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Abstract

Population and conservation genetics studies have greatly benefited from the development of new
techniques and bioinformatic tools associated with next-generation sequencing. Analysis of
extensive datasets from whole-genome sequencing of even a few individuals allows the detection
of patterns of fine-scale population structure and detailed reconstruction of demographic dynamics
through time. In this study, we investigated the population structure, genomic diversity and
demographic history of the Komodo dragon (Varanus komodoensis), the World’s largest lizard, by
sequencing the whole genomes of 24 individuals from the five main Indonesian islands
comprising the entire range of the species. Three main genomic groups were observed. The
populations of the Island of Komodo and the northern coast of Flores, in particular, were identified
as two distinct conservation units. Degrees of genomic divergence among island populations were
interpreted as a result of changes in sea level affecting connectivity across islands. Demographic
inference suggested that Komodo dragons probably experienced a relatively steep population
decline over the last million years, reaching a relatively stable N, during the Saalian glacial cycle
(400-150 ka) followed by a rapid N, decrease. Genomic diversity of Komodo dragons was similar
to that found in endangered or already extinct reptile species. Overall, this study provides an
example of how whole-genome analysis of a few individuals per population can help define
population structure and intraspecific demographic dynamics. This is particularly important when

applying population genomics data to conservation of rare or elusive endangered species.
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1| INTRODUCTION

Single- and multi-locus molecular assays have been efficiently employed in a multitude of
population and conservation genetic studies on endangered species to assess population
divergence and gene flow, and how paleogeographical and historical factors as well as habitat
fragmentation may have affected contemporary population dynamics (e.g. Amos & Balmford,
2001; DeSalle & Amato, 2004; Hedrick, 2001). More recently, next-generation sequencing
technologies and advances in bioinformatic tools have introduced a wider, genomic perspective to
population ecology and conservation (Amato, DeSalle, Ryder, & Rosenbaum, 2009; Avise, 2010;
Hohenlohe, Funk, & Rajora, 2020; Supple & Shapiro, 2018).

Parallel sequencing of pools of DNA molecules results in the detection of tens of thousands of
single nucleotide polymorphisms (SNPs) and indels distributed along the whole genome. This
allows a comprehensive description of the patterns of genetic variation among individuals
(Ellegren, 2014; Hohenlohe, Hand, Andrews, & Luikart, 2018; Luikart et al., 2018). Population
structure can be estimated for multiple polymorphisms in a sliding window analysis across
genomic regions, resulting in increased accuracy and the possibility of better detecting differences
at specific genomic regions (Corander, Majander, Cheng, & Merild, 2013; Gaughran et al., 2018;
Martin & Van Belleghem, 2017; Steane et al., 2015; Waples, Larson, & Waples, 2016). Genomic
analysis also provides a powerful tool to reconstruct the demographic history of populations, infer
fluctuations in effective population size, test for population expansion and contraction, and
delineate conservation and management units (Funk, McKay, Hohenlohe, & Allendorf, 2012; Sato
et al.,, 2020; Smith & Flaxman, 2020; Smith et al., 2018; Younger et al., 2017). Moreover,
demographic events can be reconstructed over a much wider time scales than it is possible by
using high mutation rate loci, such as microsatellites (Li & Durbin, 2011).

A great advantage of using genomic data is that many independent loci allow for
comprehensive investigations to be conducted even when the sample size is small. Genetic
diversity and population differentiation estimated over thousands of loci in few individuals per
population may, in fact, be comparable to those obtained by genotyping a high number of
individuals using traditional molecular markers (Attard et al., 2018; Gaughran et al., 2018; Wright
et al., 2020). This is of particular importance when studying species of conservation concern, with
few or very elusive individuals available for sample collection, as well as relatively small island

populations, where a more comprehensive analysis of genomic diversity can better describe
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demographic patterns resulting from complex biogeographical scenarios (e.g. Jensen et al., 2018;
Merondun, Murray, & Shafer, 2019; Sjodin, Irvine, Ford, Howald, & Russello, 2020).

Among a variety of molecular techniques available for population genomic studies, the most
comprehensive approach is to sequence the whole genomes of target individuals (Fuentes-Pardo &
Ruzzante, 2017; Schlétterer, Tobler, Kofler, & Nolte, 2014; Therkildsen & Palumbi, 2017; Wright
et al., 2020). In this study, we assessed patterns of population structure and demographic history in
island populations of the Komodo dragon Varanus komodoensis, the World’s largest lizard, by
comparison of whole genome sequences obtained from a relatively limited number of animals.
The Komodo dragon is endemic to Komodo National Park (KNP) and the Island of Flores in the
Lesser Sunda region of eastern Indonesia, and has one of the smallest known range distributions of
any large vertebrate (Ariefiandy et al., 2021; Ciofi & de Boer, 2004; Jessop et al., 2018). Extant
populations occupy different sized islands and persist at very different abundances and densities
(Jessop et al., 2007; Laver et al., 2012; Purwandana et al., 2014). The Komodo dragon is a
keystone and umbrella species for the dry Monsoon forest ecosystem, one of the biodiversity
hotspots for conservation (Myers, Mittermeier, Mittermeier, Da Fonseca, & Kent, 2000). It is still
considered “vulnerable” by IUCN (2020), although the range distribution has been substantially
reduced over the last five decades and the species now comprises less than 4,000 individuals in the
wild (Ariefiandy & Purwandana, 2019; Purwandana et al., 2014).

