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Abstract. A cubical polytope is a polytope with all its facets being combi-
natorially equivalent to cubes. The paper is concerned with the linkedness of
the graphs of cubical polytopes.

A graph with at least k vertices is bk/2c-linked if, for every set of 2bk/2c
distinct vertices organised in arbitrary bk/2c unordered pairs of vertices, there
are bk/2c vertex-disjoint paths joining the vertices in the pairs. In a previous
paper [2] we proved that every cubical d-polytope is bd/2c-linked. Here we
strengthen this result by establishing the b(d + 1)/2c-linkedness of cubical
d-polytopes, for every d 6= 3.

A graph is strongly bk/2c-linked if it has at least k vertices and, for every
set X of exactly k vertices organised in arbitrary bk/2c unordered pairs of
vertices, there are bk/2c vertex-disjoint paths joining the vertices in the pairs
and avoiding the vertices in X not being paired. We say that a polytope is
(strongly) bk/2c-linked if its graph is (strongly) bk/2c-linked. In this paper,
we also prove that every cubical d-polytope is strongly b(d + 1)/2c-linked, for
every d 6= 3.

These results are best possible for such a class of polytopes.

1. Introduction

The graph G(P) of a polytope P is the undirected graph formed by the vertices
and edges of the polytope. This paper studies the linkedness of cubical d-polytopes,
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2 THE LINKEDNESS OF CUBICAL POLYTOPES: BEYOND THE CUBE

d-dimensional polytopes with all their facets being cubes. A d-dimensional cube
is the convex hull in Rd of the 2d vectors (±1, . . . ,±1). By a cube we mean any
polytope whose face lattice is isomorphic to the face lattice of a cube.

Denote by V (X) the vertex set of a graph or a polytope X . Given sets A, B of
vertices in a graph, a path from A to B, called an A – B path, is a (vertex-edge)
path L := u0 . . . un in the graph such that V (L)∩A = {u0} and V (L)∩B = {un}.
We write a – B path instead of {a} – B path, and likewise, write A – b path instead
of A – {b}.

Let G be a graph and X a subset of 2k distinct vertices of G. The elements of X
are called terminals. Let Y := {{s1, t1}, . . . , {sk , tk}} be an arbitrary labelling and
(unordered) pairing of all the vertices in X . We say that Y is linked in G if we can
find disjoint si – ti paths for i ∈ [1, k], where [1, k] denotes the interval 1, . . . , k. The
set X is linked in G if every such pairing of its vertices is linked in G. Throughout
this paper, by a set of disjoint paths, we mean a set of vertex-disjoint paths. If G
has at least 2k vertices and every set of exactly 2k vertices is linked in G, we say
that G is k-linked. If the graph of a polytope is k-linked, we say that the polytope
is also k-linked.

Larman and Mani [4, Thm. 2] proved that every d-polytope is b(d +1)/3c-linked,
a result that was slightly improved to b(d + 2)/3c in [7, Thm. 2.2]. Concerning
cubical polytopes, in a previous paper [2], we answered a question of Wotzlaw [8,
Question 5.4.12] proving the following theorem:

Theorem 1. For every d ≥ 1, a cubical d-polytope is bd/2c-linked.

In this paper, we extend this result:

Theorem 2 (Linkedness of cubical polytopes). For every d 6= 3, a cubical d-
polytope is b(d + 1)/2c-linked.

Our methodology relies on results on the connectivity of strongly connected
subcomplexes of cubical polytopes, whose proof ideas were first developed in [1],
and a number of new insights into the structure of d-cube exposed in [2]. One
obstacle that forces some tedious analysis is the fact that the 3-cube is not 2-linked.

In our paper [2], we introduce the notion of strong linkedness. We say that a
d-polytope P is strongly b(d +1)/2c-linked if, for every set X of exactly d +1 vertices
and every pairing Y with b(d +1)/2c pairs from X , the set Y is linked in G(P) and
each path joining a pair in Y avoids the vertices in X not being paired in Y . For
odd d = 2k – 1 the properties of strongly k-linkedness and k-linkedness coincide,
since every vertex in X is paired in Y ; but they differ for even d = 2k–namely
strong k-linkedness implies k-linkedness, but the converse is not necessarily true.
In this paper, we show that cubical d-polytopes are strongly b(d + 1)/2c-linked, for
d 6= 3.

Theorem 3 (Strong linkedness of cubical polytopes). For every d 6= 3, a cubical
d-polytope is strongly b(d + 1)/2c-linked.
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Unless otherwise stated, the graph theoretical notation and terminology follow
from [3] and the polytope theoretical notation and terminology from [9]. More-
over, when referring to graph-theoretical properties of a polytope such as minimum
degree, linkedness and connectivity, we mean properties of its graph.

2. Preliminary results

This section groups a number of results that will be used in the paper.
Let X be a set of vertices in a graph G. Denote by G[X ] the subgraph of G

induced by X , the subgraph of G that contains all the edges of G with vertices in
X . Write G – X for G[V (G) \X ]. A path in the graph is called X-valid if no inner
vertex of the path is in X . The distance between two vertices s and t in a graph
G, denoted distG(s, t), is the length of a shortest path between the vertices.

We start with some results on the linkedness of polytopes in dimensions 3 and 4,
which will be useful to establish the base cases in our proofs:

Proposition 4 ([2, Prop. 4 and Cor. 5 ]). Let G be the graph of a 3-polytope
and let X be a set of four vertices of G. The set X is linked in G if and only if
there is no facet of the polytope containing all the vertices of X. In particular, no
nonsimplicial 3-polytope is 2-linked.

Proposition 5 ([2, Prop. 6]). Every 4-polytope is 2-linked.

The next set of results concerns polytopal complexes. A polytopal complex C is
a finite nonempty collection of polytopes in Rd where the faces of each polytope
in C all belong to C and where polytopes intersect only at faces (if P1 ∈ C and
P2 ∈ C then P1 ∩ P2 is a face of both P1 and P2). The empty polytope is always
in C. The dimension of a complex C is the largest dimension of a polytope in C; if
C has dimension d we say that C is a d-complex. Faces of a complex C of largest
and second largest dimension are called facets and ridges, respectively. If each of
the faces of a complex C is contained in some facet we say that C is pure. Given a
polytopal complex C with vertex set V and a subset X of V , the subcomplex of C
formed by all the faces of C containing only vertices from X is called induced and
is denoted by C[X ]. Removing from C all the vertices in a subset X ⊂ V (C) results
in the subcomplex C[V (C) \X ], which we write as C – X . If X = {x} we write C – x
rather than C – {x}. We say that a subcomplex C′ of a complex C is a spanning
subcomplex of C if V (C′) = V (C). The graph of a complex is the undirected graph
formed by the vertices and edges of the complex; as in the case of polytopes, we
denote the graph of a complex C by G(C). A pure polytopal complex C is strongly
connected if every pair of facets F and F ′ is connected by a path F1 . . .Fn of facets
in C such that Fi ∩ Fi+1 is a ridge of C for i ∈ [1, n – 1], F1 = F and Fn = F ′; we
say that such a path is a (d – 1, d – 2)-path or a facet-ridge path if the dimensions
of the faces can be deduced from the context.

The relevance of strongly connected complexes stems from a result of Sallee that
is described below.
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Proposition 6 ([6, Sec. 2]). For every d ≥ 1, the graph of a strongly connected
d-complex is d-connected.

Strongly connected complexes can be defined from a d-polytope P. Two basic
examples are given by the complex of all faces of P, called the complex of P and
denoted by C(P), and the complex of all proper faces of P, called the boundary
complex of P and denoted by B(P). For a polytopal complex C, the star of a face F
of C, denoted star(F , C), is the subcomplex of C formed by all the faces containing F ,
and their faces; the antistar of a face F of C, denoted astar(F , C), is the subcomplex
of C formed by all the faces disjoint from F ; and the link of a face F , denoted
link(F , C), is the subcomplex of C formed by all the faces of star(F , C) that are
disjoint from F . That is, astar(F , C) = C–V (F) and link(F , C) = star(F , C)–V (F).
Unless otherwise stated, when defining stars, antistars and links in a polytope,
we always assume that the underlying complex is the boundary complex of the
polytope.

Proposition 7 ([2, Prop. 22]). For every d ≥ 2 such that d 6= 3, the link of a
vertex in a (d + 1)-cube Qd+1 is b(d + 1)/2c-linked.

2.1. d-cube. In this section we briefly recall results from [2] that we will use in
our proofs. One of the main results of that paper is that the d-cube is strongly
b(d + 1)/2c-linked:

Theorem 8 (Strong linkedness of the cube). For every d 6= 3, a d-cube is strongly
b(d + 1)/2c-linked.

Let v be a vertex in a d-cube Qd and let vo denote the vertex at distance d from
v, called the vertex opposite to v. In the d-cube Qd , the facet disjoint from a facet
F is denoted by Fo, and we say that F and Fo is a pair of opposite facets.

Definition 9 (Projection π). For a pair of opposite facets {F , Fo} of Qd , define a
projection π

Qd
Fo from Qd to Fo by sending a vertex x ∈ F to the unique neighbour

xp
Fo of x in Fo, and a vertex x ∈ Fo to itself (that is, πQd

Fo (x) = x); write πQd
Fo (x) =

xp
Fo to be precise, or write π(x) or xp if the cube Qd and the facet Fo are understood

from the context.

We extend this projection to sets of vertices: given a pair {F , Fo} of opposite
facets and a set X ⊆ V (F), the projection Xp

Fo or πQd
Fo (X) of X onto Fo is the set

of the projections of the vertices in X onto Fo. For an i-face J ⊆ F , the projection
J p

Fo or πQd
Fo (J ) of J onto Fo is the i-face consisting of the projections of all the

vertices of J onto Fo. For a pair {F , Fo} of opposite facets in Qd , the restrictions
of the projection πFo to F and the projection πF to Fo are bijections.

Let Z be a set of vertices in the graph of a d-cube Qd . If, for some pair of
opposite facets {F , Fo}, the set Z contains both a vertex z ∈ V (F) ∩ Z and its
projection zp

Fo ∈ V (Fo) ∩ Z , we say that the pair {F , Fo} is associated with the



THE LINKEDNESS OF CUBICAL POLYTOPES: BEYOND THE CUBE 5

set Z in Qd and that {z, zp} is an associating pair. Note that an associating pair
can associate only one pair of opposite facets.

The next lemma lies at the core of our methodology.

