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Abstract

The paper is concerned with the linkedness of the graphs of cubical polytopes.
A graph with at least 2k vertices is k-linked if, for every set of k disjoint pairs of
vertices, there are k vertex-disjoint paths joining the vertices in the pairs. We say
that a polytope is k-linked if its graph is k-linked.

We establish that the d-dimensional cube is b(d + 1)/2c-linked, for every d 6= 3;
this is the maximum possible linkedness of a d-polytope. This result implies that,
for every d > 1, a cubical d-polytope is bd/2c-linked, which answers a question of
Wotzlaw (Incidence graphs and unneighborly polytopes, Ph.D. thesis, 2009).

Finally, we introduce the notion of strong linkedness, which is slightly stronger
than that of linkedness. A graph G is strongly k-linked if it has at least 2k + 1
vertices and, for every vertex v of G, the subgraph G− v is k-linked. We show that
cubical 4-polytopes are strongly 2-linked and that, for each d > 1, d-dimensional
cubes are strongly bd/2c-linked.
Mathematics Subject Classifications: 52B05, 52B12
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1 Introduction

A (convex) polytope is the convex hull of a finite set X of points in Rd; the convex hull of
X is the smallest convex set containing X. The dimension of a polytope in Rd is one less
than the maximum number of affinely independent points in the polytope. A polytope of
dimension d is referred to as a d-polytope.

A face of a polytope P in Rd is P itself, or the intersection of P with a hyperplane
in Rd that contains P in one of its closed halfspaces. Faces other than P are polytopes
of smaller dimension. A face of dimension 0, 1, and d− 1 in a d-polytope is a vertex, an
edge, and a facet, respectively. The graph G(P ) of a polytope P is the undirected graph
formed by the vertices and edges of the polytope.

This paper studies the linkedness of cubical d-polytopes, d-dimensional polytopes with
all their facets being cubes. A d-dimensional cube is the convex hull in Rd of the 2d vectors
(±1, . . . ,±1). By a cube we mean any polytope that is combinatorially equivalent to a
cube; that is, one whose face lattice is isomorphic to the face lattice of a cube.

Denote by V (X) the vertex set of a graph or a polytope X. Given sets A,B of vertices
in a graph, a path from A to B, called an A−B path, is a (vertex-edge) path L := u0 . . . un
in the graph such that V (L) ∩ A = {u0} and V (L) ∩ B = {un}. We write a − B path
instead of {a} −B path, and likewise, write A− b path instead of A− {b}.

Let G be a graph and X a subset of 2k distinct vertices of G. The elements of
X are called terminals. Let Y := {{s1, t1}, . . . , {sk, tk}} be an arbitrary labelling and
(unordered) pairing of all the vertices in X. We say that Y is linked in G if we can find
disjoint si − ti paths for i ∈ [1, k], where [1, k] denotes the interval 1, . . . , k. The set X
is linked in G if every such pairing of its vertices is linked in G. Throughout this paper,
by a set of disjoint paths, we mean a set of vertex-disjoint paths. If G has at least 2k
vertices and every set of exactly 2k vertices is linked in G, we say that G is k-linked. If
the graph of a polytope is k-linked we say that the polytope is also k-linked.

Unless otherwise stated, we use the graph theoretical notation and terminology from
[4], while the polytope theoretical notation and terminology from [22]. Moreover, when
referring to graph-theoretical properties of a polytope such as minimum degree, linkedness
and connectivity, we mean properties of its graph.

Linkedness is an attractive property of graphs. Being k-linked imposes a stronger
demand on a graph than just being k-connected. Let G be a graph with at least 2k
vertices, and let S := {s1, . . . , sk} and T := {t1, . . . , tk} be two disjoint k-element sets of
vertices in G. It follows that, if G is k-connected then the sets S and T can be joined
setwise by disjoint paths (namely, by k disjoint S − T paths); this is a consequence
of Menger’s theorem (Theorem 13). And if G is k-linked then the sets can be joined
pointwise by disjoint paths.

From a structural point of view, linkedness guarantees the existence of many subdivi-
sions in a graph. A graph Y is a subdivision of a graph X if it can be obtained from X by
subdividing edges of X. The definition of k-linkedness yields that, if a graph is k-linked,
then it has a subdivision of every graph on k edges.

From an algorithmic point of view, linkedness is closely related to the classical disjoint
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paths problem [15]: given a graph G and a set Y := {{s1, t1}, . . . , {sk, tk}} of k pairs of
terminals in G, decide whether or not Y is linked in G. A natural optimisation version
of this problem is to find the largest subset of the pairs so that there exist disjoint paths
connecting the selected pairs. The disjoint paths problem has found many applications in
the field of transportation networks and computer science in general [7, 8]. It is a special
case of a multicommodity flow problem where there exist k different commodities that need
to go from the sources s1, s2, . . . , sk to t1, t2, . . . , tk; for information on multicommodity
flows consult [10], and for further information on the disjoint paths problem consult [8]
and the references therein.

All the 2-linked graphs have been characterised [17, 19]. In the context of polytopes,
one consequence is that, with the exception of simplicial 3-polytopes, no 3-polytope is
2-linked; a simplicial polytope is one in which every facet is a simplex. Another conse-
quence is that every 4-polytope is 2-linked. We provide new proofs of these two results:
Corollary 5 and Proposition 6.

There is a linear function f(k) such that every f(k)-connected graph is k-linked, which
follows from works of Bollobás and Thomason [2]; Kawarabayashi, Kostochka, and Yu [9];
and Thomas and Wollan [18]. In the case of polytopes, Larman and Mani [11, Thm. 2]
proved that every d-polytope is b(d + 1)/3c-linked, a result that was slightly improved
to b(d + 2)/3c in [20, Thm. 2.2]. There are d-polytopes that are d-connected but not
(d+ 1)-connected, and so b(d+ 1)/2c is an upper bound for the linkedness of d-polytopes.

Apart from the work of Larman and Mani [11], the study of linkedness in graphs
of polytopes has been motivated by a problem in the first edition of the Handbook of
Discrete and Computational Geometry [6, Problem 17.2.6]. The problem asked whether
or not every d-polytope is bd/2c-linked. This question had already been answered in
the negative by Gallivan [5] in the 1970s with a construction of a d-polytope that is not
b2(d + 4)/5c-linked. A weak positive result however follows from [18]: every d-polytope
with minimum degree at least 5d is bd/2c-linked.

In view of [6, Problem 17.2.6] and the negative result of Gallivan [5], researchers
have focused efforts on finding families of d-polytopes that are bd/2c-linked. Simplicial
d-polytopes are b(d + 1)/2c-linked, for every d > 2 [11, Thm. 2]. In his PhD thesis [21,
Question 5.4.12], Wotzlaw asked whether every cubical d-polytope is bd/2c-linked. In
Theorem 24 we answer his question in the affirmative by establishing that a d-cube is
b(d + 1)/2c-linked, for every d 6= 3 (see Theorem 18). We remark that the linkedness
of the cube was first established in [12, Prop. 4.4] as part of a study of linkedness in
Cartesian products of graphs, but no self-contained proof was available.

