
𝑡 as the long- and short-term interacted item sets regarding time

tep 𝑡, respectively. Given user 𝑢 transaction history 𝐺𝑢, we aim to predict the next items which the user will likely purchase by
earning her/his long- and short-term preferences.

.2. Modeling and learning

The framework of CAN is illustrated in Fig. 1. As shown in Fig. 1, our proposed model consists of two main modules: (1) the
urpose encoder and (2) the preference encoder. The first module aims to learn the main purpose of the long-term interacted item
et for the users. It takes a set of user–item interactions in the long-term item set and embeds them into low-dimensional vector
epresentations, and then these vectors are passed to a CNN network to effectively capture the local contextual information of
he sequence in order to identify a user’s main purpose. Then, we propose to use a Purpose-Specific Attention Unit (PSAU) to
ifferentially attend to the users’ main purposes. The reason behind applying PSAU is that different users may have different purposes
f buying the same items. For instance, both users a and b buy item i, while user a buys this item as a souvenir for her friend, but
ser b is interested in this item for herself. Then, we propose to use a Purpose-Specific Attention Unit (PSAU) to differentially attend
o the users’ main purposes. The reason behind applying PSAU is that different users may have different purposes of buying the same
tems. For instance, both users a and b buy item i, while user a buys this item as a souvenir for her friend, but user b is interested
n this item for herself. Thus, we propose to use PSAU in order to incorporate the informativeness of purchasing the same items for
ifferent users. The next module is (2) the preference encoder, which aims to learn the users’ current preferences. The same user may
ave different preferences and each item may be more or less informative for that specific preference. Hence, PSAU is also applied
4

ere to discriminate each item informativeness.
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Fig. 1. The architecture of CAN, which consists of two main modules purpose encoder and preference encoder.

3.3. Purpose encoder

Our purpose encoder module has three core components: (i) embedding look-up, (ii) convolutional neural network and (iii)
Purpose-Specific Attention Unit (PSAU). Usually users’ decision-making process consists of two sequential vital steps, namely, users’
main purposes and users’ preferences. Normally, people start shopping with an intention and then view different items until they
find interesting items that satisfy their preferences. In this block, we aim to first convert a session of items into a sequence of low-
dimensional dense vectors. Then, we use a convolutional neural network for capturing local information. Since local contexts within
a set of interacted items may imply a user’s purpose. For instance, Julia wants to have a Halloween party. She goes to a shopping
and puts a set of {hanging ghost, pumpkin, lollipop, plastic blood bag} together. In this collection of items, the local combination of the
‘‘hanging ghost’’, and ‘‘plastic blood bag’’ may be more important to show the user’s main intention of this shopping. Therefore, we
use a CNN network here to learn contextual representations of a set of items. Finally, at this block, PSAU unit is applied to distinguish
the level of informativeness of different items in revealing the users’ motivations of purchasing a set of items together. The reason
behind using PSAU unit in purpose encoder is that different items may have different level of contributions in presenting a user’s
main purpose, and the same words may have different informativeness for the recommendation of different users. Based on this
observation, we need to identify important items in demonstrating shopping’s purpose of different users, and thus the personalized
attention-based network is proposed to apply in this block.

Embedding Look-up. First, we use embedding look-up to embed user and item IDs (i.e., one-hot representations) into two
continuous low-dimensional spaces, where 𝑒𝑖 represents the item embedding vector of item 𝑖, and 𝑢𝑗 denotes the user embedding
vector of user 𝑗. The embedding matrix is denoted by 𝐸 = [𝑒1, 𝑒2,… , 𝑒𝑖], 𝐸 ∈ 𝑅|𝑉 |×𝐷, where 𝐷 and |𝑉 | represent the embedding
dimension and the total number of items, respectively. The matrix 𝑈 ∈ 𝑅𝐷×|𝑈 | is the user embedding matrix, where 𝑢𝑗 denotes the
user embedding vector of user 𝑗.