Lemma 10 ([2, Lemma 6]). Let Z be a nonempty subset of V (Qd). Then the
number of pairs {F , Fo} of opposite facets associated with Z is at most |Z | – 1.

The relevance of the lemma stems from the fact that a pair of opposite facets
{F , Fo} not associated with a given set of vertices Z allows each vertex z in Z to
have “free projection”; that is, for every z ∈ Z ∩V (F) the projection πFo(z) is not
in Z , and for z ∈ Z ∩V (Fo) the projection πF (z) is not in Z .

Given sets A, B, X of vertices in a graph G, the set X separates A from B if
every A – B path in the graph contains a vertex from X . A set X separates two
vertices a, b not in X if it separates {a} from {b}. We call the set X a separator of
the graph.

A set of vertices in a graph is independent if no two of its elements are adjacent.

Corollary 11 ([2, Corollary 9]). A separator of cardinality d in a d-cube is an
independent set.

Remark 12. If x and y are vertices of a cube, then they share at most two neigh-
bours. In other words, the complete bipartite graph K2,3 is not a subgraph of the
cube; in fact, it is not an induced subgraph of any simple polytope [5, Cor. 1.12(iii)].

The following theorem is a consequence of Menger’s theorem:

Theorem 13 ([2, Theorem 9]). Let G be a k-connected graph, and let A and B be
two subsets of its vertices, each of cardinality at least k. Then there are k disjoint
A – B paths in G.

We need the following three technical, but useful, lemmas in our proof. For a set
Y := {{s1, t1}, . . . , {sk , tk}} of pairs of vertices in a graph, a Y -linkage {L1, . . . , Lk}
is a set of disjoint paths with the path Li joining the pair {si , ti} for i ∈ [1, k]. For
a path L := u0 . . . un we often write uiLuj for 0 ≤ i ≤ j ≤ n to denote the subpath
ui . . . uj .

Lemma 14 ([2, Lemma 14]). Let P be a cubical d-polytope with d ≥ 4. Let X
be a set of d + 1 vertices in P, all contained in a facet F. Let k := b(d + 1)/2c.
Arbitrarily label and pair 2k vertices in X to obtain Y := {{s1, t1}, . . . , {sk , tk}}.
Then, for at least k – 1 of these pairs {si , ti}, there is an X-valid si – ti path in F.

Lemma 15. Let ` ≤ k. Let X be a set of 2` distinct vertices of a k-linked graph
G, let Y be a labelling and pairing of the vertices in X, and let Z be a set of 2k – 2`
vertices in G such that X ∩ Z = ∅. Then there exists a Y -linkage in G that avoids
every vertex in Z.

Lemma 16 ([7, Sec. 3]). Let G be a 2k-connected graph and let G′ be a k-linked
subgraph of G. Then G is k-linked.
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3. Connectivity of cubical polytopes

The aim of this section is to present a couple of results related to the connectivity
of strongly connected complexes in cubical polytopes. The first results are from [1].

Lemma 17 ([1, Lem. 8]). Let F be a proper face in the d-cube Qd . Then the
antistar of F is a strongly connected (d – 1)-complex.

Proposition 18 ([1, Prop. 13]). Let F be a facet in the star S of a vertex in a
cubical d-polytope. Then the antistar of F in S is a strongly connected (d – 2)-
subcomplex of S.

We proceed with two simple but useful remarks.

Remark 19. Let P be a cubical d-polytope. Let v be a vertex of P and let F be a
face of P containing v. In addition, let vo be the vertex of F opposite to v. The
smallest face in the polytope containing both v and vo is precisely F .

Remark 20. For any two faces F , J of a polytope, with F not contained in J , there
is a facet containing J but not F . In particular, for any two distinct vertices of a
polytope, there is a facet containing one but not the other.

The proof idea in Proposition 18 can be pushed a bit further to obtain a rather
technical result that we prove next. Two vertex-edge paths are independent if they
share no inner vertex.

Lemma 21. Let P be a cubical d-polytope with d ≥ 4. Let s1 be any vertex in P
and let S1 be the star of s1 in the boundary complex of P. Let s2 be any vertex in
S1, other than s1. Define the following sets:

• F1 in S1, a facet containing s1 but not s2;
• F12 in S1, a facet containing s1 and s2;
• S12, the star of s2 in S1 (that is, the subcomplex of S1 formed by the facets

of P in S1 containing s2);
• A1, the antistar of F1 in S1; and
• A12, the subcomplex of S12 induced by V (S12) \ (V (F1) ∪V (F12)).

Then the following assertions hold.

(i) The complex S12 is a strongly connected (d – 1)-subcomplex of S1.
(ii) If there are more than two facets in S12, then, between any two facets of S12

that are different from F12, there exists a (d – 1, d – 2)-path in S12 that does
not contain the facet F12.

(iii) If S12 contains more than one facet, then the subcomplex A12 of S12 contains
a spanning strongly connected (d – 3)-subcomplex.

Proof. Let us prove (i). Let ψ define the natural anti-isomorphism from the face
lattice of P to the face lattice of its dual P∗. The facets in S1 correspond to
the vertices in the facet ψ(s1) in P∗ corresponding to s1; likewise for the facets in
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star(s2,B(P)) and the vertices in ψ(s2). The facets in S12 correspond to the vertices
in the nonempty face ψ(s1) ∩ ψ(s2) of P∗. The existence a facet-ridge path in S12
between any two facets J1 and J2 of S12 amounts to the existence of a vertex-edge
path in ψ(s1) ∩ ψ(s2) between ψ(J1) and ψ(J2). That S12 is a strongly connected
(d – 1)-complex now follows from the connectivity of the graph of ψ(s1) ∩ ψ(s2)
(Balinski’s theorem), as desired.

We proceed with the proof of (ii). Let J1 and J2 be two facets of S12, other
than F12. If there are more than two facets in S12, then the face ψ(s1)∩ψ(s2) is at
least bidimensional. As a result, the graph of ψ(s1) ∩ ψ(s2) is at least 2-connected
by Balinski’s theorem. By Menger’s theorem, there are at least two independent
vertex-edge paths in ψ(s1) ∩ ψ(s2) between ψ(J1) and ψ(J2). Pick one such path
L∗ that avoids the vertex ψ(F12) of ψ(s1) ∩ ψ(s2). Dualising this path L∗ gives a
(d – 1, d – 2)-path between J1 and J2 in S12 that does not contain the facet F12.

We finally prove (iii). Assume that S12 contains more than one facet. We need
some additional notation.

• Let F be a facet in S12 other than F12; it exists by our assumption on S12.
• Let AF

1 denote the subcomplex F – V (F1); that is, AF
1 is the antistar of

F ∩ F1 in F .
• Let AF

12 denote the subcomplex F – (V (F1) ∪ V (F12)), the subcomplex of
F induced by V (F) \ (V (F1) ∪V (F12)).

We require the following claim.

Claim 1. AF
12 contains a spanning strongly connected (d – 3)-subcomplex CF .

Proof. We first show that AF
12 6= ∅. Denoting by so

1 the vertex in F opposite to s1,
we have that so

1 is not in F1 or in F12 by Remark 19. So so
1 is in AF

12.
Notice that s1 6∈ AF

1 . From Lemma 17 it follows that AF
1 is a strongly connected

(d – 2)-subcomplex of F . Write

AF
1 = C(R1) ∪ · · · ∪ C(Rm),

where Ri is a (d – 2)-face of F for i ∈ [1, m]. No ridge Ri is contained in F12;
otherwise Ri = F ∩ F12, which implies that s1 ∈ Ri , and therefore that s1 ∈ AF

1 ,
a contradiction. Moreover, so

1 ∈ Ri for every i ∈ [1, m], since every ridge of F
contains either s1 or so

1 , and s1 6∈ Ri .
Let Ci := B(Ri) – V (F12). As Ri 6⊂ F12, we have dim Ri ∩ F12 ≤ d – 3. Hence

Ci is nonempty. If Ri ∩ F12 6= ∅, then Ci denotes the antistar of Ri ∩ F12 in Ri , a
spanning strongly connected (d–3)-subcomplex of Ri by Lemma 17. If Ri∩F12 = ∅,
then Ci denotes the boundary complex of Ri , again a spanning strongly connected
(d – 3)-subcomplex of Ri .

Let
CF :=

⋃
Ci .

Then the complex CF is a spanning (d–3)-subcomplex of AF
12; we show it is strongly

connected.
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Take any two (d – 3)-faces W and W ′ in CF . We find a (d – 3, d – 4)-path L
in CF between W and W ′. There exist ridges R and R′ in AF

1 with W ⊂ R and
W ′ ⊂ R′. Since AF

1 is a strongly connected (d – 2)-complex, there is a (d – 2, d – 3)-
path Ri1 . . .Rip in AF

1 between Ri1 = R and Rip = R′, with Rij ∈ AF
1 for j ∈ [1, p].

We will show by induction on the length p of the (d – 2, d – 3)-path Ri1 . . .Rip that
there is a (d – 3, d – 4)-path in CF between W and W ′.

If p = 1, then Ri1 = Rip = R = R′. The existence of the path follows from the
strong connectivity of Ci1 .

Suppose that the claim is true when the length of the path is p – 1. We already
established that so

1 ∈ Rij for every j ∈ [1, p] and that so
1 6∈ F12. Consequently, we

get that Rip–1 ∩Rip 6⊂ F12, and therefore, that dim Rip–1 ∩Rip ∩F12 ≤ d – 4. Hence
the subcomplex Bip–1 := B(Rip–1 ∩ Rip) – V (F12) of B(Rip–1 ∩ Rip) is a nonempty,
strongly connected (d –4)-complex by Lemma 17; in particular, it contains a (d –4)-
face Uip . Furthermore, Bip–1 ⊂ Cip–1 ∩ Cip .

Let Wip–1 and Wip be (d – 3)-faces in Cip–1 and Cip containing Uip respectively.
By the induction hypothesis, the existence of the (d – 2, d – 3)-path Ri1 . . .Rip–1

implies the existence of a (d – 3, d – 4)-path Lp–1 in CF from W to Wip–1 . The
strong connectivity of Cip gives the existence of a path Lp from Wip to W ′. Finally,
the desired path L is the concatenation of these two paths: L = Lp–1Lp. The
existence of the path L between W and W ′ completes the proof of Claim 1. �

We are now ready to complete the proof of (iii). The proof goes along the lines
of the proof of Claim 1. We let

S12 =
m⋃

i=1
C(Ji),

where the facets J1, . . . , Jm are all the facets in P containing s1 and s2.
For every i ∈ [1, m] we let CJi be the spanning strongly connected (d – 3)-

subcomplex in AJi
12 given by Claim 1. And we let

C :=
⋃
CJi .