In a subsequent paper [3], we prove a stronger result: a cubical d-polytope is b(d +
1)/2c-linked, for every d 6= 3; which is best possible. In anticipation of this result,
in Proposition 27 we prove that certain cubical d-polytopes that are embedded in the
(d+ 1)-cube are b(d+ 1)/2c-linked, for every d > 3.

Let X be a set of vertices in a graph G. Denote by G[X] the subgraph of G induced
by X, the subgraph of G that contains all the edges of G with vertices in X. Write G−X
for G[V (G) \X]. If X = {v}, then we write G− v instead of G− {v}.

Finally, we introduce the notion of strong linkedness, a property marginally stronger
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than linkedness. We say that a graph G is strongly k-linked if it has at least 2k+1 vertices
and, for every vertex v of G, the subgraph G − v is k-linked. We show that cubical 4-
polytopes are strongly 2-linked and that, for each d > 1, d-dimensional cubes are strongly
bd/2c-linked.

2 Preliminary results

This section groups a number of results that will be used in later sections of the paper.
Propositions 4 and 6 follow from the characterisation of 2-linked graphs carried out

in [17, 19]. Both propositions also have proofs stemming from arguments in the form of
Lemma 1; for the sake of completeness we give such proofs.

Lemma 1 ([16, Thm. 3.1]). Let P be a d-polytope, and let f be a linear function on Rd

satisfying f(x) > 0 for some x ∈ P . If u and v are vertices of P with f(u) > 0 and
f(v) > 0, then there exists a u − v path x0x1 . . . xn with x0 = u and xn = v such that
f(xi) > 0 for each i ∈ [1, n− 1].

We state Balinski’s theorem on the connectivity of polytopes.

Theorem 2 (Balinski [1]). For every d > 1, the graph of a d-polytope is d-connected.

A path in the graph is called X-valid if no inner vertex of the path is in X. The
distance between two vertices s and t in a graph G, denoted distG(s, t), is the length of a
shortest path between the vertices.

Definition 3 (Configuration 3F). Let X be a set of at least four terminals in a 3-cube
and let Y be a labelling and pairing of the vertices in X. A terminal of X, say s1, is in
Configuration 3F if the following conditions are satisfied:

(i) four vertices of X appear in a 2-face F of the cube;

(ii) the terminals in the pair {s1, t1} ∈ Y are at distance two in F ; and

(iii) the neighbours of t1 in F are all vertices of X.

Configuration 3F is the only configuration in a 3-cube that prevents the linkedness of
a pairing Y of four vertices, as Proposition 4 attests. A sequence a1, . . . , an of vertices in
a cycle is in cyclic order if, while traversing the cycle, the sequence appears in clockwise
or counterclockwise order. It follows that, if pairing Y := {{s1, t1} , {s2, t2}} of vertices
in a 3-cube appears in cyclic order s1, s2, t1, t2 in a 2-face, then all the vertices in Y are
in Configuration 3F.

Proposition 4. Let G be the graph of a 3-polytope and let X be a set of four vertices of
G. The set X is linked in G if and only if there is no facet of the polytope containing all
the vertices of X.
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Proof. Let P be a 3-polytope embedded in R3 and let X be an arbitrary set of four
vertices in G. We first establish the necessary condition by proving the contrapositive.
Let F be a 2-face containing the vertices of X and consider a planar embedding of G in
which F is the outer face. Label the vertices of X so that they appear in the cyclic order
s1, s2, t1, t2. Then the paths s1 − t1 and s2 − t2 in G must inevitably intersect, implying
that X is not linked.

Assume there is no 2-face of P containing all the vertices of X. Let H be a (linear)
hyperplane that contains s1, s2 and t1, and let f be a linear function that vanishes on H
(this may require a translation of the polytope). Without loss of generality, assume that
f(x) > 0 for some x ∈ P and that f(t2) > 0.

First consider the case that H is a supporting hyperplane of a 2-face F . The subgraph
G(F )− {s2} is connected by Balinski’s theorem (Theorem 2), and so there is an X-valid
L1 := s1 − t1 path on G(F ). Then, use Lemma 1 to find an L2 := s2 − t2 path in which
each inner vertex has positive f -value. The paths L1 and L2 are clearly disjoint.

Now consider the case that H intersects the interior of P . Then there is a vertex in P
with f -value greater than zero and a vertex with f -value less than zero. Use Lemma 1 to
find an s1 − t1 path in which each inner vertex has negative f -value and an s2 − t2 path
in which each inner vertex has positive f -value.

The subsequent corollary follows at once from Proposition 4.
Corollary 5. A 3-polytope is 2-linked if and only if it is simplicial.

The same reasoning employed in the proof of the sufficient condition of Proposition 4
settles Proposition 6.
Proposition 6 (2-linkedness of 4-polytopes). Every 4-polytope is 2-linked.
Proof. Let G be the graph of a 4-polytope embedded in R4. Let X be a given set of four
vertices in G and let Y := {{s1, s2}, {t1, t2}} a labelling and pairing of the vertices in X.

Consider a linear function f that vanishes on a linear hyperplane H passing through
X. Consider the two cases in which either H is a supporting hyperplane of a facet F of
P or H intersects the interior of P .

Suppose H is a supporting hyperplane of a facet F . First, find an s1 − t1 path in the
subgraph G(F )−{s2, t2}, which is connected by Balinski’s theorem (Theorem 2). Second,
use Lemma 1 to find an s2 − t2 path that touches F only at {s2, t2}.

If instead H intersects the interior of P then there is a vertex in P with f -value greater
than zero and a vertex with f -value less than zero. Use Lemma 1 to find an s1 − t1 path
in which each inner vertex has negative f -value and an s2 − t2 path in which each inner
vertex has positive f -value.

3 d-cube

Consider the d-cube Qd. Let v be a vertex in Qd and let vo denote the vertex at distance
d from v, called the vertex opposite to v. Besides, denote by F o the facet disjoint from a
facet F of Qd; we say that F and F o is a pair of opposite facets.
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Figure 1: The 3-cube with a pair {F, F o} of opposite facets highlighted. (a) Examples of
the projection πF o for the pair {F, F o}. (b) The pair {F, FO} is not associated with the
set Z := {z1, z2, z3}. (c) The pair {F, FO} is associated with the set Z ′ := {z′1, z′2, z′3},
and {z′1, z′2} is an associating pair.