Convolutional Neural Network (CNN). Second, we employ CNN to learn contextual information of user–item interactions (Kim,
2014). CNN is one of the deep learning techniques with a great capability in capturing local information (Wu, Wu, Liu et al., 2019).
Therefore, we use CNN to capture the user’s main purpose in the long-term item set. Next, we perform a convolution operator on
the matrix 𝐸 as the concatenation of the items’ embedding vectors. Let 𝐾𝑤 ∈ 𝑅𝑁𝑓×(2𝐾+1)𝐷, and 𝑏𝑤 ∈ 𝑅𝑁𝑓 denote the parameters of
CNN network, in which 𝐾𝑤 is the kernel and 𝑏𝑤 represents the bias parameters. 𝑁𝑓 is the number of CNN filters, and 2𝐾 + 1 is the
window size of CNN. Then, 𝑐𝑖 illustrates the contextual representation of item 𝑖:

𝑐𝑖 = 𝑅𝑒𝐿𝑈 (𝐾𝑤 × 𝑒
⌊𝑖−𝑘⌋∶⌊𝑖+𝑘⌋ + 𝑏𝑤), (1)

where 𝑒
⌊𝑖−𝑘⌋∶⌊𝑖+𝑘⌋ ∈ 𝐺𝑢

𝑡−1 is the combination of the embedding vectors of items from position ⌊𝑖 − 𝑘⌋ to position ⌊𝑖 + 𝑘⌋. We use ReLU
as our non-linear activation function.

Purpose-Specific Attention Unit (PSAU). The last component in the purpose encoder is the Purpose-Specific Attention Unit
(PSAU), to differentially attend to important items according to user purposes. In a sequence of user–item interactions, each item
may be more or less informative for learning users’ purpose representation. For instance, imagine {pizza bread, pepperoni, cheese}
as a set of purchased items together for making a pizza. In this shopping basket, pizza bread is more informative to represent the
users’ purposes than cheese. Furthermore, different users may purchase the same items for a different purpose. Therefore, based
on these observations, identifying the contributions of different items for different users play an important role in personalized
recommendation. However, most of the current approaches use a classic attention network which computes attention score as
a weighted sum over the embeddings of items and a fixed attention query vector, ignoring users’ main purposes. To learn the
5
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informativeness of each item for different users, we propose to employ the PSAU cell to identify the most informative items related
to the users’ main purpose within a user–item interaction sequence. PSAU first takes the embedded user-ID vector 𝑢′𝑗 ∈ 𝑅𝐷𝑢 , where
𝐷𝑢 is the user embedding dimension. Then, we use a dense non-linear layer to transform the embedding vector 𝑢′𝑗 to the purpose-level
user preference vector 𝑝𝑗 , which is formulated as:

𝑝𝑗 = 𝑅𝑒𝐿𝑈 (𝑊1 × 𝑢
′
𝑗 + 𝑏1), (2)

where 𝑊1 ∈ 𝑅𝐷𝑢×𝐷𝑝 and 𝑏1 ∈ 𝑅𝐷𝑝×1 are model parameters, and 𝐷𝑝 is the preference vector dimension. Next, we denote 𝛼𝑗 as the
attention score of item 𝑗, which can extract the level of informativeness of each item according to the users’ main purpose. The
attention score 𝛼𝑗 , is calculated based on the interaction between the user preference vector and the contextual item representations,
which is shown as :

𝑎𝑖 = 𝑐𝑇𝑖 𝑡𝑎𝑛ℎ(𝑊2 × 𝑝𝑗 + 𝑏2), (3)

𝛼𝑖 =
𝑒𝑥𝑝(𝑎𝑖)

∑

𝑖∈𝐺𝑢
𝑡−1

𝑒𝑥𝑝(𝑎𝑖)
, (4)

here 𝑊2 ∈ 𝑅𝐷𝑝×𝑁𝑓 and 𝑏2 ∈ 𝑅𝑁𝑓×1 are model parameters. Next, the user’s main purpose representation 𝑚𝑖 is modeled as a weighted
sum of the contextual representation of item 𝑖 with their attention scores. Formally, this representation can be formulated as follows:

𝑚𝑖 =
∑

𝑖∈𝐺𝑢
𝑡−1

𝛼𝑖𝑐𝑖 (5)

.4. Preference encoder

As it is clear from Fig. 1, PSAU is also employed in the preference encoder module in order to learn an informative user short-term
reference representation. Different users may have different preferences by clicking on the same items and different items are more
r less informative for modeling user preferences. Hence, we use PSAU here as well to model the different informativeness of the
ame items for different users. Hence, we first take the item embedding 𝑒𝑖 ∈ 𝑆𝑢

𝑡 in a short-term interacted item set to model a user
reference vector 𝑝𝑑 , which is shown as:

𝑝𝑑 = 𝑅𝑒𝐿𝑈 (𝑊3 × 𝑒𝑖 + 𝑏3), (6)

where 𝑊3 ∈ 𝑅𝐷𝑢×𝐷𝑞 and 𝑏3 ∈ 𝑅𝐷𝑞×1, and 𝐷𝑞 is the preference query size. Next, the attention weight 𝛼′𝑖 represents the level of
informativeness of item 𝑖 in the short-term user preference, which can be computed by the interactions between the user’s purpose
representation and user preference vector. Then, the softmax function is used to normalize the attention weight, which is calculated
as follows:

𝑎′𝑖 = 𝑚𝑇
𝑖 𝑡𝑎𝑛ℎ(𝑊4 × 𝑝𝑑 + 𝑏4), (7)

𝛼′𝑖 =
𝑒𝑥𝑝(𝑎𝑖)

∑

𝑖∈𝑆𝑢
𝑡
𝑒𝑥𝑝(𝑎𝑖)

(8)

where 𝑊4 ∈ 𝑅𝐷𝑞×𝑁𝑓 and 𝑏4 ∈ 𝑅𝑁𝑓×1 are model parameters. Finally, the contextual user representation 𝑢𝑗 is computed as follows:

𝑢𝑗 =
∑

𝑖∈𝑆𝑢
𝑡

𝑎′𝑖𝑚𝑖 (9)

.5. Prediction layer

After the final user representation 𝑢𝑗 has been learned, we calculate the inner product of it and item representation 𝑣𝑖 in order
o compute the user preference score 𝑅𝑖𝑗 as follows:

𝑅𝑖𝑗 = 𝑢𝑗𝑣𝑖 (10)

Next, followed by Rendle et al. (2009), we utilize a pair-wise loss function in order to train our model. We aim to provide
ranked list of the next items to be recommended, where observed items should have higher score than unobserved ones. Let
= {(𝑢, 𝑣𝑖, 𝑣𝑗 ) ∶ 𝑢 ∈ 𝑈, 𝑣𝑖 ∈ 𝐺𝑢, 𝑣𝑗 ∈ 𝑉 ∕𝐺𝑢} denote the set of pair-wise training instances. Then we train our model by maximizing
posterior (MAP) as follows:

argmin
𝛩

∑

(𝑢,𝑣𝑖 ,𝑣𝑗 )∈𝐷
− ln 𝜎(𝑅𝑢

𝑖 − 𝑅𝑢
𝑗 ) + 𝜆𝑢𝑣‖𝜃𝑢𝑣‖

2 + 𝜆𝑎‖𝜃𝑎‖
2 (11)

here 𝜃𝑢𝑣 ={U, V} is the set of user and item embedding parameters, 𝜃𝑎 = {𝑊1,𝑊2,𝑊3,𝑊4} is the set of weights of attention
6

etworks, 𝜆𝑢𝑣 and 𝜆𝑎 are the regularization parameters, and 𝜎 is a logistic function.
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Table 1
Statistics of our datasets.
Dataset Users Items Sessions length Training sessions Testing sessions Interactions

Tmall 20,716 25,143 2.81 71,998 3565 85,432
Gowalla 15,254 13,052 2.99 128,115 3611 94,654

4. Experiments

In this section, we present experimental evaluation of proposed recommender and compare the performance with state-of-the-art
aseline methods such as BPR (Rendle et al., 2009),FOSSIL (He & McAuley, 2016), Caser (Tang & Wang, 2018), FPMC (Rendle et al.,
010), HRM (Wang et al., 2015), GRU4Rec (Hidasi, Karatzoglou et al., 2016), NARM (Li et al., 2017), SHAN (Ying et al., 2018),
nd MEANS (Hu et al., 2019).

.1. Datasets and experimental setting

We conduct our experiments on two widely used datasets Tmall1 and Gowalla2 The Tmall dataset records the user’s consumption
nd browsing behavior during the user’s shopping process. It has too many interactions of 424,170 users on 1,090,390 items within
ix months. In this dataset there are four kinds of activities: click, collect, add-to-cart and purchase. Following the settings in Ying
t al. (2018) and Hu et al. (2017) we only consider the users’ purchase activities in our experiment. The Gowalla aggregates the users’
heck-in information from the location-based social networking website, Gowalla from February 2009 to October 2010. Gowalla
onsists of 6,442,890 number of total check-ins, where each record consists of user id, timestamp, GPS location and POI id. We
ollow the same preprocessing procedure as in SHAN (Ying et al., 2018) and we treat user transactions or check-ins in one day as a
ession. Sessions with only one item and items with less than 20 time observations are removed from datasets. We randomly select
he sessions in the last week as a test set, and the rest are used for training. In addition, we randomly keep one item in each session
s the next item to be predicted. The statistics of the datasets after the preprocessing stage are illustrated in Table 1.
Baselines: To demonstrate the effectiveness of our method, we compare it with the following representative state-of-the-art

ecommender systems built on various frameworks including RNN, CNN, attention models and memory networks:

∙ TOP: This method identifies the top popular items based on the number of occurrences in each session in the training data,
and then recommends those items in test data.