Then C is a spanning (d – 3)-subcomplex of A12; we show it is strongly connected.
If there are exactly two facets in S12, namely F12 and some other facet F , then

the complex A12 coincides with the complex AF
12. The strong (d – 3)-connectivity

of AF
12 is then settled by Claim 1. Hence assume that there are more than two

facets in S12; this implies that the smallest face containing s1 and s2 in S12 is at
most (d – 3)-dimensional.

Take any two (d – 3)-faces W and W ′ in C. Let J 6= F12 and J ′ 6= F12 be facets
of S12 such that W ⊂ J and W ′ ⊂ J ′. By (ii), we can find a (d – 1, d – 2)-path
Ji1 . . . Jiq in S12 between Ji1 = J and Jiq = J ′ such that Jij 6= F12 for j ∈ [1, q].
We will show that a (d – 3, d – 4)-path L exists between W and W ′ in C, using an
induction on the length q of the path Ji1 . . . Jiq .
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If q = 1, then W and W ′ belong to the same facet F in S12, which is different
from F12. In this case, W and W ′ are both in AF

12, and consequently, Claim 1
gives the desired (d – 3, d – 4)-path between W and W ′ in AF

12 ⊆ C.
Suppose that the induction hypothesis holds when the length of the path is

q – 1. First, we show that there exists a (d – 4)-face Uq in C Jiq–1 ∩ C Jiq . As
Jiq–1 , Jiq 6= F12, we obtain that B(Jiq–1 ∩ Jiq ) – V (F12) is a nonempty, strongly
connected (d – 3)-subcomplex (Lemma 17); in particular, it contains a (d – 3)-face
Kq . We pick Uq in B(Kq) – V (F1) as follows. It holds that Kq 6⊂ F1; otherwise
Kq = Jiq–1 ∩Jiq ∩F1, a contradiction because s1 6∈ Kq but s1 ∈ Jiq–1 ∩Jiq ∩F1. As a
consequence, B(Kq) – V (F1) is a nonempty, strongly connected (d – 4)-subcomplex
(Lemma 17 again); in particular, it contains a desired (d – 4)-face Uq .

Pick (d –3)-faces Wq–1 ∈ C
Jiq–1 and Wq ∈ CJiq such that both contain the (d –4)

face Uq . The induction hypothesis tells us that there exists a (d – 3, d – 4)-path
Lq–1 from W to Wq–1 in C. And the strong (d – 3)-connectivity of CJiq ensures
that there exists a (d – 3, d – 4)-path Lq from Wq to W ′. By concatenating these
two paths, we can obtain the path L = WLq–1Wq–1WqLqW ′. This completes the
proof of the lemma. �

4. Linkedness of cubical polytopes

The aim of this section is to prove that, for every d 6= 3, a cubical d-polytope
is b(d + 1)/2c-linked (Theorem 2). It suffices to prove Theorem 2 for odd d ≥ 5;
since bd/2c = b(d + 1)/2c for even d, Theorem 1 trivially establishes Theorem 2 in
this case.

The proof of Theorem 2 heavily relies on Lemma 23. To state the lemma we
require the following definitions.

Definition 22 (Configuration dF). Let d ≥ 3 be odd and let X be a set of at least
d + 1 terminals in a cubical d-polytope P. In addition, let Y be a labelling and
pairing of the vertices in X . A terminal of X , say s1, is in Configuration dF if the
following conditions are satisfied:

(i) at least d + 1 vertices of X appear in a facet F of P;
(ii) the terminals in the pair {s1, t1} ∈ Y are at distance d – 1 in F (that is,

distF (s1, t1) = d – 1); and
(iii) the neighbours of t1 in F are all vertices of X .

Lemma 23. Let d ≥ 5 be odd and let k := (d + 1)/2. Let s1 be a vertex in
a cubical d-polytope and let S1 be the star of s1 in the polytope. Moreover, let
Y := {{s1, t1}, . . . , {sk , tk}} be a labelling and pairing of 2k distinct vertices of S1.
Then the set Y is linked in S1 if and only if the vertex s1 is not in Configuration
dF.

We defer the proof of Lemma 23 to Subsection 4.1. We are now ready to prove
our main result, assuming Lemma 23.
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Proof of Theorem 2 (Linkedness of cubical polytopes). Theorem 1 settled the case
of even d, so we assume d is odd.

Let d be odd and d ≥ 5 and let k := (d +1)/2. Let X be any set of 2k vertices in
the graph G of a cubical d-polytope P. Recall the vertices in X are called terminals.
Also let Y := {{s1, t1}, . . . , {sk , tk}} be a labelling and pairing of the vertices of X .
We aim to find a Y -linkage {L1, . . . , Lk} in G where Li joins the pair {si , ti} for
i = 1, . . . , k. Recall that a path is X -valid if it contains no inner vertex from X .

The first step of the proof is to reduce the analysis space from the whole polytope
to a more manageable space, the star S1 of a terminal vertex in the boundary
complex of P, say that of s1. We do so by considering d = 2k – 1 disjoint paths
Si := si – S1 (i ∈ [2, k]) and Tj := tj – S1 (j ∈ [1, k]) from the terminals into S1.
Here we resort to the d-connectivity of G. In addition, let S1 := s1. We then
denote by s̄i and t̄j the intersection of the paths Si and Tj with S1. Using the
vertices s̄i and t̄i for i ∈ [1, k], define sets X̄ and Ȳ in S1, counterparts to the
sets X and Y of G. In an abuse of terminology, we also say that the vertices s̄i
and t̄i are terminals. In this way, the existence of a Ȳ -linkage {L̄1, . . . , L̄k} with
L̄i := s̄i – t̄i in G(S1) implies the existence of a Y -linkage {L1, . . . , Lk} in G(P),
since each path L̄i (i ∈ [1, k]) can be extended with the paths Si and Ti to obtain
the corresponding path Li = siSi s̄i L̄i t̄iTi ti .

The second step of the proof is to find a Ȳ -linkage {L̄1, . . . , L̄k} in G(S1), when-
ever possible. According to Lemma 23, there is a Ȳ -linkage in G(S1) provided that
the vertex s1 is not in Configuration dF. The existence of a Ȳ -linkage in turn gives
the existence of a Y -linkage, and completes the proof of the theorem in this case.

The third and final step is to deal with Configuration dF for s1. Hence assume
that the vertex s1 is in Configuration dF. This is implies that

(i) there exists a unique facet F1 of S1 containing t̄1; that
(ii) |X̄ ∩V (F1)| = d + 1; and that
(iii) distF1(s̄1, t̄1) = d – 1 and all the d – 1 neighbours of t̄1 in F1, and thus in

S1, belong to X̄ .

Let R be a (d – 2)-face of F1 containing so
1 = t̄1, then s1 6∈ R. Denote by RF1

the (d – 2)-face of F1 disjoint from R. Let J be the other facet of P containing
R and let RJ denote the (d – 2)-face of J disjoint from R. Then RJ is disjoint
from F1. Partition the vertex set V (RJ ) of RJ into the vertex sets of two induced
subgraphs Gbad and Ggood such that Gbad contains the neighbours of the terminals
in R, namely V (Gbad) = πJ

RJ
(X̄ ∩V (R)) and V (Ggood) = V (RJ )\V (Gbad). Then

πJ
R(V (Gbad)) ⊆ X̄ and πJ

R(V (Ggood)) ∩ X̄ = ∅. See Fig. 1(a).
Consider again the paths Si and Tj that bring the vertices si (i ∈ [2, k]) and tj

(j ∈ [1, k]) into S1. Also recall that the paths Si and Tj intersect S1 at s̄i and t̄j ,
respectively. We distinguish two cases: either at least one path Si or Tj touches RJ
or no path Si or Tj touches RJ . In the former case we redirect one aforementioned
path Si or Tj to break Configuration dF for s1 and use Lemma 23, while in the
latter case we find the Ȳ -linkage using the antistar of s1.
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Case 1. Suppose at least one path Si or Tj touches RJ .

If possible, pick one such path, say S`, for which it holds that V (S`)∩V (Ggood) 6=
∅. Otherwise, pick one such path, say S`, that does not contain πJ

RJ
(t1), if it is

possible. If none of these two selections are possible, then there is exactly one path
Si or Tj touching RJ , say S`, in which case πJ

RJ
(t1) ∈ V (S`).

We replace the path S` by a new path s`–S1 that is disjoint from the other paths
Si and Tj and we replace the old terminal s̄ by a new terminal that causes s1 not
to be in Configuration dF. First suppose that there exists s′` in V (S`)∩V (Ggood).
Then the old path S` is replaced by the path s`S`s′`π

J
R(s′`), and the old terminal

s̄` is replaced by πJ
R(s′`). Now suppose that V (S`) ∩ V (Ggood) = ∅. Then every

path Si and Tj that touches RJ is disjoint from Ggood. Denote by s′` the first
intersection of S` with RJ . Let M` be a shortest path in RJ from s′` ∈ V (Gbad) to
a vertex s′′` ∈ V (Ggood). By our selection of S` this path M` always exists. If s′′` ∈
V (Ggood) \V (S1) then the old path S` is replaced by the path s`S`s′`M`s′′` π

J
R(s′′` ),

and the old terminal s̄` is replaced by πJ
R(s′′` ). If instead s′′` ∈ V (Ggood) ∩ V (S1)

then the old path S` is replaced by the path s`S`s′`M`s′′` , and the old terminal s̄` is
replaced by s′′` . Refer to Fig. 1(b) for a depiction of this case.

In any case, the replacement of the old vertex s̄` with the new s̄` forces s1 out
of Configuration dF, and we can apply Lemma 23 to find a Ȳ -linkage. The case
of S` being equal to T1 requires a bit more explanation in order to make sure that
the vertex s1 does not end up in a new configuration dF. Let A1 be the antistar of
F1 in S1. The new vertex t̄1 is either in F1 or in A1. If the new t̄1 is in F1 then
it is plain that s1 is not in Configuration dF. If the new vertex t̄1 is in A1, then a
new facet F1 containing s1 and the new t̄1 cannot contain all the d – 1 neighbours
of the old t̄1 in the old F1, since the intersection between the new and the old F1 is
at most (d – 2)-dimensional and no (d – 2)-dimensional face of the old F1 contains
all the d – 1 neighbours of the old t̄1. This completes the proof of the case.