Definition 7 (Projection π). For a pair of opposite facets {F, F o} of Qd, define a pro-
jection πQd

F o from Qd to F o by sending a vertex x ∈ F to the unique neighbour xpF o of x in
F o, and a vertex x ∈ F o to itself (that is, πQd

F o (x) = x); write πQd
F o (x) = xpF o to be precise,

or write π(x) or xp if the cube Qd and the facet F o are understood from the context.

Definition 7 is exemplified in Fig. 1(a). We extend this projection to sets of vertices:
given a pair {F, F o} of opposite facets and a set X ⊆ V (F ), the projection Xp

F o or πQd
F o (X)

of X onto F o is the set of the projections of the vertices in X onto F o. For an i-face
J ⊆ F , the projection JpF o or πQd

F o (J) of J onto F o is the i-face consisting of the projections
of all the vertices of J onto F o. For a pair {F, F o} of opposite facets in Qd, the restrictions
of the projection πF o to F and the projection πF to F o are bijections.

Let Z be a set of vertices in the graph of a d-cubeQd. If, for some pair of opposite facets
{F, F o}, the set Z contains both a vertex z ∈ V (F )∩Z and its projection zpF o ∈ V (F o)∩Z,
we say that the pair {F, F o} is associated with the set Z in Qd and that {z, zp} is an
associating pair. Note that an associating pair can associate only one pair of opposite
facets. See Fig. 1(b)-(c).

The next lemma lies at the core of our methodology.

Lemma 8. Let Z be a nonempty subset of V (Qd). Then the number of pairs {F, F o} of
opposite facets associated with Z is at most |Z| − 1.

Proof. Let G := G(Qd) and let Z ⊂ V (Qd) with |Z| > 1 be given. Consider a pair {F, F o}
of opposite facets. Define a direction in the cube as the set of the 2d−1 edges between F
and F o; each direction corresponds to a pair of opposite facets. The d directions partition
the edges of the cube into sets of cardinality 2d−1. (The notion of direction stems from
thinking of the cube as a zonotope [22, Sec. 7.3])
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A pair of facets is associated with the set Z if and only if the subgraph G[Z] of G
induced by Z contains an edge from the corresponding direction.

If a direction is present in a cycle C of Qd, then the cycle contains at least two edges
from this direction. Indeed, take an edge e = uv on C that belongs to a direction between
a pair {F, F o} of opposite facets. After traversing the edge e from u ∈ V (F ) to v ∈ V (F o),
for the cycle to come back to the facet F , it must contain another edge from the same
direction. Hence, by repeatedly removing edges from cycles in G[Z] we obtain a spanning
forest of G[Z] that contains an edge for every direction present in G[Z]. As a consequence,
the number of such directions is at most the number of edges in the forest, which is upper
bounded by |Z| − 1. (A forest is a graph with no cycles.)

The relevance of the lemma stems from the fact that a pair of opposite facets {F, F o}
not associated with a given set of vertices Z allows each vertex z in Z to have “free
projection”; that is, for every z ∈ Z ∩ V (F ) the projection πF o(z) is not in Z, and for
z ∈ Z ∩ V (F o) the projection πF (z) is not in Z.

4 Connectivity of the d-cube

We next unveil some further properties of the cube that will be used in subsequent sections.
Given sets A,B,X of vertices in a graph G, the set X separates A from B if every

A − B path in the graph contains a vertex from X. A set X separates two vertices a, b
not in X if it separates {a} from {b}. We call the set X a separator of the graph. We
will also require the following three assertions.

Proposition 9 ([14, Prop. 1]). Every separator of cardinality d in Qd consists of the d
neighbours of some vertex in the cube.

A set of vertices in a graph is independent if no two of its elements are adjacent. Since
there are no triangles in a d-cube, Proposition 9 gives at once the following corollary.

Corollary 10. Every separator of cardinality d in a d-cube is an independent set.

Remark 11. If x and y are vertices of a cube, then they share at most two neighbours. In
other words, the complete bipartite graph K2,3 is not a subgraph of the cube; in fact, it
is not an induced subgraph of any simple polytope [13, Cor. 1.12(iii)].

5 Linkedness of the d-cube

In this section, we establish the linkedness of Qd (Theorem 18). We make heavy use of
Menger’s theorem [4, Thm. 3.3.1] henceforth, and so we remind the reader of the theorem
and one of one of its consequences.

Theorem 12 (Menger’s theorem, [4, Sec. 3.3]). Let G be a graph, and let A and B be
two subsets of its vertices. Then the minimum number of vertices separating A from B in
G equals the maximum number of disjoint A−B paths in G.
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Theorem 13 (Consequence of Menger’s theorem). Let G be a k-connected graph, and let
A and B be two subsets of its vertices, each of cardinality at least k. Then there are k
disjoint A−B paths in G.

Two vertex-edge paths are independent if they share no inner vertex.

Lemma 14. Let P be a cubical d-polytope with d > 4. Let X be a set of d+ 1 vertices in
P , all contained in a facet F . Let k := b(d+ 1)/2c. Arbitrarily label and pair 2k vertices
in X to obtain Y := {{s1, t1}, . . . , {sk, tk}}. Then, for at least k−1 of these pairs {si, ti},
there is an X-valid si − ti path in F .

Proof. If, for each pair in Y there is an X-valid path in F connecting the pair, we are
done. So assume there is a pair in Y , say {s1, t1}, for which an X-valid s1 − t1 path does
not exist in F . Since F is (d − 1)-connected, there are d − 1 independent s1 − t1 paths
(Theorem 13), each containing a vertex from X \{s1, t1}; that is, the set X \{s1, t1}, with
cardinality d− 1, separates s1 from t1 in F . By Proposition 9, the vertices in X \ {s1, t1}
are the neighbours of s1 or t1 in F , say of s1.

Take any pair in Y \{{s1, t1}}, say {s2, t2}. Observe that s2 and t2 are both neighbours
of s1. If there was no X-valid s2− t2 path in F , then, by Proposition 9, the set X \{s2, t2}
would separate s2 from t2 and would consist of the neighbours of s2 or t2 in F , say of
s2. But in this case, a vertex x in X \ {s1, s2, t1, t2}, which exists since |X| > 5, would
form a triangle with s1 and s2, a contradiction. See also Corollary 10. Since our choice
of {s2, t2} was arbitrary, we must have an X-valid path in F between any pair {si, ti} for
i ∈ [2, k].

For a set Y := {{s1, t1}, . . . , {sk, tk}} of pairs of vertices in a graph, a Y -linkage
{L1, . . . , Lk} is a set of disjoint paths with the path Li joining the pair {si, ti} for i ∈ [1, k].
For a path L := u0 . . . un we often write uiLuj for 0 6 i 6 j 6 n to denote the subpath
ui . . . uj. We are now ready to prove Theorem 18.

The definition of k-linkedness gives the following lemma at once.