The paleogeography of KNP and Flores reflects patterns of vicariance and connectivity among
islands which are mainly the results of recurrent past eustatic changes in sea level. Despite
physical and sensory capabilities for long-distance movement on land and limited sea water
crossing, Komodo dragons show little dispersal both within and across islands (Jessop et al.,
2018). This scenario, along with historical and more recent population changes due to habitat
encroachment and expansion of human populations, particularly on the Island of Flores
(Ariefiandy et al., 2015; 2021; Ciofi & de Boer, 2004), make the current insular distribution of V.
komodoensis an excellent case study for a genome-wide assessment of population structure.
Komodo dragon population genetics have been investigated using species-specific microsatellite
loci (Ciofi & Bruford, 1998; Ciofi et al.,, 2011), which recovered a gradient of population
distinctiveness and gene flow across islands with different levels of proximity (Ciofi, Beaumontf,
Swingland, & Bruford, 1999; Ciofi & Bruford, 1999). In this work, we investigate whether

analysis of whole-genome sequencing data for a few individuals per island corroborates previous
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results based on multi-locus allelic variation over a much wider sample size, and/or reveals

previously undetected fine-scale demographic patterns.
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2 | MATERIALS AND METHODS

2.1 | Sampling, DNA isolation and sequencing by synthesis

Komodo dragons are found on the islands of Komodo (KM), Rinca (RN), Nusa Kode (NK), Gili
Motang (GM)), all part of Komodo National Park, and the West (WF) and North (NF) coastal areas
of Flores (Ariefiandy et al., 2021; Ciofi & de Boer, 2004). Samples were collected as described in
Ariefiandy et al. (2013) on the two large islands of Komodo (311.5 km?) and Rinca (204.8 km?)
and two smaller islands of Gili Motang (9.5 km?) and Nusa Kode (7.8 km?). On Flores, Komodo
dragons were sampled on the western (Wae Wuul nature reserve and the Lenteng area) and
northern coast (Pota and Riung districts). We obtained either blood or tissue samples of four
individuals from each of the six sampling locations for a total of 24 samples (Figure 1, Table S1).
Whole DNA was extracted using a PureLink Genomic DNA Mini Kit (Invitrogen). DNA integrity
was assessed by a 1.5% agarose gel electrophoresis and DNA concentration measured using a
Qubit 4 fluorometer Broad Range Assay (Invitrogen). Sex was determined by PCR amplification
of sex-specific genomic regions as described in Halverson & Spelman (2002). Short-read genomic
libraries were constructed using a Nextera DNA Flex Library Prep Kit (Illumina) according to the
manufacturer’s protocol. Target coverage was 10x for all samples but NF1, WF1, NK1, GMI1,
RN1 and KMI (one from each sampling site), for which a 25x coverage was obtained. This
sequencing strategy was used for demographic inference methods need high-confidence genotypes
(coverage > 20x) for at least one individual per group. Lower coverages are sufficient to discover
polymorphisms segregating at high frequency in all the other individuals from the same population
(Nielsen, Paul, Albrechtsen & Song, 2011). Libraries were pooled with a 2.5:1 concentration ratio
of high vs. low coverage individuals. A free adapter blocking reagent (Illumina) was used to
reduce index hopping. Libraries were sequenced paired-end on an Illumina NovaSeq 6000 System

using a 300-cycle NovaSeq 6000 S1 Reagent Kit v1.0.
2.2 | Mapping and SNPs calling
Demultiplexing and conversion of sequencing data from bcl to fastq formats were performed using

bel2fastq v2.20 (Illumina). Quality control of the reads was assessed with FastQC v0.11.8
(Andrews, 2010). Reads were then processed with AdapterRemoval v2 (Schubert, Lindgreen, &
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Orlando, 2016) to remove residual Illumina adapters. Read tails with a mean Phred-quality score
<10 over a 4 bp sliding window were trimmed and subsequently aligned to the Komodo dragon
reference genome (Lind et al., 2019) using the mem algorithm implemented in the bwa v0.7.15
aligner (Li & Durbin, 2009). Alignments in sam format were sorted, indexed and compressed in
bam format using samtools v1.9 (Li & Durbin, 2009). PCR duplicates, produced during library
preparation, and optical duplicates were removed using the MarkDuplicates tool in the Picard
Toolkit v2.18.20 (http://broadinstitute.github.io/picard/). Regions close to indels showing putative
alignment errors were identified and realigned using the RealignerTargetCreator and the
IndelRealignment tools in GATK v3.5 (McKenna et al., 2010). Alignment statistics were
calculated using the CollectAlignmentSummaryMetrics tool, and bam files were validated with the
ValidateSamFile tool of the Picard Toolkit v2.18.20. Observed coverage was computed using the
depth command of samtools v1.9 with the “-aa” flag activated.

We also downloaded paired-end reads of the Chinese crocodile lizard Shinisaurus crocodilurus
(Gao et al., 2017) from GenBank (accession number: PRINA353147), and used it as outgroup for
population structure analyses by applying the same informatics pipeline as described above.

SNPs and indels were called using the HaplotypeCaller algorithm implemented in GATK v3.5.
We excluded nucleotides with a base phred quality score < 20 or those located in reads with a
mapping phred quality score < 20. The raw callset was then filtered by excluding variants
matching at least one of the following criteria: not a biallelic SNP, a SNP phred quality score
(QUAL) < 60, a significant fisher strand test (FS > 60), a Variant Confidence/Quality by Depth
(QD) < 2, a root mean square of the Mapping Quality (MQ) < 40, a MQRankSum < -20 or a
significant read position bias (ReadPosRankSum < -8.0). Genomic regions showing a depth of
coverage lower than 0.25x or higher than 4x the mean coverage across samples were removed.
We additionally removed SNPs within 5 bp of called indels with a QUAL>60. The quality of the
variants was further improved by removing singletons, private doubletons and sites showing a
frequency of the minor allele lower than 0.042 or that were missing in more than four individuals.
Finally, we removed variants in genomic regions i) showing an excessive coverage (> 4 times the
mean coverage) in at least one individual, ii) containing repetitive elements (see Lind et al., 2019),
and 1iii) having a low mappability score (p<l) computed using GEM (Derrien et al., 2012) by
setting a maximum mismatch of 4% in a 150 bp read. Variants located in scaffolds of < 500 Kb in
length, or scaffolds showing a coverage across individuals lower than half or higher than 3x the