Case 2. For any ridge R of F1 that contains t̄1, the aforementioned ridge RJ in the
facet J is disjoint from all the paths Si and Tj .

Consider the vertex t̄1 in F1, an aforementioned ridge R, and the corresponding
facet J and ridge RJ . There is a unique neighbour of t̄1 in RF1 , say s̄k , while
every other neighbour of t̄1 in F1 is in R. Let X̄p := πJ

RJ
(X̄ \ {s1, s̄k , t̄k}) and let

spp
1 := πJ

RJ
(πF1

R (s1)). See Fig. 1(c). The d – 1 vertices in X̄p ∪ {spp
1 } can be linked

in RJ (Theorem 8) by a linkage {L̄′1, . . . , L̄′k–1}. Observe that, for the special
case of d = 5 where RJ is a 3-cube, the sequence spp

1 ,πJ
RJ

(s̄2),πJ
RJ

(t̄1),πJ
RJ

(t̄2)
cannot be in a 2-face in cyclic order, since distRJ (spp

1 ,πJ
RJ

(t̄1)) = 3. The linkage
{L̄′1, . . . , L̄′k–1} together with the two-path L̄k := s̄kπ

F1
RF1

(t̄k)t̄k can be extended to
a linkage {L̄1, . . . , L̄k} given by
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RF1

R

RJ

t̄1
s̄k–1

t̄k

s̄ks1

t̄2

s`

s′
`

S`

s̄2

RF1

R

RJ

t̄1
s̄k–1

t̄k

s̄ks1

t̄2

s̄2

t̄p
1t̄p

2

s̄p
2

s̄p
k–1

πF1
RF1

(t̄k)

(b) (c)

sp
1

spp
1

GbadGgood

RF1

R

RJ

t̄1
s̄k–1

t̄k

s̄ks1

t̄2

s̄2

(a)

GbadGgood

s′′
`

M`

Figure 1. Auxiliary figure for Theorem 2, where the facet F1 is
highlighted in bold. (a) A depiction of the subgraphs Ggood and
Gbad of RJ . (b) A configuration where a path Si or Tj touches
RJ . (c) A configuration where no path Si or Tj touches RJ .

L̄i :=


s1π

F1
R (s1)spp

1 L̄′1πJ
RJ

(t̄1)t̄1, for i = 1;

s̄iπJ
RJ

(s̄i)L̄′iπJ
RJ

(t̄i)t̄i , for i ∈ [2, k – 1];

s̄kπ
F1
RF1

(t̄k)t̄k , for i = k.

Concatenating the paths Si (i ∈ [2, k]) and Tj (j ∈ [1, k]) with the linkage
{L̄1, . . . , L̄k} gives the desired Y -linkage. This completes the proof of the case, and
with it the proof of the theorem. �

4.1. Proof of Lemma 23. This section is devoted to proving Lemma 23. Before
starting the proof, we require a couple of results.

Proposition 24. Let F be a facet in the star S of a vertex in a cubical d-polytope.
Then, for every d ≥ 2, the antistar of F in S is b(d – 2)/2c-linked.

Proof. Let S be the star of a vertex s in a cubical d-polytope and let F be a facet
in the star S. Let A denote the antistar of F in S.

The case of d = 2, 3 imposes no demand on A, while the case d = 4, 5 amounts
to establishing that the graph of A is connected. The graph of A is in fact (d – 2)-
connected, since A is a strongly connected (d – 2)-complex (Proposition 18). See
also Proposition 6. So assume d ≥ 6.

There is a (d – 2)-face R in A. Indeed, take a (d – 2)-face R′ in F containing s
and consider the other facet F ′ in S containing R′; the (d – 2)-face of F ′ disjoint
from R′ is the desired R. By Theorem 8 the ridge R is b(d – 1)/2c-linked but we
only require it to be b(d – 2)/2c-linked. By Propositions 6 and 18 the graph of A is
(d – 2)-connected. Combining the linkedness of R and the connectivity of the graph
of A settles the proposition by virtue of Lemma 16. �
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For a pair of opposite facets {F , Fo} in a cube, the restriction of the projection
πFo : Qd → Fo (Definition 9) to F is a bijection from V (F) to V (Fo). With the
help of π, given the star S of a vertex s in a cubical polytope and a facet F in S,
we can define an injection from the vertices in F , except the vertex opposite to s,
to the antistar of F in S. Defining this injection is the purpose of Lemma 25.

Lemma 25. Let F be a facet in the star S of a vertex s in a cubical d-polytope.
Then there is an injective function, defined on the vertices of F except the vertex
so opposite to s, that maps each such vertex in F to a neighbour in V (S) \V (F).

Proof. We construct the aforementioned injection f between V (F)\{so} and V (S)\
V (F) as follows. Let R1, . . . , Rd–1 be the (d – 2)-faces of F containing s, and let
J1, . . . , Jd–1 be the other facets of S containing R1, . . . , Rd–1, respectively. Every
vertex in F other than so lies in R1∪· · ·∪Rd–1. Let Ro

i be the (d–2)-face in Ji that is
opposite to Ri for i ∈ [1, d –1]. For every vertex v in V (Rj)\(V (R1)∪· · ·∪V (Rj–1))
define f (v) as the projection π in Jj of v onto V (Ro

j ), namely f (v) := πRo
j
(v);

observe that πRo
j
(v) ∈ V (Ro

j ) \ (V (Ro
1) ∪ · · · ∪ V (Ro

j–1)). Here R–1 and Ro
–1 are

empty sets. The function f is well defined as Ri and Ro
i are opposite (d – 2)-cubes

in the (d – 1)-cube Ji .
To see that f is an injection, take distinct vertices v1, v2 ∈ V (F) \ {so}, where

v1 ∈ V (Ri) \ (V (R1) ∪ · · · ∪ V (Ri–1)) and v2 ∈ V (Rj) \ (V (R1) ∪ · · · ∪ V (Rj–1))
for i ≤ j. If i = j then f (v1) = πRo

i
(v1) 6= πRo

i
(v2) = f (v2). If instead i < j then

f (v1) ∈ V (Ro
i ) ⊆ V (Ro

1)∪ · · · ∪V (Ro
j–1), while f (v2) 6∈ V (Ro

1)∪ · · · ∪V (Ro
j–1). �

Proof of Lemma 23. Let d ≥ 5 be odd and let k := (d + 1)/2. Let s1 be a vertex
in a cubical d-polytope P and let S1 denote the star of s1 in B(P). Let X be any
set of 2k vertices in the graph G(S1) of S1. The vertices in X are our terminals.
Also let Y := {{s1, t1}, . . . , {sk , tk}} be a labelling and pairing of the vertices of X .
We aim to find a Y -linkage {L1, . . . , Lk} in G where Li joins the pair {si , ti} for
i = 1, . . . , k. Recall that a path is X -valid if it contains no inner vertex from X .

We consider a facet F1 of S1 containing t1 and having the largest possible number
of terminals.

The necessary condition of Y being linked in S1 is easy to prove. Suppose that
the vertex s1 is in Configuration dF. Since distF1(s1, t1) = d – 1, it follows that F1
is the only facet of S1 that contains t1. Then all the neighbours of t1 in F1, and
thus, in S1 are in X . As a consequence, every s1 – t1 path in S1 must touch X .
Hence Y is not linked.

We decompose the sufficiency proof into four cases based on the number of
terminals in F1, proceeding from the more manageable case to the more involved
one.
Case 1. |X ∩V (F1)| = d.
Case 2. 3 ≤ |X ∩V (F1)| ≤ d – 1.
Case 3. |X ∩V (F1)| = 2 .
Case 4. |X ∩V (F1)| = d + 1 and the vertex s1 is not in Configuration dF.
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The sufficiency proof of Lemma 23 is long, so we outline the main ideas. We
let A1 be the antistar of F1 in S1 and let L1 be the link of s1 in F1. Using the
(k – 1)-linkedness of F1 (Theorem 8), we link as many pairs of terminals in F1 as
possible through disjoint X -valid paths Li := si –ti . For those terminals that cannot
be linked in F1, if possible we use the injection from V (F1) to V (A1) granted by
Lemma 25 to find a set NA1 of pairwise distinct neighbours in A1 not in X . Then,
using the (k – 2)-linkedness of A1 (Proposition 24), we link the corresponding pairs
of terminals in A1 and vertices in NA1 accordingly. This general scheme does
not always work, as the vertex so

1 opposite to s1 in F1 does not have an image
in A1 under the aforementioned injection or the image of a vertex in F1 under
the injection may be a terminal. In those scenarios we resort to ad hoc methods,
including linking corresponding pairs in the link of s1 in F1, which is (k – 1)-linked
by Proposition 7 and does not contain s1 or so

1 , or linking corresponding pairs in
ridges disjoint from F1, which are (k – 1)-linked by Theorem 8.

To aid the reader, each case is broken down into subcases highlighted in bold.
Recall that, given a pair {F , Fo} of opposite facets in a cube Q, for every vertex

z ∈ V (F) we denote by zp
Fo or πQ

Fo(z) the unique neighbour of z in Fo.

Case 1. |X ∩V (F1)| = d.

Without loss of generality, assume that t2 6∈ V (F1).
Suppose first that distF1(s2, s1) < d – 1. There exists a neighbour s′2 of s2 in

A1. With the use of the strong (k – 1)-linkedness of F1 (Theorem 8), find disjoint
paths L1 := s1 – t1 and Li := si – ti (i ∈ [3, k]) in F1, each avoiding s2. Find a
path L2 in S1 between s2 and t2 that consists of the edge s2s′2 and a subpath in A1
between s′2 and t2, using the connectivity of A1 (see Proposition 18). The paths Li
(i ∈ [1, k]) give the desired Y -linkage.

Now assume distF1(s2, s1) = d – 1. Since 2k – 1 = d and there are d – 1 pairs of
opposite (d – 2)-faces in F1, by Lemma 10 there exists a pair {R, Ro} of opposite
ridges of F1 that is not associated with the set Xs2 := (X ∩ V (F1)) \ {s2}, whose
cardinality is d – 1. Assume s2 ∈ R. Then s1 ∈ Ro.