Lemma 15. Let ` 6 k. Let X∗ be a set of 2` distinct vertices of a k-linked graph G, let
Y ∗ be a labelling and pairing of the vertices in X∗, and let Z∗ be a set of at most 2k− 2`
vertices in G such that X∗ ∩ Z∗ = ∅. Then there exists a Y ∗-linkage in G that avoids
every vertex in Z∗.

We require a result on strong linkedness. With Proposition 6 and Lemma 14 at hand,
we can verify that cubical 4-polytopes are strongly 2-linked.

Theorem 16 (Strong linkedness of cubical 4-polytopes). Every cubical 4-polytope is
strongly 2-linked.

Proof. Let G denote the graph of a cubical 4-polytope P embedded in R4. Let X be a set
of five vertices in G. Arbitrarily pair four vertices of X to obtain Y := {{s1, t1}, {s2, t2}}.
Let x be the vertex of X not being paired in Y . We aim to find two disjoint paths
L1 := s1 − t1 and L2 := s2 − t2 such that each path Li avoids the vertex x. The proof is
very similar to that of Propositions 4 and 6.
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Consider a linear function f that vanishes on a linear hyperplane H passing through
{s1, s2, t1, x}. Assume that f(y) > 0 for some y ∈ P and that f(t2) > 0.

Suppose first that H is a supporting hyperplane of a facet F of P . If t2 6∈ V (F ) (that
is, f(t2) > 0), then find an X-valid L1 := s1 − t1 path in F using the 3-connectivity of F
(Balinski’s theorem). Then use Lemma 1 to find an X-valid s2 − t2 path in which each
inner vertex has positive f -value. If instead t2 ∈ F , then X ⊂ V (F ) and Lemma 14 ensure
the existence of an X-valid si − ti path in F for some i = 1, 2, say for i = 1. Then use
Lemma 1 to find an X-valid s2 − t2 path in which each inner vertex has positive f -value.

So assume that H intersects the interior of P . Then there is a vertex in P with f -value
greater than zero and a vertex with f -value less than zero. In this case, use Lemma 1
to find an X-valid s1 − t1 path in which each inner vertex has negative f -value and an
X-valid s2 − t2 path in which each inner vertex has positive f -value.

Not every 4-polytope is strongly 2-linked. Take a two-fold pyramid P over a quad-
rangle Q. Then P is a 4-polytope on six vertices, say s1, s2, t1, t2, x, y. Let the sequence
s1, s2, t1, t2 appears in Q in cyclic order, and let the vertex x be in V (P ) \ V (Q). To see
that P is not strongly 2-linked, observe that, for every two paths s1− t1 and s2− t2 in P ,
they intersect or one of them contains x.

We continue with a simple lemma from [20, Sec. 3].

Lemma 17 ([20, Sec. 3]). Let G be a 2k-connected graph. If G contains a k-linked
subgraph, then G is k-linked.

We are now ready to establish the linkedness of the d-cube.

Theorem 18 (Linkedness of the cube). For every d 6= 3, a d-cube is b(d+ 1)/2c-linked.

Proof. The cases of d = 1, 2 are trivially true. For the remaining values of d, we proceed
by induction, with the base d = 4 given by Proposition 6. So assume that d > 5.

Let k := b(d+ 1)/2c, then 2k− 1 6 d. Let X be any set of 2k vertices, our terminals,
in the graph G of the d-cube Qd and let Y := {{s1, t1}, . . . , {sk, tk}} be a pairing and
labelling of the vertices of X. We aim to find a Y -linkage {L1, . . . , Lk} with Li joining
the pair {si, ti} for i = 1, . . . , k.

We first deal with the case of even d > 6. In this setting, d = 2k, and so G is 2k-
connected by Balinski’s theorem. Furthermore, by the induction hypothesis, the graph
G′ of every facet of Qd, a (d − 1)-polytope, is bd/2c-linked, namely k-linked. Lemma 17
now ensures that G is k-linked. As a consequence, for the rest of the proof, we focus on
the case of odd d > 5.

For a facet F of Qd, let F o denote the facet opposite to F .
We consider three scenarios: (1) every pair in Y lies at distance d in Qd; (2) all vertices

in X lie in a facet F of Qd; and (3) the remaining case: not every pair in Y lies at distance
d in Qd and not all vertices in X lie in the same facet of Qd. The three scenarios are
depicted in Fig. 2. It is helpful to have the following remark at hand.
Remark 19. Two vertices x and y lie in some facet of Qd if and only if dist(x, y) < d.
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Figure 2: The three scenarios of Theorem 18, exemplified in Q5. Two opposite facets
{F, F o} of Q5 are highlighted in grey. There is an edge between each vertex in F and the
“copy” of the vertex in F o; while some edges from F to F o are missing, we have depicted
enough edges to show how the other edges should be drawn. (a) First scenario: every
pair in Y is at distance 5. (b) Second scenario: every vertex in X lies in the facet F of
Q5. (c) Third scenario: not every pair in Y is at distance 5, namely s1 and t1, and not
every vertex in X lies in some facet of Q5, in this case distQ5(s1, t2) = 5 and so no facet
can contain both of them (Remark 19).

In the first scenario every pair in Y lies at distance d. From Lemma 8 it
follows that there exists a pair {F, F o} of opposite facets of Qd that is not associated with
Xs1 := X \ {s1}, since |X \ {s1}| 6 d and there are d pairs of the form {F, F o}. This
means that for every x ∈ Xs1 ∩ V (F ), πF o(x) 6∈ Xs1 and that for every x ∈ Xs1 ∩ V (F o),
πF (x) 6∈ Xs1 . Because every vertex in G is in either F or F o, we must have that, if some
si is in one of {F, F o}, then ti must be in the other (Remark 19). Thus, without loss of
generality, we can assume that s1, . . . , sk ∈ F o and t1, . . . , tk ∈ F .

From s1 6∈ F it now follows that πF (si) 6∈ X, for each i ∈ [2, k]. Besides, since the
pair {F, F o} is not associated with Xs1 , we have that

πF o(t1) 6∈ Xs1 , πF o(t2) 6∈ Xs1 , . . . , πF o(tk) 6∈ Xs1 .

It is the case that πF o(t1) 6= s1, otherwise s1 and t1 would be adjacent, contradicting the
fact that dist(s1, t1) = d > 5. Hence πF o(t1) 6∈ X. Because k > 2, it is also true that
πF o(ti) 6= s1 for some ti ∈ V (F ) with i ∈ [2, k], say πF o(t2) 6= s1. Then πF o(t2) 6∈ X. We
summarise our discussion below.
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πF o(t1) 6∈ X, πF o(t2) 6∈ X, πF o(t3) 6∈ Xs1 , . . . , πF o(tk) 6∈ Xs1 , (1)
πF (s2) 6∈ X, πF (s3) 6∈ X, . . . , πF (sk) 6∈ X.