mean coverage were also removed from the final set. A total of 135 scaffolds were retained
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corresponding to 96% of the V. komodoensis genome length. All remaining variants were phased
using a two-stage approach. Initially, whatshap v0.18 (Martin et al., 2016) was used to phase
genomic variants by considering all sequencing reads spanning multiple heterozygous sites.
Shapeit v4 (Delaneau, Zagury, Robinson, Marchini, & Dermitzakis, 2019) was then run to phase

all the remaining unphased variants by setting the “--use-PS” and “--sequencing” flags.

2.3 | Analysis of population structure

The autosomal SNP dataset was used to estimate individual ancestry using ADMIXTURE v1.3
(Alexander, Novembre, & Lange, 2009). This method provides maximum-likelihood estimates of
the proportion of each sequenced genome that belonged to each of K populations. We explored
coancestry for a number of K ancestral populations between 1 and 10. The optimal number of
hypothetical K ancestral groups was inferred using the cross-validation (CV) error estimation
method, whereby the CV error for each K is inferred by first masking and then re-inferring
genotypes. The optimal value of K was that with the lowest CV error across 20 replicates. The
analysis was restricted to variants having a maf >= 0.05 and a minimum distance between SNPs of
20 Kb.

A multivariate discriminant analysis of principal components (DAPC, Jombart, Devillard, &
Balloux, 2010) was also performed using ADEGENET version 1.2.8 (Jombart & Collins, 2015) in
R 3.5.1 (Team, 2018). We determined the optimal number of principal components (PCs) by
cross-validation using the “xvalDapc” function with 1,000 replicates. We then selected the number
of PCs associated with the lowest root mean squared error value. We ran DAPC using all the
available discriminant functions.

SNPs contained in the autosomal regions were used to compute an individual pairwise distance
matrix between samples using the “--distance square( 1-ibs flat-missing” command in plink v1.9
(Chang et al., 2015). The distance matrix was then converted to the nexus format using the
phangorn R package (Schliep, 2011), and SPLITSTREE v4.14.6 (Huson & Bryant, 2006) was
used to obtain a phylogenetic network according to the Neighbor-net algorithm (Bryant &
Moulton, 2004).

Evolutionary relationships were further estimated from SNPs using SNAPP (Bryant et al.,
2012), a coalescent-based method implemented in BEAST2 (Bouckaert, 2014). We selected one

variant every 100 kb, for a total of 13482 SNPs, in order to reduce correlation between markers.
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We ran SNAPP for 1,000,000 Markov Chain Monte Carlo (MCMC) generations, sampling every
1,000 steps and setting a burn-in of 10%. We set mutation rates equal to 1 and used default
parameters for the gamma prior (alpha 11.75, beta 109.73). The trees distribution was visualized
using DENSITREE v. 2.1 (Bouckaert, 2014).

The level of divergence between populations was assessed by the Weir and Cockerham (1984)
6 estimator of the Fst parameter computed using Vcftools. A population phylogenetic tree was
built based on the pairwise 6 matrix using the Neighbor-Joining algorithm implemented in the ape

R package (Paradis & Schliep, 2019).

2.4 | Mitochondrial DNA analysis

Mitochondrial DNA (mtDNA) sequencing reads were extracted by filtering whole genome
alignments for the scaffold corresponding to the mtDNA of the Komodo dragon reference genome
(NCBI accession number: SJPD01001108.1) using samtools view. Alignments with MAPQ < 30
were filtered out. Mitochondrial region alignments were visually screened using Geneious Prime
2020.1.1 (Kearse et al., 2012). Consensus sequences were called for each individual from the most
frequent nucleotide at each site with a 60% consensus threshold. An mtDNA phylogenetic tree
was built using RAXML version 8.2.7 implemented in Geneious Prime 2020.1.1 by applying the
GTR GAMMA nucleotide model with rapid bootstrapping and search for best-scoring mL trees
across 100 bootstrap replicates (Stamatakis, 2014). We used the complete mtDNA sequence of the

water monitor V. salvator as outgroup (NCBI accession number: EU747731.1).

2.5 | Z chromosome analysis

Reads aligned to scaffolds associated with the Z chromosome of the Komodo dragon (Lind et al.,
2019) were used to call variants against the reference sequence using bcftools v1.10.2 (Li, 2011).
We set a minimum mapping quality of 40, a minimum base quality score of 30 and the “-C50”
flag to adjust the mapping quality of reads containing excessive mismatches. The variants were
called in female individuals by setting a ploidy equal to 1 because of the Z chromosome’s
hemizygous state, and applying the same genomic masks used for autosomes. Positions showing a
phred quality score (QUAL) < 60, a sequencing depth < 5 reads or an INDEL were excluded. The

filtered set of variants, together with the Komodo dragon reference sequence, was used to produce
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a consensus sequence for each female using bcftools v1.10.2. Consensus sequence quality was
improved by repeating the variant calling procedure and setting a ploidy of 2 with the same quality
filters as above. SNPs showing within-individual heterozygosity were masked with ‘N’ in the final
sequences. Consensus sequences were used to build a phylogenetic tree using the same method

described for the mtDNA sequences.