∙ BPR (Rendle et al., 2009): This is a state-of-the-art baseline for binary implicit feedback through pairwise learning to rank.
∙ FOSSIL (He & McAuley, 2016): This method integrates factored item similarity with a Markov chain to model the user’s long-

and short-term preferences.
∙ Caser (Tang & Wang, 2018): This is a state-of-the-art model, which uses CNN for sequence embedding.
∙ FPMC (Rendle et al., 2010): This is a combination of MF and MC model in order to learn user preferences.
∙ HRM (Wang et al., 2015): This model non-linearly learns both sequential behavior and users’ general taste to make a better

recommendation.
∙ GRU4Rec (Hidasi, Karatzoglou et al., 2016): This is a state-of-the-art sequential recommender, which applies modern recurrent

neural network (GRU) to be able to model the whole session.
∙ NARM (Li et al., 2017): This is a sequential recommender which combines a recurrent neural network with an attention

network.
∙ SHAN (Ying et al., 2018): This is a state-of-the-art sequential recommender, which employs a two-layer hierarchical attention

network to learn long- and short-term preference.
∙ MEANS (Hu et al., 2019): This model first operates a max-pooling technique on the most recent sessions and the results

are stored into an external memory. Then the attention mechanism is applied to learn long-term user preference. Finally, at
prediction layer a recommendation is made by learning a mixture of long- and short-term preference.

Evaluation Metrics. Similar to the previous work (Ying et al., 2018), we also adopt several widely used evaluation metrics AUC,
ecall@N, and Precision@N to evaluate the performance of our model, where 𝑁 ∈ {5, 10, 20}. Recall measures the proportion of

he right ranked items overall top-k recommendation items in a list, while Precision measures the proportion of results which are
elevant. Different from both above metrics, AUC computes how highly predicted items are ranked over all items. The larger metric
cores show better model performance. Due to the space limitation, we name Recall and Precision as Re and Pre in the rest of the
aper, respectively.
Parameter Settings. We set the item embedding and user embedding dimensions, 𝐷, to 100, which is a trade-off between

he performance of recommendation and the computation cost for both datasets. Similar to the Wu, Wu, An et al. (2019), we set
he number of CNN kernels 𝑁𝑓 and the window size to 400 and 3, respectively. We apply dropout strategy (Srivastava, Hinton,
rizhevsky, Sutskever, & Salakhutdinov, 2014) to each layer of CNN in order to avoid overfitting. The dropout rate is set to 0.2, the

1 https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
2 https://snap.stanford.edu/data/loc-gowalla.html
7
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Fig. 2. Impact of different embedding dimension on Gowalla and Tmall datasets. In each figure, we have shown the impact of different embedding sizes on
three evaluation metrics AUC, Precision and Recall.

Table 2
Impact of different regularization at Recall@20.
Dataset 𝜆𝑢𝑣 𝜆𝛼 0 1 10 50

Tmall
0.01 0.085 0.126 0.143 0.146
0.001 0.079 0.124 0.138 0.139
0.0001 0.073 0.111 0.129 0.133

Gowalla
0.01 0.250 0.344 0.355 0.372
0.001 0.321 0.397 0.423 0.432
0.0001 0.342 0.421 0.452 0.461

Table 3
Impact of different session lengths.

Tmall

Methods AUC Re@20 Pre@20

CAN-S 0.745 0.196 0.213
CAN-L 0.889 0.221 0.282

Gowalla

Methods AUC Re@20 Pre@20

CAN-S 0.814 0.219 0.263
CAN-L 0.916 0.298 0.342

batch size is empirically set to 50, the sizes of both the user purpose query 𝐷𝑝 and preference query 𝐷𝑞 are set to 200. The learning
rate 𝜂 is 0.01. Items and users dimensions are randomly initialized with normal distribution 𝑁(0, 0.01) and then learned during the
training process. The attention parameters are initialized with the 𝑈 (−

√

3
𝑘 ,
√

3
𝑘 ).