Let X ′ := {πF (s3), . . . , πF (sk), t3, . . . , tk}. By the induction hypothesis, F is (k −
1)-linked. In the notation of Lemma 15, if we let ` := k − 2, X∗ := X ′, Y ∗ :=
{{πF (s3), t3}, . . . , {πF (sk), tk}}, and Z∗ := {t1, t2}, then we can find k − 2 disjoint paths
L′i in F between πF (si) and ti for i ∈ [3, k], with each path avoiding {t1, t2}; here
|Z∗| = 2(k − 1)− 2` = 2 (Lemma 15). Let Li := siπF (si)L′iti, for each i ∈ [3, k].

Now we find the paths L1 and L2 in F o. The induction hypothesis yields that F o

is (k − 1)-linked. We also have that πF o(t1) 6∈ X and πF o(t2) 6∈ X, according to (1).
In the notation of Lemma 15, we let ` := 2, X∗ := {s1, πF o(t1), s2, πF o(t2)}, Y ∗ :=
{(s1, πF o(t1)), (s2, πF o(t2))}, and Z∗ := {s3, . . . , sk}. Then, according to Lemma 15, for
k > 4 we can find disjoint paths L′1 := s1 − πF o(t1) and L′2 := s2 − πF o(t2) in F o, each
avoiding the set {s3, . . . , sk}, since |Z∗| = k − 2 6 2(k − 1)− 2` = 2k − 6 for k > 4.

The case k = 3 requires special attention. In this setting, Z∗ = {s3}, d = 5, and
dimF o = 4. Since every cubical 4-polytope is strongly 2-linked by Theorem 16, F o is
strongly 2-linked. Hence, the strong 2-linkedness of F o now gives the existence of disjoint
paths L′1 := s1 − πF o(t1) and L′2 := s2 − πF o(t2) in F o, each avoiding Z∗.

As a consequence, we let L1 := s1L
′
1πF o(t1)t1 and L2 := s2L

′
2πF o(t2)t2. In this way,

we have found a Y -linkage {L1, . . . , Lk} with Li joining the pair {si, ti} for i = 1, . . . , k.
This completes the proof of the first scenario.

In the second scenario all vertices in X lie in a facet F of Qd. In this
case, Lemma 14 gives an X-valid path L1 in F joining a pair in Y , say {s1, t1}. The
projection in Qd of every vertex in (X \ {s1, t1}) ∩ V (F ) onto F o is not in X. Define
Y p := {{sp2, tp2}, . . . , {spk, t

p
k}} as the set of k − 1 pairs of projections of the corresponding

vertices in Y \{{s1, t1}} onto F o. By the induction hypothesis on F o, F o is (k−1)-linked,
and so there is a Y p-linkage {Lp2, . . . , Lpk} with Lpi := spi − t

p
i for i ∈ [2, k]. Each path Lpi

can be extended with si and ti to obtain a path Li := si − ti for i ∈ [2, k]. And together,
all the paths {L1, . . . , Lk} give the desired Y -linkage in the cube.

Finally, let us move to the third scenario: not every pair in Y lies at
distance d in Qd and not all vertices in X lie in the same facet. It follows that
some pair in Y , say {s1, t1}, lies in some facet F of Qd (Remark 19), but not every vertex
in X is in F . Let NK(x) denote the set of neighbours of a vertex x in a face K of the
cube and let N(x) denote the set of all the neighbours of x in the cube.

We define a function ρ : X → X that maps x ∈ X to the terminal with which it is
paired in Y : {x, ρ(x)} ∈ Y . Let XF := (X \ {s1, t1}) ∩ V (F ). We define the following
sets.

Yα := {{x, ρ(x)} ∈ Y : x ∈ XF , ρ(x) ∈ NF (x)},
Xα := {x ∈ XF : {x, ρ(x)} ∈ Yα},
Xβ := XF \Xα.

We construct the desired Y -linkage {L1, . . . , Lk} according to the following cases:
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Case (i) each pair {sj, tj} in Yα is joined by the path Lj := sjtj in F ;

Case (ii) each pair {sj, tj} in Y \ (Yα ∪ {s1, t1}) will be joined using the induction hy-
pothesis on the (d− 1)-cube F o, the facet opposite to F ;

Case (iii) the pair {s1, t1} will be joined by an X-valid path in F .

Case (i) is done, so we focus on Case (ii). We will need to project some terminals from
F to F o, namely the ones in Xβ. However, unlike Scenario 2, it may happen that the
projection πF o of a terminal vertex x ∈ Xβ onto F o is also a terminal vertex, which will
cause the problem of having some paths intersect. In order to use the projection πF o , we
define an injective map ω : Xβ → V (F ) so that, for each x ∈ Xβ, we have that either
ω(x) = x or ω(x) ∈ NF (x) and that {ω(x), πF o(ω(x))} ∩ (X \ {x, ρ(x)}) = ∅.

The motivation for the map ω is to define a path Mx = xω(x)πF o(ω(x)), of length at
most 2, from each x ∈ Xβ to F o so that the vertices πF o(ω(x)) and πF o(ω(ρ(x))) can be
joined in F o by an X-valid path. Example 23 and Fig. 3 illustrate the function ω. The
construction of ω follows a general remark.
Remark 20. Whenever possible we set ω(x) = x. Only when the projection πF o of x,
namely xpF o , is in X \ {ρ(x)}, do we set ω(x) ∈ NF (x) \XF .

Lemma 21 shows that the injective map ω exists.
Lemma 21. There exists an injective map ω : Xβ → V (F ) such that, for each x ∈ Xβ,

{ω(x), πF o(ω(x))} ∩ (X \ {x, ρ(x)}) = ∅. (2)

Proof. Let X ′ be the maximal subset of Xβ such that an injective map ω exists and
satisfies Condition (2). We will prove that X ′ = Xβ by contradiction. Assume that
X ′ 6= Xβ and let x ∈ Xβ \X ′. Then

xpF o ∈ X \ {ρ(x)}, (3)

otherwise setting ω(x) = x would satisfy (2), extending the injection ω to X ′ ∪ {x}.
Let us define the set Ox as the subset of vertices v in NF (x) that cannot be selected

as v = ω(x), because they violate either Condition (2) or the injectivity of ω.
For a vertex v to violate Condition (2), it must be that either v ∈ X (say v is of type

1 ), or v 6∈ X and πF o(v) ∈ X \ {ρ(x)} (say v is type 2 ) (equivalently this means that
there is a terminal z ∈ V (F o) ∩ (X \ {ρ(x)}) such that v = πF (z)). For a vertex v to
violate the injectivity of ω, there must exist z ∈ X ′ such that v = ω(z); we remark that
a vertex of type 1 or 2 could violate the injectivity of ω. As a consequence, we say that
v is of type 3 if it violates the injectivity but it is not of type 1 or 2.