Suppose all the neighbours of s2 in R are in X ; that is, NR(s2) = X \{s1, s2, t2}.
The projection πF1

Ro(s2) of s2 onto Ro is not in X since s1 is the only terminal in Ro

and distF1(s2, s1) = d – 1 ≥ 2. Next find disjoint paths Li := si – ti for i ∈ [3, k] in
R that do not touch s2 or t1, using the (k – 1)-linkedness of R if d ≥ 7 (Lemma 15)
or the 3-connectivity of R if d = 5. With the help of Lemma 25, find a neighbour
s′2 of πF1

Ro(s2) in A1, and with the connectivity of A1, a path L2 between s2 and t2
that consists of the length-two path s2π

F1
Ro(s2)s′2 and a subpath in A1 between s′2

and t2. Finally, find a path L1 in F1 between s1 and t1 that consists of the edge
t1πF1

Ro(t1) and a subpath in Ro disjoint from πF1
Ro(s2) (here use the 2-connectivity

of Ro). The paths Li (i ∈ [1, k]) give the desired Y -linkage.
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Thus assume there exists a neighbour s̄2 of s2 in V (R) \X . Let XRo := πF1
Ro(X \

{s2, t2}). Find a path L2 between t2 and s2 that consists of the edge s2s̄2 and a
subpath in A1 between t2 and a neighbour s′2 of s̄2 in A1.

Let d ≥ 7. Find disjoint paths Li := πF1
Ro(si) – πF1

Ro(ti) (i ∈ [1, k] and i 6= 2) in
Ro linking the d – 1 vertices in XRo using the (k – 1)-linkedness of Ro; add the edge
πF1

Ro(ti)ti to Li if ti ∈ R or the edge πF1
Ro(si)si to Li if si ∈ R. The disjoint paths

Li (i ∈ [1, k]) gives the desired Y -linkage.
Let d = 5. If the sequence s1,πF1

Ro(s3),πF1
Ro(t1),πF1

Ro(t3) in XRo is not in a 2-face
of Ro in cyclic order, then the same reasoning as in the case of d ≥ 7 applies.
Thus assume otherwise. This in turn implies that πF1

R (s3) 6∈ {s2, s′2} and πF1
R (t3) 6∈

{s2, s′2}, since distF1(s1, s2) = 4.
Find a path L′3 in R between πF1

R (s3) and πF1
R (t3) such that L′3 is disjoint from

both s2 and s′2 and disjoint from t1 if t1 ∈ R; here use Corollary 11, which ensures
that the vertices s2, s′2 and t1, if they are all in R, cannot separate πF1

R (s3) from
πF1

R (t3) in R, since a separator of size three in R must be an independent set.
Extend the path L′3 in R to a path L3 := s3π

F1
R (s3)L′3π

F1
R (t3)t3 in F1, if necessary.

Find a path L′1 := s1 – πF1
Ro(t1) in Ro disjoint from πF1

Ro(s3) and πF1
Ro(t3), using the

3-connectivity of Ro. Extend L′1 to a path L1 := s1L′1π
F1
Ro(t1)t1 in F1, if necessary.

The linkage {L1, L2, L3} is a Y -linkage. This completes the proof of Case 1.

Case 2. 3 ≤ |X ∩V (F1)| ≤ d – 1.

Since 2k – 1 = d and there are d – 1 pairs of opposite facets in F1, by Lemma 10
there exists a pair {R, Ro} of opposite ridges of F1 that is not associated with
X ∩V (F1). Assume s1 ∈ R. We consider two subcases according to whether t1 ∈ R
or t1 ∈ Ro.

Suppose first that t1 ∈ R. The (d – 2)-connectivity of R ensures the existence
of an X -valid path L1 := s1 – t1 in R. Let

XRo := πF1
Ro((X \ {s1, t1}) ∩V (F1)).

Then 1 ≤ |XRo | ≤ d – 3. Let so
1 be the vertex opposite to s1 in F1; the vertex so

1
has no neighbour in A1.

Let Z̄ be a set of |V (A1) ∩ X | distinct vertices in V (Ro) \ (XRo ∪ {so
1}). Use

Lemma 25 to obtain a set Z in A1 of |Z̄ | distinct vertices adjacent to vertices in Z̄ .
Then |Z | = |V (A1)∩X | ≤ d – 2. To see that |Z̄ | ≤ |V (Ro) \ (XRo ∪{so

1})|, observe
that, for d ≥ 5 and |XRo | ≤ d – 3, we get

|V (Ro) \ (XRo ∪ {so
1})| ≥ 2d–2 – (d – 3) – 1 ≥ d – 2 ≥ |Z̄ | = |Z |.

Using the (d –2)-connectivity of A1 (Proposition 18) and Menger’s theorem, find
disjoint paths S̄i and T̄j (i, j 6= 1) in A1 between V (A1)∩X and Z . Then produce
disjoint paths Si and Tj (i, j 6= 1) from terminals si and tj in A1, respectively, to
Ro by adding edges z`z̄` with z` ∈ Z and z̄` ∈ Z̄ to the corresponding paths S̄i and
T̄j . If si or tj is already in Ro, let Si := si or Tj := tj , accordingly. If instead si
or tj is in R, let Si be the edge siπ

F1
Ro(si) or let Tj be the edge tjπF1

Ro(tj). It follows
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Figure 2. Auxiliary figure for Case 2 of Lemma 23. (a) A con-
figuration where t1 ∈ R and the subset X+

Ro of Ro is highlighted
in bold. (b) A configuration where t1 ∈ Ro and the facet J is
highlighted in bold.

that the paths Si and Ti for i ∈ [2, k] are all pairwise disjoint. Let X+
Ro be the

intersections of Ro and the paths Si and Tj (i, j 6= 1). Then |X+
Ro | = d – 1. Suppose

that X+
Ro =

{
s̄2, t̄2, . . . , s̄k , t̄k

}
. The corresponding pairing Y +

Ro of the vertices in
X+

Ro can be linked through paths L̄i := s̄i – t̄i (i ∈ [2, k]) in Ro using the (k – 1)-
linkedness of Ro (Theorem 8). See Fig. 2(a) for a depiction of this configuration.
In this case, the desired Y -linkage is given by the following paths.

Li :=

s1L1t1, for i = 1;

siSi s̄i L̄i t̄iTi ti , otherwise.
Some comments for d = 5 are in order. By virtue of Proposition 4, we need to

make sure that the sequence s̄2, s̄3, t̄2, t̄3 in X+
Ro is not in a 2-face of Ro in cyclic

order. To ensure this, we need to be a bit more careful when selecting the vertices
in Z̄ . Indeed, if there are already two vertices in XRo at distance three in Ro, no
care is needed when selecting Z̄ , so proceed as in the case of d ≥ 7. Otherwise,
pick a vertex z̄ ∈ Z̄ ⊆ V (Ro) \ (XRo ∪ {so

1}) such that z̄ is the unique vertex in
Ro with distRo(z̄, x) = 3 for some vertex x ∈ XRo ; this vertex x exists because
|X ∩ V (F1)| ≥ 3. Selecting such a z̄ 6= so

1 is always possible because so
1 is not at

distance three in Ro from any vertex in XRo : the unique vertex in Ro at distance
three from so

1 is πF1
Ro(s1), and πF1

Ro(s1) 6∈ X because the pair {R, Ro} is not associated
with X ∩ V (F1). Once z̄ is selected, the set Z will contain a neighbour z of z̄. In
this way, some path Si or Tj bringing terminals si or tj in A1 into Ro through Z
would use the vertex z, thereby ensuring that x and z̄ would be both in X+

Ro . This
will cause the the sequence s̄2, s̄3, t̄2, t̄3 not to be in a 2-face, and thus, not in cyclic
order.
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Suppose now that t1 ∈ Ro. Let

XR := πF1
R ((X \ {t1}) ∩V (F1)).

There are at most d – 2 terminal vertices in Ro. Therefore, the (d – 2)-connectivity
of Ro ensures the existence of an X -valid πF1

Ro(s1) – t1 path L̄1 in Ro. Then let
L1 := s1π

F1
Ro(s1)L̄1t1. Let J be the other facet in S1 containing R and let RJ be

the (d – 2)-face of J disjoint from R. Then RJ ⊂ A1. Since there are at most
d – 2 terminals in A1 and since A1 is (d – 2)-connected (Proposition 18), we can
find corresponding disjoint paths Si and Tj bringing the terminals in A1 to RJ
(Theorem 13). For terminals si and tj in X ∩ V (R), let Si := si and Tj := tj
for i, j 6= 1, while for terminals si and tj in X ∩ V (Ro), let Si := siπ

F1
R (si) and

Tj := tjπF1
R (tj) for i, j 6= 1. Let XJ be the set of the intersections of the paths Si

and Tj with J plus the vertex s1. Then XJ ⊂ V (J ) and |XJ | = d (since t1 ∈ Ro).
Suppose that XJ =

{
s1, s̄2, t̄2, . . . , s̄k , t̄k

}
and let YJ =

{{
s̄2, t̄2

}
, . . . ,

{
s̄k , t̄k

}}
be

a pairing of XJ \ {s1}.
Resorting to the strong (k – 1)-linkedness of the facet J (Theorem 8), we obtain

k – 1 disjoint paths L̄i := s̄i – t̄i for i 6= 1 that correspondingly link YJ in J , with
all the paths avoiding s1. See Fig. 2(b) for a depiction of this configuration. In this
case, the desired Y -linkage is given by the following paths.

Li :=

s1L1t1, for i = 1;

siSi L̄iTi ti , otherwise.

Case 3. |X ∩V (F1)| = 2.

In this case, we have that |V (A1) ∩ X | = d – 1. The proof of this case requires
the definition of several sets. For quick reference and ease of readability, we place
most of these definitions in itemised lists. We begin with the following sets:

• S12, the star of s2 in S1 (that is, the complex formed by the facets of P
containing s1 and s2);
• G(S12), the graph of S12; and
• Γ12, the subgraph of G(S12) and G(A1) that is induced by V (S12)\V (F1).

It follows that every neighbour in G(A1) of s2 is in Γ12; in other words, the set of
neighbours of s2 in each subgraph is the same:

(1) NΓ12(s2) = NG(A1)(s2).