4.2. Impact of hyper-parameters

In this subsection, we investigate the impact of hyper-parameters on the performance of CAN. We consider 𝜆𝑢𝑣 = {0.01, 0.001,
0.0001} as our user and item embedding regularization, and 𝜆𝑎 = {0, 1, 10, 50} as our attention network regularization. Based
on Table 2, the performance of CAN is gradually increased when 𝜆𝑎 > 0 in both Tmall and Gowalla datasets, which indicates the
effectiveness of applying attention mechanism in our model. We also test the impact of different embedding dimensions, 𝐷, related
to the user, item and hidden layer parameters in attention network. As it is clear from Fig. 2, the higher embedding dimension
can result in better AUC, Recall@20, and Precision@20 as it can learn more latent features form user and item as well as their
interactions through attention mechanism. From this figure, a slight improvement is recorded while the embedding dimension is
increased from 100, and thus we set the embedding size to 100.

4.3. Impact of different sessions lengths

We examine the performance of CAN under different sequence lengths as the local features captured by CNN network may be
different. Table 3 demonstrates the results of our investigation. We consider sessions with less than 3 items as a short session and
8
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Table 4
Impcat of CAN modules.

Tmall

Methods AUC Re@20 Pre@20

CAN-PurEn 0.817 0.256 0.278
CAN-PreEn 0.781 0.210 0.264
CAN 0.915 0.317 0.322

Gowalla

Methods AUC Re@20 Pre@20

CAN-PurEn 0.924 0.284 0.312
CAN-PreEn 0.899 0.256 0.299
CAN 0.989 0.392 0.401

Fig. 3. Impact of PSAU on Gowalla and Tmall datasets. W/O attention means no attention mechanism is used.

treat sessions with more than 3 items as a long session. The percentage of short and long sessions are 90%, 10% and 83%, 17%
in both Tmall and Gowalla datasets, respectively. In Table 3, CAN-S refers to a situation where short sessions are modeled, while
only long sessions are considered in CAN-L. From this table, we can have several observation. First, the performance of both CAN-L
and CAN-S are too close. Second, CAN-L performs slightly better than CAN-S with respect to AUC, Pre@20, and Re@20 in both
Tmall and Gowalla datasets. This is probably because of capturing the more contextual features through long sessions. Third, the
performance of CAN-L is still too close to the overall performance of our model.

4.4. Impact of CAN modules

In this experiment, we aim to test the performance of two modules, i.e., purpose encoder and preference encoder in Table 4.
CAN-PurEn means only user purpose module is used, while CAN-PreEn only considers a user’s preference. According to Table 4,
we can have several observations. First, the CAN-PurEn can effectively improve the performance of our approach, as it can help
our model CAN to achieve the higher performance compared to the state-of-the-art models. This may be due to the capturing the
local patterns in a long-term interacted item set through CNN and highlighting the important items according to user preferences
by PSAU cell. Second, the CAN-PreEn is also another effective module in our model, which indicates a significant improvement in
the performance of CAN. This is probably because items in a short-term interacted item set usually have different informativeness
and recognizing the important items can help better modeling user representations. Third, generally CAN performs better than two
single modules. It demonstrates that combining these two modules is helpful in learning user representation and predicting next
items.

4.5. Impact of PSAU component

In order to verify the effectiveness of the PSAU component in our model, we compare the performance of our model in the
presence and absence of the PSAU cell. As it is clear from Fig. 3, we have different findings: (1) applying attention mechanism
can show better performance compared to the model without attention. The reason behind this observation may be because of
assigning different weight to different items, and attention mechanism can discover the important items in a user–item interaction;
(2) our model CAN consistently outperforms the model without attention mechanism and vanilla attention. The reason behind
this observation may be because of assigning different score to the same items for modeling different users, while vanilla attention
assigns a fixed score and thus is not able to differentiate the importance of the same items in modeling the different user preferences.
Attention mechanism pays same attention to each item by computing the attention weights only based on the input representation
9
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d

Table 5
The performance of different methods regarding the evaluation metrics in Tmall dataset.
Datasets Tmall

Metrics Re5 Re10 Re20 Pre5 Pre10 Pre20 AUC

Top 0.021 0.052 0.084 0.051 0.062 0.074 0.392
BPR 0.024 0.090 0.122 0.062 0.069 0.074 0.481
Fossil 0.110 0.120 0.125 0.083 0.088 0.092 0.691
Caser 0.041 0.049 0.052 0.100 0.108 0.115 0.701
FPMC 0.050 0.055 0.061 0.118 0.125 0.130 0.742
HRM 0.060 0.065 0.070 0.121 0.129 0.133 0.751
GRU4Rec 0.062 0.065 0.069 0.138 0.145 0.149 0.762
NARM 0.063 0.068 0.073 0.141 0.149 0.159 0.781
SHAN 0.071 0.076 0.079 0.155 0.160 0.166 0.789
MEANS 0.074 0.079 0.082 0.163 0.172 0.177 0.790