2.6 | Genomic diversity

Genetic diversity of individuals and populations was evaluated using the Watterson's Theta
estimator (Watterson, 1975). The number of segregating sites was counted for each callable
region, defined by genomic intervals showing good mappability, low repetitiveness and
appropriate coverage levels (see § 2.2). The total number of segregating sites was first divided by
the (n-1) harmonic number, where n is the number of haploid chromosome copies, and then by the
total size of the callable regions to obtain the per-base estimator fy. The same approach was used
to obtain a Oy estimate over neutral regions and exons. Neutral regions were defined by callable
regions located in intergenic regions that were at least 25 Kb from the closest gene. Exons regions
were extracted directly from the reference genome annotation by merging overlapping elements in
different strands and discarding portions that were not in callable regions.

Genomic diversity estimates for Komodo dragon individuals were compared to published
values for the Aldabra giant tortoise Aldabrachelys gigantea and Pinta Island Galapagos tortoise
Chelonoidis abingdonii (Quesada et al., 2019), saltwater crocodile Crocodylus porosus, Indian
Gharial Gavialis gangeticus and American Alligator Alligator mississippiensis (Green et al.,
2014). Genetic variants in callable, neutral and exon genomic partitions were processed using

SnpSift (Cingolani et al., 2012) to identify private segregating sites in each of the six groups.

2.7 | Run of homozygosity and inbreeding

Runs of homozygosity (ROH) were first identified by estimating the heterozygosity levels in 250
Kb non-overlapping windows using Rohan’s probabilistic method (Renaud, Hanghgj,
Korneliussen, Willerslev, & Orlando, 2019). Each genomic segment was then defined to be in
ROH based on a Hidden Markov Models (HMM) classifier. The analysis was performed on bam

alignments considering base and mapping errors. We used a transition/transversion rate of 2.251,
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estimated by vcftools across the entire dataset, and an expected fyw in ROH regions (rohmu flag)
of 2x10-. The parameter 6y, was estimated by either including or excluding ROH regions. Despite
the method was developed to provide reliable ROH estimates for different coverages (>5x%)
(Renaud et al., 2019), the six individuals sequenced at higher coverage were downsampled to 10x
in order to facilitate comparison with the other samples.

A second approach to identify ROH was based on the HMM model implemented in bcftools
v1.10.2. Regions in autozygosity were called using genotype likelihoods as input and a fixed
recombination rate of 1cM/Mb. The analysis was repeated three times by setting the per-
nucleotide frequency of the alternate allele to 1) the value observed across all 24 individuals, 1i) the
per population estimate (n=4) or iii) a fixed value of 0.4. Finally, ROH was also detected using
plink (Chang et al., 2015) under default parameters. All of these methods used ROH regions >
1Mb to estimate the fraction of the whole genome that was in ROH state (Frop).

2.8 | Demographic analyses

Trajectories of effective population size (N.) through time were inferred using a Multiple
Sequentially Markovian Coalescent - MSMC (Schiffels & Wang, 2020) on one high-coverage
sample (>20x) for each population (FN1, NK1, GM1, RNI1, FW1 and KM1). Input data was
generated using the “generate multihetsep.py” script selecting all callable segments from
autosomal scaffolds and removing those having a minimum length < 500 Kb (Gower et al., 2018).
One-hundred bootstrap replicates were generated using the “multihetsep bootstrap.py” script
which created, at each iteration, a set of 35 chromosomes each composed by 20 random chunks of
2 Mb in length from the original dataset (total size of 1.4 Gb for each replicate). The same method
was also used to estimate the Relative Cross Coalescent Rates (RCCR) between pairs of high
coverage individuals by applying a more stringent approach to exclude genomic regions
containing phasing artifacts that could bias the inference. Each of the six high coverage genomes
was processed to remove all 50 Kb genomic segments containing at least one heterozygous site
that we were unable to phase using paired-end read information. The total proportion of masked
base pairs along the genome was 0.28, 0.36, 0.34, 0.35, 0.45, 0.40 in FN1, NK1, GM1, RN1, FW1
and KM1 individuals, respectively. The “-s”
phasing, as suggested by Schiffels & Wang (2020). The time at which the RCCR decreased below

flag was also activated to avoid sites with ambiguous

the 0.5 threshold was taken as a point estimate of the divergence time. All parameter estimates

This article is protected by copyright. All rights reserved



were scaled using a mutation rate of 7.9x10~ bp-!/gen (Green et al., 2014) and a generation time of
12 years (Auffenberg, 1981). Results of genomic analyses were integrated with known eustatic
changes in sea level during the last five glacial cycles (Grant et al., 2014) and the approximate

arrival of the Anatomically Modern Human (AMH) on the Island of Flores (Aubert et al., 2014).

3| RESULTS

3.1 | SNP and genotype calling

We produced a total of ~3.92 billion reads which uniquely mapped to the Komodo dragon
genome. The mean coverage for six the high-coverage individuals was 28.4% while the mean
coverage for the remaining 18 individuals was 12.3x. Individuals previously classified as females
by using end-point PCR amplification of sex chromosome genes showed, for Z chromosome
scaffolds, approximately half of the mean coverage found in males for the same scaffolds and
autosomal scaffolds (Figure S1). This was expected considering that female Komodo dragons
have heteromorphic sex chromosomes (ZW) while males have two copies of the Z chromosome
(Iannucci et al., 2019; Johnson Pokorna et al., 2016).

The number of reads, percentage of aligned reads and final mean coverage are reported for each
sample in Table S1. A total of 608,471 SNPs were retained across 24 individuals after filtering. Of
these, 6991 were located in coding regions. The number of heterozygous SNPs ranged from
95,013 in GM3 to 172,607 in WF2. An average of 1.4% of the heterozygous SNPs was found to
be within coding regions. The mean percentage of phased heterozygous SNPs across all samples
was 68% in the first phasing step and 100% in the final step.