Therefore the set Ox can be defined as the subset of NF (x) that violate Condition (2)
or the injectivity of ω.

Ox = NF (x) ∩ (X ∪ {zpF : z ∈ X \ {ρ(x)}} ∪ {ω(z) : z ∈ X ′}) .
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Remark 22. For type 3 vertices, note that z 6∈ Ox, otherwise z, w(z) ∈ NF (x), implying
that the vertices z, x, and ω(z) would all be pairwise neighbours but there are no triangles
in Qd.

Note that |NF (x)| = d−1. Thus, to show that there is a suitable vertex ω(x) ∈ NF (x),
it suffices to show an injection ψx from Ox to X \ {x, xpF o , ρ(x)}, which would imply
|Ox| 6 d− 2.

The terminal ρ(x) is in X \ Ox, otherwise the pair {x, ρ(x)} ∈ Yα and x ∈ Xα, a
contradiction. Similarly, the projection xpF o of x onto F o is in X \Ox, as it is in X by (3),
and Ox is a subset of V (F ) but xpF o ∈ V (F o). Thus x, xpF o , ρ(x) ∈ X \Ox, and ρ(x) 6= xpF o

(by (3)).
Consider v ∈ Ox. We construct the injection ψx as follows: if v ∈ X (it is of type 1),

map v to v. If v /∈ X and v = zpF for some z ∈ X \ {ρ(x)} (it is of type 2), then map v to
z; here z ∈ V (F o). Finally, suppose that v /∈ X and v = ω(z) for some z ∈ X ′. Further
assume that v is not of type 2 (namely, v 6= zpF for any z ∈ X \ {ρ(x)}), since this case
was already considered. Then v is of type 3. Because v /∈ X, we have that z 6= ω(z).
From z 6= ω(z) it follows that zpF o ∈ X (Remark 20). If z 6= ρ(x), then map v to z, else
map v to zpF o . We prove in Claim 1 that the map ψx is indeed injective.

Claim 1. Let ψx : Ox → X \ {x, ρ(x), xpF o} be the map defined by

ψx(v) =


v, if v ∈ X (type 1);
z, if v /∈ X and v = zpF for z ∈ X \ {ρ(x)} (type 2);
z, if v /∈ X, v = ω(z) for z ∈ X ′ \ {ρ(x)}, v is not of type 2 (type 3);
ρ(x)pF o , if v /∈ X, v = ω(ρ(x)) for ρ(x) ∈ X ′, v is not of type 2 (type 3);

Then ψx is injective.

Figure 3 depicts the different types of neighbours of the vertex s2 and the injection
ψs2 from Os2 to X \ {s2, πF o(s2), ρ(s2) = t2}.

Proof. For the proof of the claim, we say that a v is of type 3(a) when it satisfies the
third line of the definition of ψx, namely v /∈ X, v = ω(z) for some z ∈ X ′, z 6= ρ(x), and
v is not of type 2. And we say that v is of type 3(b) if it satisfies the fourth line of the
definition of ψx, namely if v /∈ X, v = ω(z) for some z ∈ X ′, z = ρ(x), and v is not of
type 2. First note the following:

• If v is of type 1, then ψx(v) ∈ XF ∩NF (x).

• If v is of type 2, then ψx(v) ∈ X ∩ V (F o).

• if v is of type 3(a), then ψx(v) ∈ XF \NF (x) (see Remark 22).

• if v is of type 3(b), then ψx(v) ∈ X ∩ V (F o).
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Figure 3: Auxiliary figure for the third scenario Theorem 18.

Assume that ψx(v1) = ψx(v2) = γ for v1, v2 ∈ Ox. Then γ ∈ X.
Suppose that γ ∈ V (F ). If γ ∈ NF (x), then both v1 and v2 must be of type 1. In this

case, from the definition of ψx we conclude that v1 = v2 = γ. If instead γ ∈ XF \NF (x),
then v1 and v2 are of type 3(a), and so v1 = v2 = ω(γ).

Assume that γ ∈ V (F o). Then three subcases can occur. If v1 and v2 are both of type
2, then v1 = v2 = γpF . If instead v1 and v2 are both of type 3(b), then v1 = v2 = ω(ρ(x)).
Finally suppose that v1 is of type 2 and v2 is of type 3(b). Since v1 is of type 2, we
get that v1 = γpF , and since v2 is of type 3(b) we get that ρ(x) = γpF . This implies that
ρ(x) = v1 ∈ NF (x), which in turn implies that {x, ρ(x)} ∈ Yα and x ∈ Xα, contradicting
the assumption that x /∈ Xα.

Therefore, for every v1, v2 ∈ Ox, the equality ψx(v1) = ψx(v2) implies that v1 = v2,
and the map ψx is injective.

Figure 3 also shows the construction of the injection ψx. The existence of the injection
ψx from Ox to X \ {x, xpF o , y} shows that |Ox| 6 d− 2, which yields the existence of the
vertex ω(x) ∈ NF (x) satisfying Condition (2), and therefore, the injection ω can be
extended to X ′ ∪ {x}. This contradicts the maximality of X ′ and concludes the proof of
the lemma.
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For every x ∈ Xβ, we define the path Mx = xω(x)πF o(ω(x)), of length at most 2,
from Xβ to F o. The injectivity of ω and the injectivity of the restriction of πF o to V (F )
ensure that the paths Mx are pairwise disjoint. For every x ∈ X ∩V (F o) we set Mx := x.
Because ω satisfies Condition (2), the only case when the paths Mx and My intersect is
when y = ρ(x), which is not a problem.

We now finalise this third scenario. Applying Lemma 21 to Xβ, we get the paths Mx

from all the terminals in Xβ to F o. We also consider the paths Mx = x for x ∈ X∩V (F o).
This implies that we have pairwise disjoint paths Mx from X\(Xα∪{s1, t1}) to F o. Denote
by Xo the set of vertices in Mx ∩ V (F o) for each x in X \ (Xα ∪ {s1, t1}). Then

|Xo| = |X \ (Xα ∪ {s1, t1})| 6 d− 1. (4)

Let Y o be the corresponding pairing of the vertices in Xo: if {x, ρ(x)} ∈ Y with x, ρ(x) ∈
X \ (Xα ∪ {s1, t1}), then the corresponding pair in Y o is {Mx ∩ V (F o),Mρ(x) ∩ V (F o)}.

The induction hypothesis ensures that F o is (k−1)-linked. As a consequence, because
of (4), |Y o| 6 (d − 1)/2 = k − 1, and so there is a Y o-linkage in F o. The Y o-linkage
gives the existence of paths Lpi in F o between Msi

∩ V (F o) and Mti ∩ V (F o) for si, ti ∈
X \ (Xα ∪ {s1, t1}). Each path Lpi is then extended with the paths Msi

and Mti to obtain
a path Li := si − ti for si, ti ∈ X \ (Xα ∪ {s1, t1}).