The first step for this case is to bring the terminals in A1 into Γ12.
Denote by Si an X -valid path in A1 from the terminal si ∈ A1 to Γ12. Let
V (Si) ∩ V (Γ12) = {ŝi}. Similarly, define Tj and t̂j . The existence of these d – 2
pairwise disjoint X -valid paths Si and Tj is ensured by the (d – 2)-connectivity of
the graph G(A1) of A1, which in turn is guaranteed by Proposition 18. By (1) each
path Si or Tj touches Γ12 at a vertex other than s2; this is so because each such
path will need to reach the neighbourhood of s2 in Γ12 before reaching s2. Every
terminal vertex x already in Γ12 is also denoted by x̂, and the corresponding path
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Si or Tj consists only of the vertex x̂. We also let ŝ2 denote s2. The set of vertices
x̂ is accordingly denoted by X̂ . Then |X̂ | = d – 1. Abusing terminology, since there
is no potential for confusion, we call the vertices in X̂ terminals as well. Figure 3(a)
depicts this configuration.

Pick a facet

• F12 in S12 that contains t̂2.

An important point is that t1 is not in F12; otherwise F12 would contain s1,s2 and
t1, and it should have been chosen instead of F1.

The second step is to find a path L1 in F1 between s1 and t1 such that
V (L1) ∩V (F12) = {s1}.

To see the existence of such a path, note that the intersection of F12 and F1 is
at most a (d – 2)-face containing s1 (but not t1), which is contained in a (d – 2)-
face R of F1 containing s1 but not t1 (Remark 20). Find a path L′1 in Ro, the
ridge of F1 disjoint from R and containing t1, between πF1

Ro(s1) and t1 and let
L1 := s1π

F1
Ro(s1)L′1t1.

The third step is to bring the d – 1 terminal vertices x̂ ∈ Γ12 into the
facet F12 so that they can be linked there, avoiding s1. We consider two
cases depending on the number of facets in S12.

Suppose S12 only consists of F12. Then

X̂ = {ŝ2, . . . , ŝk , t̂2, . . . , t̂k} ⊂ V (Γ12) ⊂ V (F12).

With the help of the strong (k – 1)-linkedness of F12 (Theorem 8), we can link the
pairs {ŝi , t̂i} for i ∈ [2, k] in F12 through disjoint paths L̂i , all avoiding s1. The
paths L̂i concatenated with the paths Si and Ti for i ∈ [2, k] give a (Y \ {s1, t1})-
linkage {L2, . . . , Lk}. Hence the desired Y -linkage is as follows.

Li :=

s1π
F1
Ro(s1)L′1t1, for i = 1;

siSi ŝi L̂i t̂iTi ti , otherwise.
Assume S12 has more than one facet. We have that

X̂ = {ŝ2, . . . , ŝk , t̂2, . . . , t̂k} ⊂ V (Γ12).

Define

• A12 as the complex of S12 induced by V (S12) \ (V (F1) ∪V (F12)).

Then the graph G(A12) of A12 coincides with the subgraph of Γ12 induced by
V (Γ12) \V (F12). Figure 3(b) depicts this configuration.

Our strategy is first to bring the d – 3 terminal vertices x̂ in Γ12 other than ŝ2
and t̂2 into F12 \ F1 through disjoint paths Ŝi and T̂j , without touching ŝ2 and t̂2.
Second, denoting by s̃i and t̃j the intersection of Ŝi and T̂j with V (F12) \ V (F1),
respectively, we link the pairs {s̃i , t̃i} for i = [2, k] in F12 through disjoint paths
L̃i , without touching s1; here we resort to the strong (k – 1)-linkedness of F12. We
develop these ideas below.
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F1 ŝi2
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Figure 3. Auxiliary figure for Case 3 of Lemma 23. A represen-
tation of S1. (a) A configuration where the subgraph Γ12 is tiled in
falling pattern and the complex A1 is coloured in grey. (b) A de-
piction of S12 with more than one facet; the facet F12 is highlighted
in bold, the complex A1 is coloured in grey and the complex A12
is highlighted in falling pattern. (c) A depiction of S12 with more
than one facet; the facets F12 and J12 are highlighted in bold and
their intersection U is highlighted in falling pattern; the set W in
J12 is coloured in dark grey. (d) A depiction of a portion of S12,
zooming in on the facets F12 and J12; each facet is represented as
the convex hull of two disjoint (d – 2)-faces, and their intersection
U is highlighted in falling pattern. The sets W and πJ12

U (W ) in
J12 are coloured in dark grey.

From Lemma 21(iii), it follows that A12 is nonempty and contains a spanning
strongly connected (d – 3)-subcomplex, thereby implying, by Proposition 6, that

G(A12) is (d – 3)-connected.

Since S12 contains more than one facet, the following sets exist:

• U , a (d – 2)-face in F12 that contains s1 and ŝ2 (= s2) (Remark 19);
• J12, the other facet in S12 containing U ;
• UJ , the (d – 2)-face in J12 disjoint from U , and as a consequence, disjoint

from F12;
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• CU , the subcomplex of B(U ) induced by V (U )\V (F1), namely the antistar
of U ∩ F1 in U ; and
• CUJ , the subcomplex of B(UJ ) induced by V (UJ ) \V (F1).

The subcomplex CU is nonempty, since ŝ2 ∈ V (U ) \ V (F1), and so, thanks to
Lemma 17, it is a strongly connected (d – 3)-complex. Then, from CU containing
a (d – 3)-face it follows that

(2) |V (CU )| = |V (U ) \V (F1))| ≥ 2d–3 ≥ d – 1 for d ≥ 5.

The subcomplex CUJ is nonempty: if UJ ∩F1 = ∅ then CUJ = B(UJ ); otherwise
CUJ is the antistar of UJ ∩ F1 in UJ , and since U ∩ F1 6= ∅ (s1 is in both), it
follows that UJ 6⊆ F1. Put differently, the vertex in J12 opposite to s1 is not in U ,
since s1 ∈ U , nor is it in F1, and so it must be in CUJ . Therefore, according to
Lemma 17, CUJ is a strongly connected (d – 3)-complex. Hence, in both instances,

(3) |V (CUJ )| = |V (UJ ) \V (F1))| ≥ 2d–3 ≥ d – 1 for d ≥ 5.

Recall that we want to bring every vertex in the set X̂ , which is contained in
Γ12, into F12 \ F1. We construct |X̂ ∩ V (A12)| pairwise disjoint paths Ŝi and T̂j
from ŝi ∈ A12 and t̂j ∈ A12, respectively, to V (F12) \V (F1) as follows. Pick a set

W ⊂ V (CUJ ) \ πJ12
UJ

(
(X̂ ∪ {s1}) ∩U

)
of |X̂ ∩V (A12)| vertices in CUJ . Then πJ12

U (W ) is disjoint from (X̂ ∪{s1})∩U . In
other words, the vertices in W are in CUJ and are not projections of the vertices in
(X̂ ∪{s1})∩U onto UJ . We show that the set W exists, which amounts to showing
that CUJ has enough vertices to accommodate W .

First note that

(4)
|X̂ ∩V (A12)|+ |(X̂ ∪ {s1}) ∩V (F12)| = |X̂ ∪ {s1}| = d,

(X̂ ∪ {s1}) ∩V (U ) ⊆ (X̂ ∪ {s1}) ∩V (F12).

If UJ ∩ F1 = ∅ then CUJ = B(UJ ). And (4) together with |V (UJ )| = 2d–2 ≥ d
for d ≥ 5 gives the following chain of inequalities∣∣∣V (CUJ ) \ πJ12

UJ

(
(X̂ ∪ {s1}) ∩V (U )

)∣∣∣ ≥ d –
∣∣∣(X̂ ∪ {s1}) ∩V (U )

∣∣∣
≥
∣∣∣X̂ ∪ {s1}

∣∣∣ –
∣∣∣(X̂ ∪ {s1}) ∩V (F12)

∣∣∣ =
∣∣∣X̂ ∩V (A12)

∣∣∣ = |W | ,

as desired.
Suppose now UJ ∩ F1 6= ∅. Since s1 ∈ U ∩ F1 and J12 = conv{U ∪ UJ}, the

cube J12 ∩F1 has opposite facets UJ ∩F1 and U ∩F1. From s1 ∈ U ∩F1 it follows
that πJ12

UJ
(s1) ∈ UJ ∩ F1, and thus, that πJ12

UJ
(s1) 6∈ CUJ ; here we use the following

remark.

Remark 26. Let (K , Ko) be opposite facets in a cube Q and let B be a proper face
of Q such that B ∩K 6= ∅ and B ∩Ko 6= ∅. Then πQ

Ko(B ∩K ) = B ∩Ko.
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Since πJ12
UJ

(s1) 6∈ CUJ , using (3) and (4) we get∣∣∣V (CUJ ) \ πJ12
UJ

(
(X̂ ∪ {s1}) ∩V (U )

)∣∣∣ =
∣∣∣V (CUJ ) \ πJ12

UJ

(
X̂ ∩V (U )

)∣∣∣
≥ d – 1 –

∣∣∣X̂ ∩V (U )
∣∣∣ ≥ ∣∣∣X̂ ∣∣∣ –

∣∣∣X̂ ∩V (F12)
∣∣∣ =

∣∣∣X̂ ∩V (A12)
∣∣∣ = |W | .

In this way, we have shown that CUJ can accommodate the set W . We
now finalise the case.

There are at most d – 3 vertices x̂ in X̂ ∩V (A12) because ŝ2 and t̂2 are already in
V (F12)\V (F1). Since G(A12) is (d –3)-connected, we can find |W | = |X̂∩V (A12)|
pairwise disjoint paths Ŝ ′i and T̂ ′j in A12 from the terminals ŝi and t̂j in X̂ ∩V (A12)
to W . The X̂ -valid path Ŝi from ŝi ∈ A12 to V (F12) \ V (F1) then consists of the
subpath Ŝ ′i := ŝi – wi with wi ∈W plus the edge wiπ

J12
U (wi); from the choice of W

it follows that πJ12
U (wi) 6∈ X̂ ∪ {s1}. The paths T̂ ′j and T̂j are defined analogously.

Figure 3(c)-(d) depicts this configuration.
Denote by s̃i the intersection of Ŝi and V (F12) \ V (F1); similarly, define t̃j .

Every terminal vertex x̂ already in F12 is also denoted by x̃, and in this case we let
Ŝi or T̂j be the vertex x̃.

Now F12 contains the pairs
{

s̃i , t̃i
}

for i ∈ [2, k] and the terminal s1, as desired.
Link these pairs in F12 through disjoint paths L̃i , each avoiding s1, with the use of
the strong (k – 1)-linkedness of F12 (Theorem 8). The paths L̃i concatenated with
the paths Si , Ŝi , Ti and T̂i for i ∈ [2, k] give a (Y \ {s1, t1})-linkage {L2, . . . , Lk}.
Hence the desired Y -linkage is as follows.