The population with the highest number of SNPs was west Flores (333,416) followed by
Komodo (331,214), Rinca (312,421), North Flores (276,933), Nusa Kode (271,718) and Gili
Motang (250,404). Details on SNPs number are reported for each individual and population in
Table S2 and Table S3, respectively.

3.2 | Population structure

Based on the cross-validation error value (Figure S2), the clustering analysis performed with

ADMIXTURE suggested the presence of three distinct genetic clusters (Figure 2a). These
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correspond to the Island of Komodo, the northern coast of Flores and a third group including all
remaining individuals. There were no admixed individuals but in West Flores, where we observed
a North Flores genetic component ranging from 4% (WF1, WF2 and WF4) to 8% (WF3). The
cross-validation error was slightly higher for K=4 and K=5. In particular, a genomic differentiation
of Gili Motang was supported for K=4, while a further separation of west Flores and Nusa Kode
was recovered for K=5. However, at K=5 the Rinca samples were not a homogeneous group but
rather a mixture of the west Flores and Nusa Kode genetic components. The DAPC analysis
(Figure 2b), the networks based on whole-genome analysis (Figure 3a) and Z chromosome data
(Figure S3), and the phylogenetic trees based on mtDNA (Figure 3b) and SNPs (Figure 3c) all
support the overall scenario of three main genomic units described by ADMIXTURE.

The Neighbor-Joining network constructed using pairwise Fgsr values between sampling
locations also confirms the individual-based structure whereby the Island of Komodo and North
Flores represent distinct groups equally diverging from a third one composed by the remaining
populations (Figure S4). Low levels of differentiation were recorded among Rinca, Nusa Kode

and West Flores, with Gili Motang separated by a more pronounced branch length.

3.3 | Genomic diversity and inbreeding

Single individual genome-wide heterozygosity levels for high-coverage Komodo dragon samples
were rather homogeneous, with 6y estimates ranging from 7.62x10-5 in southern Rinca to
1.31x10-4 in western Flores. These values were consistently lower than 6y estimates recorded for
other reptiles including vulnerable, critically endangered or even extinct species (Figure 4a). At
the population level, the lowest Oy estimate was recorded for the small island populations of Gili
Motang (7.37x10-5). The islet of Nusa Kode and the North Flores region both of limited extent
and small population abundances showed a slightly higher (8.00x10-5 and 8.15x%10-5,
respectively) genomic diversity values. Relatively higher 6y estimates were instead recorded in
West Flores (9.81x10-5) and for the largest island populations of Komodo (9.75%10-5) and Rinca
(9.20x10-5).

Analysis of genetic diversity recovered a marked reduction in diversity in neutral regions with
respect to exons for populations with low genomic diversity (Figure 4b, Table S4). Neutral regions

were 10.8%, 8.3% and 8.2% more variable than exons in the populations of Komodo, West Flores
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and Rinca, while a strong reduction to 3.6%, 2.1% and 1.7% was recorded in Nusa Kode, North
Flores and Gili Motang, respectively.

The genome-wide diversity was substantially different if ROH regions were either included or
excluded. Outside ROH, all individuals showed a 6w midpoint estimate between 1.91x10-4 and
2.45x10-4, with negligible differences between mean values across populations (Figure 5a).
Inclusion of ROH in the analysis caused an average decrease in Oy estimates of approximately
25% (Figure 5b). The fraction of the genome being in ROH (Fron) was quite different across
samples. Some individuals had relatively high Froy, while others showed negligible amount of
Frou (Figure 5c). The North Flores population had the highest mean Froy (12%) with sample NF1
showing 30% of its genome in ROH. A similar pattern was observed in the populations of Nusa
Kode and Komodo with a mean Froy value of 11% and 10%, respectively, while the populations
of West Flores, Rinca and Gili Motang showed mean Froy values lower than 10% (Table S5).
Plink and bcftools produced Fropn estimates that were positively correlated to values estimated by
Rohan (Pearson correlation coefficient ranging from 0.31 to 0.71). However, no significant
correlation was observed when the beftools analysis was conducted using an alternate frequency
across individuals or a fixed frequency of 0.4 in each population. This may suggest that the
frequency threshold is a critical parameter to identify the proper within-individual Froy and that a
single frequency value may not be suitable for all populations (Table S6).

Private segregating sites were not uniformly distributed across populations. Komodo and North
Flores showed the highest fraction of private polymorphisms (11.7% and 8.9% of the total SNP
variation in the genome, respectively). Proportions of private SNPs were lower in West Flores
(0.4%) and the populations of Rinca, Nusa Kode and Gili Motang (0.3%). Similar proportions

were observed in exons and neutral regions (Figure S5).

3.4 | Demographic analysis

Estimates of past demographic patterns based on whole genome analysis of extant populations
recovered a very large effective population size between 1 Ma and 500 ka. Moving forward in
time, in North Flores we estimated a long and gradual population decline that ended
approximately 3 ka with an N, of a few hundred individuals (Figure 6). A similar pattern was

recovered for the other populations, where an initial, steady decrease in N, was followed by a
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period of constant population size during the Saalian cold period (spanning from approximately
400 ka to 150 ka), and then by a further population decline that ended between 5 ka and 3 ka ago.