It only remains to show the existence of a path L1 := s1 − t1 in F disjoint from the
paths Li for i ∈ [2, k] (Case (iii)). Suppose that we cannot find a path L1 disjoint from
the other paths Li with i ∈ [2, k]. Then there would be a set S in V (F ) separating s1
from t1. The set S would consist of terminal vertices in XF and nonterminal vertices in
ω(Xβ) (see Lemma 21).

Since x 6= ω(x) implies that ω(x) /∈ X and xpF o ∈ X \ {ρ(x)} (Remark 20), we find
that, for each such a ω(x), there is a unique xpF o ∈ X ∩ V (F o); that is

|S| 6 |XF ∪ (ω(Xβ) \X)| 6 |XF |+ |X ∩ V (F o)| = |X \ {s1, t1}| = d− 1.

By the (d − 1)-connectivity of F , which follows from Balinski’s theorem (Theorem 2),
the set S would have cardinality d − 1, which implies that every terminal in XF and
every nonterminal ω(x) in F are in S. By Proposition 9, the set S would consist of the
neighbours of s1 or t1, say of s1, and therefore the vertices in S are pairwise nonadjacent
(as there are no triangles in Qd), that is, ω(x) = x for each x ∈ Xβ (ω(x) is either x
or a neighbour of x). This implies that S ⊂ X, and so |S| = |X \ {s1, t1}| = d − 1.
Hence, V (F ) ⊃ S ∪ {s1, t1} = X, which contradicts the assumptions of Scenario 3 that
X 6⊂ V (F ).

The proof of the theorem is now complete.

We next illustrate Scenario 3 of Theorem 18.

Example 23. Consider Figure 3. Then d = 5, k = 3, and

X := {s1, t1, s2, t2, s3, t3} and Y := {{s1, t1}, {s2, t2}, {s3, t3}}.
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Lemma 21 gives us an injection ω from (X \{s1, t1})∩V (F ) to V (F ) to find X-valid paths
from the d− 1 terminals in (X \ {s1, t1})∩ V (F ) to V (F o). Then we use the 2-linkedness
of F o to find the paths L2, L3. We follow the notation of the proof of Theorem 18. For
each terminal x ∈ (X \ {s1, t1})∩V (F ), we define the path Mx := xω(x)πF o(ω(x)), while
for each x ∈ X ∩ V (F o) we define the path Mx := x. The set Xo is the set of vertices in
Mx ∩ V (F o).

First look at Fig. 3(a). Then ω(s2) ∈ {v2, v3}, Ms2 := s2v2t2 or Ms2 := s2v3v4, say
Ms2 = s2v2t2, Mt2 := t2, Ms3 := s3, and Mt3 := t3. It follow that

Xo := {t2, s3, t3} and Y o := {{t2}, {s3, t3}}.

We have paths Lp2 := t2 and Lp3 := s3 − t3 in F o. A path L1 := s1 − t1 in F should
avoid only s2 and ω(s2) = v2, and so it exists by the 4-connectivity of F . As a result, the
Y -linkage in this setting is given by L1, L2 := s2Ms2t2, and L3 := s3L

p
3t3.

Now look at Fig. 3(b). If ω(s3) = v1, then ω(s2) = v2. Besides, Ms2 := s2v2v4,
Ms3 := s3v1v3, Mt2 := t2, and Mt3 := t3. It follow that

Xo := {v3, v4, t2, t3} and Y o := {{v4, t2}, {v3, t3}}.

We have paths Lp2 := v4 − t2 and Lp3 := v3 − t3 in F o. A path L1 := s1 − t1 in F should
avoid S := {s2, s3, ω(s2) = v2, ω(s3) = v1}. The path L1 exists thanks to Proposition 9,
as the set S can separate s1 and t1 only if it consists of the neighbours of s1 or t1, which is
not possible. As a result, the Y -linkage in this setting is given by L1, L2 := s2Ms2v4L

p
2t2,

and L3 := s3Ms3v3L
p
3t3.

Finally, look at Fig. 3(c). If ω(t2) = v1, then ω(s2) = v2. Besides, Ms2 := s2v2v4,
Ms3 := s3, Mt2 := t2v1v3, and Mt3 := t3. It follow that

Xo := {v4, s3, v3, t3} and Y o := {{v4, v3}, {s3, t3}}.

We have paths Lp2 := v4 − v3 and Lp3 := s3 − t3 in F o. A path L1 := s1 − t1 in F should
avoid S := {s2, t2, ω(s2) = v2, ω(t2) = v1}. The path L1 exists thanks to Proposition 9, as
the set S can separate s1 and t1 only if it consists of the neighbours of s1 or t1, which is not
possible. As a result, the Y -linkage in this setting is given by L1, L2 := s2Ms2v4L

p
2v3Mt2t2,

and L3 := s3L
p
3t3.

We are now in a position to answer Wotzlaw’s question ([21, Question 5.4.12]). The-
orem 18 in conjunction with Lemma 17 gives the answer.
Theorem 24. For every d > 1, a cubical d-polytope is bd/2c-linked.
Proof. Let P be a cubical d-polytope. The results for d = 1, 2 are trivial. The case of
d = 3 follows from the connectivity of the graph of P (Balinski’s theorem), while the case
of d = 4 follows from Proposition 6. For d > 5, since a facet of P is a (d− 1)-cube with
d − 1 > 4, by Theorem 18 it is bd/2c-linked. So the d-connectivity of the graph of P ,
which follows from Balinski’s theorem (Theorem 2), together with Lemma 17 establishes
the proposition.

We improve Theorem 24 in a subsequent paper [3], where we establish the maximum
possible linkedness of b(d+ 1)/2c for a cubical d-polytope with d 6= 3.
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5.1 Strong linkedness of the d-cube

We now show a strong linkedness result for the cube.

Theorem 25 (Strong linkedness of the cube). For every d > 1, a d-cube is strongly
bd/2c-linked.

Proof. Let G be the graph of Qd. Let k := bd/2c, and let X be a set of 2k+1 vertices in the
d-cube for d > 1. Arbitrarily pair 2k vertices in X to obtain Y := {{s1, t1}, . . . , {sk, tk}}.
Let x be the vertex of X not being paired in Y . We aim to find a Y -linkage {L1, . . . , Lk}
where each path Li joins the pair {si, ti} and avoids the vertex x.

The theorem is trivially true for the cases d = 1, 2. So assume that d > 3.
Suppose that d = 2k + 1. In this case, the result follows from Balinski’s theorem and

Theorem 18. For d = 3, we have that k = 1, and so the 3-connectivity of G (Balinski’s
theorem) ensures that we can find a path L1 = s1 − t1 that avoids x. For d > 5, we let y
be a vertex of G not in X. Then, since G is (k+1)-linked (Theorem 18), we can find k+1
disjoint L1, . . . , Lk, Lk+1 paths such that Li = si − ti, for i ∈ [1, k], and Lk+1 := x− y. It
is now plain that the linkage Y in G− x gives that G− x is k-linked.