CAN 0.201 0.278 0.317 0.200 0.260 0.322 0.915

Table 6
The performance of different methods regarding the evaluation metrics in Gowalla dataset.
Datasets Gowalla

Metrics Re5 Re10 Re20 Pre5 Pre10 Pre20 AUC

Top 0.038 0.048 0.059 0.061 0.066 0.071 0.711
BPR 0.069 0.074 0.081 0.077 0.082 0.089 0.800
Fossil 0.215 0.298 0.312 0.091 0.095 0.099 0.810
Caser 0.075 0.083 0.089 0.114 0.119 0.124 0.815
FPMC 0.115 0.129 0.138 0.127 0.133 0.142 0.820
HRM 0.119 0.125 0.145 0.150 0.157 0.161 0.824
GRU4Rec 0.121 0.135 0.141 0.155 0.160 0.165 0.828
NARM 0.130 0.136 0.140 0.156 0.159 0.163 0.830
SHAN 0.135 0.140 0.144 0.163 0.169 0.175 0.832
MEANS 0.142 0.150 0.158 0.170 0.175 0.180 0.840

CAN 0.250 0.312 0.392 0.360 0.399 0.401 0.989

sequence via a fixed vector, and thus the user preferences are not incorporated. While in contrast to vanilla attention, the attention
scores in PSAU are computed based on the interaction between the user preference vector and the contextual item representations.
Therefore, our model can highlight important items in user’s purpose according to her/his personal preference, which in turn can
help in better user representation learning. Based on these results, we can validate the effectiveness of the PSAU cell in our approach.

4.6. Overall performance comparison

In this subsection, we compare the results of our model with the other state-of-the-art approaches in both Tmall and Gowalla
atasets, which is summarized in Tables 5 and 6. This table illustrates that:

1. According to Tables 5 and 6, where the best result in each row is highlighted in boldface, our proposed model significantly
and consistently outperforms all state-of-the-art models in terms of Precision@N, Recall@N and AUC in different 𝑁𝑠 in both
Tmall and Gowalla datasets. Specifically, compared to MEANS which is the best baseline in terms of all evaluation metrics,
CAN has shown 14% and 16% improvements with respect to the AUC on Tmall and Gowalla datasets, respectively.This
indicates the effectiveness of CAN, which can recognize important items in users’ purposes according to their preferences
through CNN network and PSAU component.

2. Deep learning methods using attention network (CAN, MEANS, SHAN, and NARM) show better performance compared with
the methods without attention mechanism. The reason may be due to the capability of attention mechanism in recognizing
the most important items in user and item interaction.

3. Overall, all unified approaches (CAN, MEANS, SHAN, NARM, HRM, FPMC, and Fossil) outperform the best general- and
sequential recommenders such as BPR and GRU4Rec, respectively.

4. Among all unified approaches, after CAN, MEANS outperforms others like SHAN, NARM, HRM, FPMC, and Fossil. While the
performance of MEANS and SHAN are too close, MEANS can achieve around 5% and 9% improvement compared to SHAN
at Recall@20 in Tmall and Gowalla datasets, respectively. This indicates the effect of using external memory to store long-
term user and item interaction after a max-pooling operation. However, MEANS cannot effectively model the local contexts
in the long term user preference, and is not able to find important items for revealing purposes and preferences of different
users. Moreover, although MEANS uses attention mechanism, it cannot model the informativeness of different items. Different
from all mentioned approaches, our proposed model can dynamically find important items according to user purposes and
preferences.
10
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5. Conclusion

In this paper, we propose a novel unified recommendation approach which consists of a Purpose-Specific Attention Unit (PSAU).
n our approach, CAN, we learn the users’ purposes in long-term interacted item set by using CNN. We use PSAU cell to recognize
mportant items in users’ purposes according to their preferences. Since same items may have different informativeness for different
sers, we use PSAU in short-term interacted item set as well to model users’ preferences. The extensive experimental results on the
eal-world datasets validate the effectiveness of our approach compared to other state-of-the-art methods. As our future work, we
im to take contextual information into sequential recommenders in order to make a more accurate recommendation. Furthermore,
odeling different heterogeneous actions can be another direction for our future work.
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