The relative cross coalescent rates analysis highlighted three time periods with reduced gene
flow between populations (Figure 6). Approximately 20 ka, the gene flow between North Flores
and all other populations started to decrease, reaching the 0.5 threshold approximately 15 ka. More
recently, approximately 10 ka, Komodo Island showed a decreasing RCCR with respect to other
populations (excluding North Flores) going below 0.5 approximately 5 ka. All other pairwise
comparisons involving Rinca, Nusa Kode, West Flores and Gili Motang, showed oscillating
RCCR through time, with rates going below the 0.5 threshold approximately 1 ka. These values,
however, were never equal to 0, an indication of historical and ongoing gene flow among island
populations across the central part of Komodo National Park and West Flores. The most
informative RCCR dynamics refers to the central part of the plot of Figure 6. Despite the analysis
was restricted to high quality phased regions, the presence of residual incorrectly phased sites
might affect the reconstruction of the RCCR profile in this time window (Schiffels & Wang,
2020).
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4 | DISCUSSION

4.1 | Population structure

In this study, whole genome sequencing was used to assess population structure, genomic
diversity and demographic history of Komodo dragons. We performed genome resequencing of 24
individuals from six islands, covering the entire distribution of the species. Overall, our results
show how whole genome analysis of few individuals per population can refine and improve
information on intraspecific genetic diversity that can be otherwise obtained using a dataset based
on a much larger sample size genotyped at a few genetic markers (Ciofi et al., 1999; Ciofi &
Bruford, 1999). This is in accordance with other studies where genomic analysis of a very limited
number of animals was used to corroborate multi-locus assessments of population structure in
insular ecosystem (e.g. Gaughran et al., 2018).

We recorded a clear genomic distinction of Komodo dragons of the island of Komodo and the
North coast of Flores from the rest of the archipelago. The degree of isolation of Komodo could be
associated to the Island’s paleogeographic history. According to eustatic sea level variations
occurred in the past 250 kyr (Chappell & Shackleton, 1986; McCulloch et al., 1999; Voris, 2000)
and bathymetric data of the study area, the Island of Komodo was probably connected to the
eastern islands for relatively short time intervals, approximately 140 ka and 18 ka, during the last
two Pleistocene glacial maxima. On the other hand, Flores and Rinca, currently separated by
narrow and shallow waters, remained isolated during a high sea level event about 125 ka and were
then reconnected until approximately 10 ka (Voris, 2000). The smaller islands of Gili Motang and
Nusa Kode were also connected several times to Flores and Rinca. The increased distance between
Komodo and Rinca following the sea level rise after the last glaciation might have represented a
major barrier to gene flow. On the contrary, gene flow was probably maintained between west
Flores, Rinca, Nusa Kode and, to some extent, Gili Motang given the Komodo dragons’ ability to
swim over short distances (Auffenberg, 1981).

Our genomic data also advocate the strong pattern of genetic divergence of the North Flores
population, described by previous analysis of microsatellite allelic diversity (Ciofi et al., 1999),
from the other islands and the population found on the western coast of Flores. Similar levels of
within-island genetic structure have been recorded for other amphibian and reptile species on

Flores (e.g. Reilly, 2016). Reilly et al. (2019) pointed at Flores’s paleogeography as a possible
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explanation for the population structure of fanged frogs. In particular, the observed patterns of
genetic differentiation could be related to the existence of ancient volcanic islands that later
coalesced into a single island. However, this explanation contrasts with fossil records that support
the appearance of Komodo dragons on Flores approximately 900 ka (Hocknull et al., 2009), a
relatively short time period compared to the geological time of Flores island formation. The
observed divergence between the West and North Flores Komodo dragon populations might be
instead the result of an isolation by distance (IBD) process. We suggest that Komodo dragons
previously had a much wider distribution on Flores (Ariefiandy et al., 2021; Auffenberg, 1981;
Cioft & de Boer, 2004). The limited dispersal of the species (Jessop et al., 2018), coupled with
anthropogenic habitat fragmentation and other ecological barriers may have resulted in a gradient
of genetic diversity across the North coast of Flores, and eventually to peripatric divergence.
Patterns of IBD related to sedentary habits and habitat fragmentation have also been described for
other reptile species (e.g. Driscoll, 2004; Heath, Schrey, Ashton, Mushinsky, & McCoy, 2012;
Moore, Miller, Daugherty, & Nelson, 2008). Unfortunately, no samples are available for locations
in between the northern and western coast of Flores in order to effectively test this hypothesis.
Although Komodo dragons sampled on the islands of Rinca, Nusa Kode, Gili Motang and on
West Flores probably experienced higher population connectivity levels over the last glacial
periods, as confirmed by the RCCR analysis, a slight differentiation of the Gili Motang population
was observed (Figure 6). This result could be due to the remote position of this islet and the strong
currents originating from the exchanges of water masses between the Indian and Pacific Oceans
(Gordon, Ffield, & Ilahude, 1994), that may significantly hinder gene flow between Gili Motang

and the other nearby islands.

4.2 | Genomic diversity

Estimates of Oy showed that genomic diversity was low for all populations. In particular, genomic
diversity values were lower than estimates reported for vulnerable and critically endangered
reptiles, such as the Indian gharial (Green et al., 2014), the Aldabra giant tortoise and the now
extinct Pinta Island Galapagos giant tortoise (Quesada et al., 2019). Low genomic diversity has
commonly been associated with an increased susceptibility to genetic diseases and a decreased
adaptive potential, both of which can lead to increased extinction rates in vertebrates (Clark,

Marchand, Clifford, Stechert, & Stephens, 2011; de Villemereuil et al., 2019; Johnson et al., 2010;
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Reed & Frankham, 2003). Nevertheless, in other species with similarly low genetic diversity no
detrimental consequences were reported (e.g. Benazzo et al., 2017; Westbury et al., 2018; Xue et
al., 2015). This may also be the case for Komodo dragons that currently show no evident sign of
severe deleterious mutations. A possible explanation for this state may be the absence of a
significant difference in genomic diversity recorded for Komodo dragons in neutral regions with
respect to exons (Figure 4b, Table S4). As suggested for other species (Morin et al., 2020;
Westbury, Petersen, Garde, Heide-Jorgensen, & Lorenzen, 2019), such a condition may imply the
retention of diversity in coding regions relative to the non-coding regions. If so, this process could
help maintain adaptive potential in Komodo dragons, enabling the species to better adapt to
environmental changes (but see Jones et al., 2020). Conversely, the overall low levels of
heterozygosity and lack of variation in diversity levels between coding and non-coding regions
may suggest that heterozygosity has reached a minimum, stable threshold, and any further
decrease in genomic diversity could affect survival (Morin et al., 2020; Purwandana et al., 2015;
Westbury et al., 2019).