Li :=

s1π
F1
Ro(s1)L′1t1, for i = 1;

siSi ŝi Ŝi s̃i L̃i t̃iT̂i t̂iTi ti , otherwise.

Case 4. |X ∩V (F1)| = d + 1 and the vertex s1 is not in Configuration dF.

Here we have that V (A1) ∩ X = ∅. This case is decomposed into three main
subcases A, B and C, based on the nature of the vertex so

1 opposite to s1 in F1,
which is the only vertex in F1 that does not have an image under the injection
from F1 to A1 defined in Lemma 25. And each subcase is then analysed for d ≥ 7
and d = 5 separately. The difficulty with d = 5 stems from the (d – 2)-faces of the
polytope not being 2-linked (Proposition 4).

SUBCASE A for d ≥ 7. The vertex so
1 opposite to s1 in F1 does not belong

to X . Let X ′ := X \ {t1} and let Y ′ := Y \ {{s1, t1}}. Since |X ′| = d, the strong
(k – 1)-linkedness of F1 (Theorem 8) gives a Y ′-linkage {L2, . . . , Lk} in the facet
F1 with each path Li := si – ti (i ∈ [2, k]) avoiding s1. We find pairwise distinct
neighbours s′1 and t′1 in A1 of s1 and t1, respectively. If none of the paths Li touches
t1, we find a path L1 := s1 – t1 in S1 that contains a subpath in A1 between s′1 and
t′1 (here use the connectivity of A1, Proposition 18), and we are home. Otherwise,
assume that the path Lj contains t1. With the help of Lemma 25, find pairwise
distinct neighbours s′j and t′j in A1 of sj and tj , respectively, such that the vertices
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s′1, t′1, s′j and t′j are pairwise distinct. According to Proposition 24, the complex A1
is 2-linked for d ≥ 7. Hence, we can find disjoint paths L′1 := s′1 – t′1 and L′j := s′j – t′j
in A1, respectively; these paths naturally give rise to paths L1 := s1s′1L′1t′1t1 in S1
and Lj := sjs′jL′j t′j tj in S1. The paths {L1, . . . , Lk} give the desired Y -linkage.

SUBCASE B for d ≥ 7. The vertex so
1 opposite to s1 in F1 belongs to

X but is different from t1, say so
1 = s2. First find a neighbour s′1 of s1 and a

neighbour t′1 of t1 in A1. There is a neighbour sF1
2 of s2 in F1 that is either t2 or a

vertex not in X : {s1, s2} ∩NF1(s2) = ∅ and |NF1(s2)| = d – 1. The link L1 of s1 in
F1 contains all the vertices in F1 except s1 and s2.

Suppose sF1
2 = t2. Let L2 := s2t2, and using the (k – 1)-linkedness of L1 (Propo-

sition 7), find disjoint paths t1 – t2 and Li := si – ti for i ∈ [3, k] in L1. Then define
a path L1 := s1 – t1 in S1 that contains a subpath in A1 between s′1 and t′1; here
we use the connectivity of A1 (Proposition 18). The paths {L1, . . . , Lk} give the
desired Y -linkage.

Assume sF1
2 is not in X . Observe that |(X \ {s1, s2}) ∪ {sF1

2 }| = d. Using
the (k – 1)-linkedness of L1 for d ≥ 7 (Proposition 7), find in L1 disjoint paths
L′2 := sF1

2 – t2 and L′i := si – ti for i ∈ [3, k]. Since t1 is also in L1 it may happen
that it lies in one of the paths L′i . If t1 does not belong to any of the paths L′i for
i ∈ [2, k], then find a path L1 := s1s′1L′1t′1t1 in S1 where L′1 is a subpath in A1
between s′1 and t′1, using the connectivity of A1 (Proposition 18). In this scenario,
let L2 := s2sF1

2 L′2t2 and Li := L′i for i ∈ [3, k]; the desired Y -linkage is given by
the paths {L1, . . . , Lk}.

If t1 belongs to one of the paths L′i with i ∈ [2, k], say L′j , then consider in A1 a
neighbour t′j of tj and, either a neighbour s′j of sj if j 6= 2 or a neighbour s′2 of sF1

2 .
From Lemma 25 it follows that the vertices s′1, t′1, s′j and t′j can be taken pairwise
distinct. Since A1 is 2-linked for d ≥ 7 (see Proposition 24), find in A1 a path L′1
between s′1 and t′1 and a path L′′j between s′j and t′j . As a consequence, we obtain
in S1 a path L1 := s1s′1L′1t′1t1 and, either a path Lj := sjs′jL′′j t′j tj if j 6= 2 or a path
L2 := s2sF1

2 s′2L′′2 t′2t2. In addition, let Li := L′i for i ∈ [3, k] and i 6= j. The paths
{L1, . . . , Lk} give the desired Y -linkage.

SUBCASES A AND B for d = 5. The vertex so
1 opposite to s1 in F1

either does not belong to X or belongs to X but is different from t1. Let
X := {s1, s2, s3, t1, t2, t3} be any set of six vertices in the graph G of a cubical 5-
polytope P. Also let Y := {{s1, t1}, {s2, t2}, {s3, t3}}. We aim to find a Y -linkage
{L1, L2, L3} in G where Li joins the pair {si , ti} for i = 1, 2, 3.

In both subcases there is a 3-face R of F1 containing both s1 and t1. Let J1 be
the other facet in S1 containing R. Denote by RJ and RF the ridges in J1 and F1,
respectively, that are disjoint from R. Then so

1 ∈ RF . We need the following claim.

Claim 1. If a 3-cube contains three pairs of terminals, there must exist two pairs
of terminals in the 3-cube, say {s1, t1} and {s2, t2}, that are not arranged in the
cyclic order s1, s2, t1, t2 in a 2-face of the cube.
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Proof. If no terminal in the cube is in Configuration 3F, we are done. So suppose
that one is, say s1, and that the sequence s1, x1, t1, x2 of vertices of X is present
in cyclic order in a 2-face. Without loss of generality, assume that s2 6∈ {x1, x2}.
Then s2 cannot be adjacent to both s1 and t1, since the bipartite graph K2,3 is not
a subgraph of G(Q3) (Remark 12). Thus the sequence s1, s2, t1, t2 cannot be in a
2-face in cyclic order. �

Suppose all the six terminals are in the 3-face R. By virtue of Claim 1, we
may assume that the pairs {s1, t1} and {s2, t2} are not arranged in the cyclic order
s1, s2, t1, t2 in a 2-face of R. Proposition 4 ensures that the pairs {πJ1

RJ
(s1),πJ1

RJ
(t1)}

and {πJ1
RJ

(s2),πJ1
RJ

(t2)} in RJ can be linked in RJ through disjoint paths L′1 and
L′2, since the sequence πJ1

RJ
(s1),πJ1

RJ
(s2),πJ1

RJ
(t1),πJ1

RJ
(t2) cannot be in a 2-face of

RJ in cyclic order. Moreover, by the connectivity of RF , there is a path L′3 in
RF linking the pair {πF1

RF
(s3),πF1

RF
(t3)}. The linkage {L′1, L′2, L′3} can naturally be

extended to a Y -linkage {L1, L2, L3} as follows.

Li :=

siπ
J1
RJ

(si)L′iπ
J1
RJ

(ti)ti , for i = 1, 2;

s3π
F1
RF

(s3)L′3π
F1
RF

(t3)t3, otherwise.
Suppose that R contains a pair {si , ti} for i = 2, 3, say {s2, t2}. There are

at most five terminals in R, and consequently, applying Lemma 14 to the polytope
F1 and its facet R, we obtain an X -valid path L1 := s1 – t1 in R or an X -valid path
L2 := s2 – t2 in R. For the sake of concreteness, say an X -valid path L2 exists in
R. From the connectivity of RF and RJ follows the existence of a path L′3 in RF
between πF1

RF
(s3) and πF1

RF
(t3), and of a path L′1 in RJ between πJ1

RJ
(s1) and πJ1

RJ
(t1).

The linkage {L′1, L′2, L′3} can be extended to a linkage {s1 – t1, s2 – t2, s3 – t3} in S1.
Suppose that the ridge R contains no other pair from Y and that the

ridge RF contains a pair (si , ti) (i = 2, 3). Without loss of generality, assume
s2 and t2 are in RF .

First suppose that s3 ∈ R, which implies that t3 ∈ RF . Further suppose that
there is a path T3 of length at most two from t3 to R that is disjoint from X\{s3, t3}.
Let {t′3} := V (T3) ∩ V (R). Use the 2-linkedness of J1 (Proposition 5) to find
disjoint paths L1 := s1 – t1 and L′3 := s3 – t′3 in J1. Let L3 := s3L′3t′3T3t3. Use the
3-connectivity of RF to find an X -valid path L2 := s2 – t2 in RF that is disjoint
from V (T3); note that |V (T3) ∩ V (RF )| ≤ 2. The paths {L1, L2, L3} give the
desired Y -linkage. Now suppose there is no such path T3 from t3 to R. Then,
the projection πF1

R (t3) is in {s1, t1}, say πF1
R (t3) = t1; the projection πF1

RF
(s1) is

a neighbour of t3 in RF ; and both s2 and t2 are neighbours of t3 in RF . This
configuration implies that s1 and t1 are adjacent in R. Let L1 := s1t1. Find a path
L2 := s2 – t2 in RF that is disjoint from t3, using the 3-connectivity of RF . Then
find a neighbour s′3 in A1 of s3 and a neighbour t′3 in A1 of t3; note that, since
distF1(s1, t3) ≤ 2, we have that t3 6= so

1 . Find a path L3 in S1 between s3 and
t3 that contains a subpath L′3 in A1 between s′3 and t′3; here use the connectivity
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of A1 (Proposition 18): L3 := s3s′3L′3t′3t3. The linkage {L1, L2, L3} is the desired
Y -linkage.

Assume that s3 ∈ RF ; by symmetry we can further assume that t3 ∈ RF . The
connectivity of R ensures the existence of a path L1 := s1 – t1 therein. In the case
of so

1 ∈ X , without loss of generality, assume so
1 = s2. The 3-connectivity of RF

ensures the existence of an X -valid path L2 := s2 – t2 therein. Use Lemma 25 to
find pairwise distinct neighbours s′3 of s3 and t′3 of t3 in A1; these exist since s3 6= so

1
and t3 6= so

1 . Using the connectivity of A1 (Proposition 18), find a path L3 := s3 – t3
in S1 that contains a subpath s′3 – t′3 in A1. The linkage {L1, L2, L3} is the desired
Y -linkage.