Suppose that d = 2k. The result for d = 4 is given by Theorem 16. So assume that
d > 6.

From Lemma 8 it follows that there exists a pair {F, F o} of opposite facets of Qd

that is not associated with Xx := X \ {x}, since |X \ {x}| = d and there are d pairs
{F, F o} of opposite facets in Qd. Assume x ∈ V (F o). Let Xp := πF (Xx); that is,
the set Xp comprises the vertices in Xx ∩ V (F ) plus the projections of Xx ∩ V (F o)
onto F . Denote by Y p the corresponding pairing of the vertices in Xp; that is, Y p :=
{{πF (s1), πF (t1)}, . . . , {πF (sk), πF (tk)}}. Then |Xp| = d and |Y p| = k. Find a Y p-
linkage {Lp1, . . . , Lpk} in F with Lpi := πF (si)−πF (ti) by resorting to the k-linkedness of F
(Theorem 18). Adding si ∈ V (F o) or ti ∈ V (F o) to the path Lpi , if necessary, we extend
the linkage {Lp1, . . . , Lpk} to the required Y -linkage.

6 Linkedness inside the d-cube

The boundary complex of a polytope P is the set of faces of P other than P itself. And
the link of a vertex v in a polytope P , denoted link(v, P ), is the set of faces of P that do
not contain v but lie in a facet of P that contains v (Fig. 4). According to [22, Ex. 8.6],
the link of a vertex in a d-polytope is combinatorially equivalent to the boundary complex
of a (d − 1)-polytope; in particular, for d > 3 the graph of the link is isomorphic to the
graph of a (d− 1)-polytope. It follows that the link of a vertex of Qd+1 is combinatorially
equivalent to the boundary complex of a cubical d-polytope.
Remark 26. The link of a vertex v in a d-cube Qd is obtained by removing all the faces
of Qd that contain v or vo (Fig. 4).

We verify that, for every d > 2 such that d 6= 3, the link of a vertex in a (d+ 1)-cube
is b(d+ 1)/2c-linked.
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(a) (b)v

Figure 4: (a) The 4-cube with a vertex v highlighted. (b) The link of the vertex v.

Proposition 27. For every d > 2 such that d 6= 3, the link of a vertex in a (d+ 1)-cube
Qd+1 is b(d+ 1)/2c-linked.

Proof. The proposition trivially holds for the case d = 2, and the case d = 4 is given by
Proposition 6. So assume that d > 5

Let k := b(d+ 1)/2c. Then k > 3. Let v and vo be opposite vertices of G(Qd+1); that
is, distQd+1(v, vo) = d+1. Let X be a given set of 2k vertices in link(v,Qd+1) (Remark 26),
and let Y := {{s1, t1}, . . . , {sk, tk}} be an arbitrary pairing of the vertices in X. We show
that there exists a Y -linkage {L1, . . . , Lk} in link(v,Qd+1) where each path Li joins the
pair {si, ti} and avoids the vertices v and vo.

Since |X| − 1 6 d and there are d+ 1 pairs of opposite facets in Qd+1, from Lemma 8
there exists a pair {F, F o} of opposite facets of Qd+1 that is not associated with X. This
means that, for every x ∈ X ∩ V (F ), its projection π

Qd+1
F o (x) 6∈ X, and that, for every

x ∈ X ∩ V (F o), its projection π
Qd+1
F (x) 6∈ X. Henceforth we write πF rather than π

Qd+1
F .

Assume that v ∈ F and vo ∈ F o. We consider two cases based on the number of terminals
in the facet F .

In what follows, we implicitly use the d-connectivity of F or F o for d > 5.
Case 1. |X ∩ V (F )| = d+ 1.

Since F is a d-cube, it is b(d + 1)/2c-linked by Theorem 18, and hence, we can find
k pairwise disjoint paths L̄1, . . . , L̄k in F between si and ti for each i ∈ [1, k]. If no path
Li passes through v, we let Li := L̄i for i ∈ [1, k], and so {L1, . . . , Lk} is the desired
Y -linkage. So suppose one of those paths, say L̄1, passes through v; there can be only
one such path.

In this case, we consider the two neighbours w1 and w2 of v on L̄1 so that v /∈ w1L̄1s1
and v /∈ w2L̄1t1. Since distQd+1(v, vo) = d + 1 > 3, we have that πF o(w1) 6= vo and
πF o(w2) 6= vo. Thus, we find a πF o(w1) − πF o(w2) path M1 in F o that avoids vo. So L1
then becomes s1L̄1w1πF o(w1)M1πF o(w2)w2L̄1t1. Finally, we let Li := L̄i for i ∈ [2, k], and
so {L1, . . . , Lk} is the desired Y -linkage.

By symmetry, the proposition also holds if |X ∩ V (F o)| = d+ 1.
Case 2. |X ∩ V (F o)| 6 |X ∩ V (F )| 6 d.
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It follows that |X ∩ V (F o)| 6 b(d + 1)/2c. If some terminal x in F o is adjacent to v:
πF (x) = v, without loss of generality, assume that it is t1. In any case, there is at least
one terminal in F o, and we may assume that it is t1. The facet F is a d-cube, and so it
is b(d+ 1)/2c-linked by Theorem 18.

The k-linkedness of F ensures that in F there are k disjoint paths M1 := πF (s1) − v
and L̄i := πF (si)−πF (ti) for i ∈ [2, k]. For each i ∈ [2, k], the path L̄i lies in F , is X-valid,
and avoids v (and also vo ∈ F o). Besides, for each j ∈ [2, k], each path L̄j extends to a
path Lj := sj − tj, if necessary. It remains to find an X-valid path L1 := s1 − t1 that
avoids v and vo.

Let S := {vo} ∪ ((X ∩ V (F o)) \ {t1}). Then, by assumption |X ∩ V (F o)| 6 (d+ 1)/2,
and so |S| 6 (d+ 1)/2− 1 + 1 6 d− 1 for d > 3.

Let w ∈ V (F ) be a neighbour of v on M1. This neighbour exists, since πF (s1) 6= v, and
so the length of M1 is at least 1. The projection πF o(w) of w onto F o is not in X \ {s1}
because w /∈ Xp \ {πF (s1)} and the path M1 is disjoint from the paths L̄i, i ∈ [2, k]. By
the d-connectivity of F o we can find a path L̄1 in F o from πF o(w) to t1 that avoids S.
Hence the path L1 then becomes s1πF (s1)M1wπF o(w)L̄1t1. The set {L1, . . . , Lk} is the
desired Y -linkage.

This completes the proof of the case and of the proposition.
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