Overall, the proportion of the genome in long ROH (Fron) was moderate. The most inbred
sample had approximately 30% of its genome composed of ROH. However, Froy was highly
variable among individuals within populations and among populations. This pattern was
particularly evident in Komodo, Rinca and West Flores, where two individuals per group showed
a Froy lower than 5% while the others had Frop between 10% and 20%. This result may suggest
that inbreeding levels in Komodo dragon populations have been increasing with respect to higher,
historical values maintained by gene flow among islands. Such average values of inbreeding
coefficients across populations where most of the variation actually occurs within populations are
neither unexpected nor uncommon events. Segregation and recombination are random processes,
mating can be assortative and it is more likely to occur in small populations where some
individuals may have highly consanguineous parents (Kardos, Luikart, & Allendorf, 2015;
Schraiber, Shih, & Slatkin, 2012). Although our results suggest moderate intraspecific levels of
inbreeding, a 10% Frop increase in a single individual may severely impact its fitness, especially
in certain age classes, as observed for other organisms with small effective population size

(Stoffel, Johnston, Pilkington, & Pemberton, 2020).
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4.3 | Demographic history

Whole-genome analysis allowed reconstruction of the demographic history of Komodo dragons in
the last one million years. All populations showed a similar demographic pattern consisting of a
rapid N, decrease in the ancient past, followed by a period of relatively stable effective population
size during the Saalian glacial cycle, and a further decline following the colonization of Flores by
anatomically modern humans.

Studies of demographic trends over extended periods of time are scarce for reptiles, but they all
report patterns of effective population size decrease in the Pleistocene. Green et al. (2014)
investigated demographic trends in crocodilians and found that all three studied species
experienced a sharp N, decline between 100 ka and 10 ka. Similar results were reported for the
Chinese alligator (Wan et al., 2013) and elapid snakes (Ludington & Sanders, 2020). Marine
reptiles also showed a decline in N, size over the last glacial period (Fitak & Johnsen, 2018;
Kishida et al., 2020; Ludington & Sanders, 2020) suggesting that global climatic events including
a generalised decrease in temperature (Van de Wal, De Boer, Lourens, Kdhler, & Bintanja, 2011),
may have had major demographic consequences for ectothermic species. A reduction in
temperature could have played only a minor role in Komodo dragon N, reduction. Varanids are
more independent of ambient temperature than other lizards, especially large-sized individuals
(McNab & Auffenberg, 1976). On the other hand, temperature lowering could have indirectly
influenced Komodo dragon’s abundance by affecting the habitat quality of this species (Jones et
al., 2020). Paleoecological reconstructions of the Quaternary habitat of the Banda Sea area suggest
a dry environment and a reduction in precipitation levels, with open vegetation replacing rainforest
in some areas (van der Kaars, Wang, Kershaw, Guichard, & Setiabudi, 2000). This could have
influenced the population dynamics of V. komodoensis, considering that Monsoon forest offers
better conditions to Komodo dragons for thermoregulating than does savannah habitat (Harlow,
Purwandana, Jessop, & Phillips, 2010).

A relatively constant effective population size period was recorded for all populations over the
Saalian glacial cycle (400-150 ka), except for the North Flores population. At this time, a decrease
in sea level reduced the distance among several islands of the Lesser Sunda and Banda Arcs, and
increased habitat availability for Komodo dragons (Voris, 2000). This might have led to either a
temporary population range expansion or an increase of gene flow between islands. Both events

could explain a temporary population recovery. The MSMC reconstruction is expected to track
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changes in effective population size however, N, trajectories might also represent changes in
connectivity in meta-population systems (Mather, Traves, & Ho, 2020; Mazet, Rodriguez, Grusea,
Boitard, & Chikhi, 2016), as supported by the RCCR analysis. The above mentioned ecological
conditions might have had a marginal effect on North Flores, where the effective population size
was constantly decreasing. Since new habitat areas were probably available for all populations,
this may be not true for the connectivity between groups. Western populations probably
experienced more gene flow due to their geographical proximity, whereas a reduced gene flow
towards the North Flores group due to its geographical location might have promoted its isolation.
For this reason, gene flow could have been the main factor explaining the population recovery
observed during the Saalian period between 400 ka and 150 ka.

Considering the differences in the N, curve between the Saalian glaciation and the last glacial
maximum, where no population recovery was recorded, it is possible that other factors in addition
to changes in environmental temperature and habitat availability affected Komodo dragons’
demographic in the Quaternary. The colonization of Flores by anatomically modern humans
around 50 ka and their subsequent population expansion (Aubert et al., 2014; Tucci et al., 2018)
coincides with the beginning of a steep descent of Komodo dragon N, curve. Anthropogenic
interference has been suggested as one of the drivers of population decline in vertebrates in the
early and mid Holocene (e.g. Cooke, Déavalos, Mychajliw, Turvey, & Upham, 2017; Dong et al.,
2021). However, further research is needed to assess whether humans have directly or indirectly
negatively affected Komodo dragon population size and distribution.

Time trajectories of N, resulted in an interesting demographic scenario for Komodo dragons
over the last 1 Myr. However, while MSMC is proving a robust approach for estimating N, and
patterns of population size variation over distant time periods (Li & Durbin, 2011), it does also
depend on assumptions that may bias the calculation of the actual values of N, particularly for
very recent population histories (Liu & Fu, 2015; Sheehan, Harris, & Song, 2013). The
assumption of MSMC that populations are isolated and the uncertainty over a precise mutation
rate estimate are additional factors that need further evaluation for ad hoc analysis of Komodo

dragon effective population size.