Assume neither R nor RF contains a pair {si , ti} (i = 2, 3). Without loss
of generality, assume that s2, s3 ∈ R, that t2, t3 ∈ RF and that t2 6= so

1 .
First suppose that there exists a path S3 in F1 from s3 to RF that is of length

at most two and is disjoint from X \ {s3, t3}. Let {ŝ3} := V (S3) ∩ V (RF ). Find
pairwise distinct neighbours s′2 and t′2 of s2 and t2, respectively, in A1. And find a
path L2 := s2 – t2 in S1 that contains a subpath s′2 – t′2 in A1 (using the connectivity
of A1). Using the 3-connectivity of RF link the pair {ŝ3, t3} in RF through a path
L′3 that is disjoint from t2. Let L3 := s3S3ŝ3L′3t3. Since Corollary 11 ensures that
any separator of size three in a 3-cube must be independent, we can find a path
L1 := s1 – t1 in R that is disjoint from s2 and V (S3)∩V (R); the set V (S3)∩V (R)
has either cardinality one or contains an edge. The paths {L1, L2, L3} form the
desired Y -linkage.

Assume that there is no such path S3. In this case, the neighbours of s3 in
F1 are s1, t1, s2 from R and t2 from RF . Use Lemma 25 to find a neighbour s′3
of s3 in A1. Again use Lemma 25 either to find a neighbour t′3 of t3 if t3 6= so

1
or to find a neighbour t′3 of a neighbour u of t3 in RF (with u 6= t2) if t3 = so

1 .
Let T3 be the path of length at most two from t3 to A1 defined as T3 = t3t′3
if t3 6= so

1 and T3 = t3ut′3 if t3 = so
1 . Find a path L3 in S1 between s3 and t3

that contains a subpath in A1 between s′3 and t′3; here use the connectivity of A1
(Proposition 18). We next find a path S2 in F1 from s2 to RF that is of length at
most two and is disjoint from V (T3) ∪ {s1, t1, s3}. There are exactly four disjoint
such s2 – RF paths of length at most two, one through each of the neighbours of s2
in F1. One such path is s2s3t2. Among the remaining three s2 – RF paths, since
none of them contains s1 or t1 and since |V (T3) ∩ V (RF )| ≤ 2, we find the path
S2. Let ŝ2 := V (S2)∩V (RF ). Find a path L′2 := ŝ2 – t2 in RF that is disjoint from
V (T3), using the 3-connectivity of RF . Let L2 := s2S2ŝ2L′2t2. Since the vertices in
(V (S2) ∩V (R)) ∪ {s3} cannot separate s1 from t1 in R (Corollary 11), find a path
L1 := s1 – t1 in R disjoint from V (S2)∩V (R)∪{s3}; the set V (S2) has cardinality
one or contains one edge. The paths {L1, L2, L3} form the desired Y -linkage.

SUBCASE C for d ≥ 7. The vertex opposite to s1 in F1 coincides with
t1. And the vertex s1 is not in Configuration dF.. Then t1 has no neighbour
in A1. In fact, F1 is the only facet in S1 containing t1.
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Because the vertex s1 is not in Configuration dF, t1 has a neighbour tF1
1 in F1

that is not in X . Here we reason as in the scenario in which s2 = so
1 and s2 has a

neighbour not in X .
First, using the (k – 1)-linkedness of L1 (Proposition 7) find disjoint paths Li :=

si – ti in L1 for i ∈ [2, k]. It may happen that tF1
1 is in one of the paths Li for

i ∈ [2, k]. Second, consider neighbours s′1 and t′1 in A1 of s1 and tF1
1 , respectively.

If tF1
1 doesn’t belong to any path Li , then find a path L1 := s1 – t1 that

contains the edge t1tF1
1 and a subpath L′1 in A1 between s′1 and t′1; that is,

L1 = s1s′1L′1t′1tF1
1 t1. The desired Y -linkage is given by {L1, . . . , Lk}.

If tF1
1 belongs to one of the paths Li with i ∈ [2, k], say Lj , then disregard this

path Lj and consider in A1 a neighbour s′j of sj and a neighbour t′j of tj . From
Lemma 25, it follows that the vertices s′1, t′1, s′j and t′j can be taken pairwise distinct.
Using the 2-linkedness of A1 for d ≥ 7, find a path L′1 in A1 between s′1 and t′1 and
a path L′j in A1 between s′j and t′j . Let L1 := s1s′1L′1t′1tF1

1 t1 and let Lj := sjs′jL′j t′j tj
be the new sj – tj path. The paths {L1, . . . , Lk} form the desired Y -linkage.

SUBCASE C for d = 5. The vertex opposite to s1 in F1 coincides with
t1. And the vertex s1 is not in Configuration dF.. Hence we may suppose
that t1 has a neighbour t′1 not in X . We reason as in Subcases A and B for d = 5.
We give the details for the sake of completeness.

Let R denote the 3-face in F1 containing both s1 and t′1; distR(s1, t′1) = 3. Let
RF be the 3-face of F1 disjoint from R. Let J1 be the other facet in S1 containing
R and let RJ be the 3-face of J1 disjoint from R.

Suppose R contains a pair {si , ti} (i = 2, 3), say (s2, t2). There are at
most five terminals in R. Since the smallest face in R containing s1 and t′1 is
3-dimensional, the sequence πJ1

RJ
(s1),πJ1

RJ
(s2),πJ1

RJ
(t′1),πJ1

RJ
(t2) cannot appear in a

2-face of RJ in cyclic order. As a consequence, the pairs {πJ1
RJ

(s1),πJ1
RJ

(t′1)} and
{πJ1

RJ
(s2),πJ1

RJ
(t2)} can be linked in RJ through disjoint paths L′1 and L′2, thanks to

Proposition 4. Let L1 := s1π
J1
RJ

(s1)L′1π
J1
RJ

(t′1)t′1t1 and L2 := s2π
J1
RJ

(s2)L′2π
J1
RJ

(t2)t2.
From the 3-connectivity of RF follows the existence of a path L′3 in RF between
πF1

RF
(s3) and πF1

RF
(t3) that avoids t1. Let L3 := s3π

F1
RF

(s3)L′3π
F1
RF

(t3)t3. The paths
{L1, L2, L3} form the desired Y -linkage.

Suppose that the ridge R contains no pair {si , ti} (i = 2, 3) and that the
ridge RF contains a pair {si , ti} (i = 2, 3), say {s2, t2}. Then, there are at most
five terminals in RF . If there are at most four terminals in RF , the 3-connectivity
of RF ensures the existence of an X -valid path L2 := s2 – t2 in RF ; if there are
exactly five terminals in RF , applying Lemma 14 to the polytope F1 and its facet
RF gives either an X -valid path L2 := s2 – t2 or an X -valid path L3 := s3 – t3 in RF .
As a result, regardless of the number of terminals in RF , we can assume there is an
X -valid path L2 := s2 – t2 in RF . Find pairwise distinct neighbours s′3 and t′3 in A1
of s3 and t3, respectively, and a path L3 in S1 between s3 and t3 that contains a
subpath in A1 between s′3 and t′3; here use the connectivity of A1 (Proposition 18).
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In addition, let L′1 be a path in R between s1 and t′1; here use the 3-connectivity of
R to avoid any terminal in R. Let L1 := s1L′1t′1t1. The Y -linkage is given by the
paths {L1, L2, L3}.

Assume neither R nor RF1 contains a pair {si , ti} (i = 2, 3). Without loss
of generality, we can assume s2, s3 ∈ R and t2, t3 ∈ RF .

For some i = 2, 3, there exists a path Si in F1 from si to RF that is of length
at most two and is disjoint from t′1 and X \ {si , ti}. Suppose there is no such path
S3 = s3 – RF . Then the neighbours of s3 in F1 would be s1, t′1, s2 from R and t2
from RF . But, since there are exactly four s2 – RF paths of length at most two in
F1 and since the vertex s2 could not be adjacent to {s1, t′1}, the existence of such
a path S2 = s2 – RF would be guaranteed. Hence assume the existence of such a
path S3 = s3 – RF . Let {ŝ3} := V (S3)∩V (RF ). Find an X -valid path L′3 := ŝ3 – t3
in RF using its 3-connectivity. Let L3 := s3S3ŝ3L′3t3. Then find neighbours s′2 and
t′2 of s2 and t2, respectively, in A1, and a path L2 := s2 – t2 in S1 that contains a
subpath s′2 – t′2 in A1 (using the connectivity of A1). Since Corollary 11 ensures
that any separator of size three in a 3-cube must be independent, we can find an
L′1 := s1 – t′1 in R that is disjoint from s2 and V (S3)∩V (R); the set V (S3)∩V (R)
has either cardinality one or contains an edge. Let L1 := s1L′1t′1t1. The paths
{L1, L2, L3} form the desired Y -linkage.

And finally, the proof of Lemma 23 is complete. �

5. Strong linkedness of cubical polytopes

Proof of Theorem 3 (Strong linkedness of cubical polytopes). Let P be a cubical d-
polytope. For odd d Theorems 2 and 3 are equivalent. So assume d = 2k ≥ 4.
Let X be a set of d + 1 vertices in P. Arbitrarily pair 2k vertices in X to obtain
Y := {{s1, t1}, . . . , {sk , tk}}. Let x be the vertex of X not paired in Y . We find
a Y -linkage {L1, . . . , Lk} where each path Li joins the pair {si , ti} and avoids the
vertex x.

Using the d-connectivity of G(P) and Menger’s theorem, bring the d = 2k
terminals in X\{x} to the link of x in the boundary complex of P through 2k disjoint
paths Lsi and Lti for i ∈ [1, k]. Let s′i := V (Lsi )∩ link(x) and t′i := V (Lti )∩ link(x)
for i ∈ [1, k]. Thanks to Proposition 7, the link of x is k-linked. Using the k-
linkedness of link(x), find disjoint paths L′i := s′i – t′i in link(x). Observe that
all these k paths {L′1, . . . , L′k} avoid x. Extend each path L′i with Lsi and Lti to
form a path Li := si – ti for i ∈ [1, k]. The paths {L1, . . . , Lk} form the desired
Y -linkage. �
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