4.4 | Conservation outcomes

This article is protected by copyright. All rights reserved



Our study provides an example of how whole-genome analysis of a few individuals per population
can help assess fine-scale population structure and intraspecific demographic dynamics. This is
particularly important when applying population genomics data to management and conservation
of endangered species, for which extended field effort is required in order to obtain an adequate
sample size for analyses based on more traditional molecular markers.

Our data advocates the genomic distinction of the populations of the Island of Komodo and the
northern coast of Flores, which should be both managed as separate conservation units (Casacci,
Barbero, & Balletto, 2014; Ciofi et al., 1999; Crandall, Bininda-Emonds, Mace, & Wayne, 2000;
de Guia & S, 2007; DeWeerdt, 2002). However, while the Komodo Island population is fairly well
protected within the boundaries of Komodo National Park, Komodo dragons from North Flores
suffer from habitat encroachment and other human-related threats (Ciofi & de Boer, 2004). Only a
small proportion of the extant populations of Flores Island are found in protected areas. The
unambiguous genetic distinction of Komodo dragons from the northern coast of Flores is,
therefore, important information to support ongoing collaborative efforts with local community
and authorities for the protection of V. komodoensis outside Komodo National Park (Ariefiandy,
Purwandana, Ciofi, & Jessop, 2021; Ariefiandy et al., 2015).

Future directions in the definition and management of conservation units of Komodo dragons
could rely on genome sequencing of a broader sample set in order to assess adaptive genetic
variation among populations. This information will be valuable to prioritize which populations to
focus management efforts on, and which populations to use as sources for translocation,
demographic reinforcement, and assisted migration efforts (Barbosa et al., 2018; Funk, McKay,
Hohenlohe, & Allendorf, et al., 2012).

Our data showed levels of genomic diversity in Komodo dragons to be lower than other
threatened or even extinct reptile species. IUCN assigns Red List status based mainly on
population size and trends, and degree of population fragmentation, while genetic diversity is yet
to be considered an important parameter in evaluating the status of a species (IUCN, 2020).
Genetic diversity is critical to small populations’ sustainability (Reed & Frankham, 2003), and
many authors have argued that Red List status should be determined in part by the degree of
genetic diversity of a species with respect to closely related lineages (e.g. Briiniche-Olsen,
Kellner, Anderson, & DeWoody, 2018; Willoughby et al., 2015). Therefore, results of genomic
analysis should be integrated with data on current population size and distribution (Ariefiandy A et

al., 2021; Purwandana et al., 2014), differences in population ecology and carrying capacity across
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islands (Ariefiandy et al., 2016; Jessop et al., 2007; Jessop et al., 2006; Purwandana et al., 2015),
as well as deterministic and stochastic threats to extant populations (Ariefiandy et al., 2015; Jones
et al., 2020) to try and re-evaluate the conservation status of Komodo dragons, particularly for

groups living outside protected area networks (Jessop et al., 2020).
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FIGURE LEGENDS

Figure 1. Map of the study sites. A total of 24 Komodo dragons were sampled for genomic
analyses on four islands in Komodo National Park (dotted line) and on the western and northern
coast of Flores, covering the entire range of the species. The current distribution of V.

komodoensis is shown by the light red areas.

Figure 2. Results of the population structure analyses performed using ADMIXTURE vl1.3 (a),
and a multivariate discriminant analysis of principal components (b). Each column in (a)
corresponds to an individual Komodo dragon, and each colour represents the proportion of an

individual’s genome belonging to each of the K clusters.

Figure 3. Phylogenetic network based on autosomal SNPs showing relationships among 24
Komodo dragons from six locations in Komodo National Park and the Island of Flores (a),
Phylogenetic tree based on mitochondrial DNA genomes (b), and Phylogenetic tree based on
SNPs (c¢). The cloudogram represents the posterior distribution of lineage trees from the Bayesian
phylogenetic analysis performed using SNAPP. Higher density areas indicate greater agreement in

tree topologies.

Figure 4. Genomic diversity estimates based on Watterson’s Theta 6y (a), and estimates of 8y per
site in exons and neutral regions (b). Solid colour bars show values recorded for each of the six
Komodo dragon individuals with a 25% genome coverage (one individual per location). Striped
colour bars indicate Oy estimates per location. Grey bars show values for other reptile species.

VU: vulnerable; CR: Critically endangered; EX: Extinct.

Figure 5. Population genomic diversity estimated using Rohan including (a), or excluding (b)

ROH regions; (¢) Proportion of the genome composed of ROH (Fron) >= 1Mb.

Figure 6. Evolutionary dynamics of Komodo dragon populations inferred across the whole
genomes using MSMC (Schiffels & Wang, 2020). Upper plot: effective population size through
time in six populations (dashed lines) with bootstrap intervals (coloured areas) based on high-

coverage individuals. Eustatic changes in sea levels relative to the present are shown in dark grey.
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Light grey columns represent the time span of the last glacial maximum (LGM; 31-16 ka) and the
Saalian cold period (SCP; 400-150 ka). Lower plot: Relative Cross Coalescent Rates (RCCR)
through time between populations. Each line depicts the RCCR profile estimated using pairs of
high-coverage genomes. The pairwise comparisons involving the North Flores and Komodo Island
populations versus all the other sampling sites are shown by the black and red lines, respectively.
Comparisons among West Flores, Nusa Kode, Gili Motang and Rinca populations are shown in
grey. Values below the threshold of 0.5 (horizontal dashed line) are indicative of negligible gene

flow between groups.
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