
lable at ScienceDirect

Defence Technology xxx (xxxx) xxx
Contents lists avai
Defence Technology

journal homepage: www.keaipubl ishing.com/en/ journals /defence-technology
Ballistic response of armour plates using Generative Adversarial
Networks

S. Thompson a, F. Teixeira-Dias a, *, M. Paulino b, A. Hamilton c

a Institute for Infrastructure and Environment (IIE), School of Engineering, The University of Edinburgh Alexander Graham Bell Building, The King's
Buildings, Edinburgh, EH9 3FG, United Kingdom
b School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University Waurn Ponds, Victoria, 3220, Australia
c Data Science and AI, Engineering, Group Chief Information O Ce, Lloyds Banking Group, 69 Morrison St, Edinburgh, EH3 8BW, United Kingdom
a r t i c l e i n f o

Article history:
Received 12 May 2021
Received in revised form
7 July 2021
Accepted 4 August 2021
Available online xxx

Keywords:
Machine learning
Generative Adversarial Networks
GAN
Terminal ballistics
Armour systems
* Corresponding author.
E-mail address: F.Teixeira-Dias@ed.ac.uk (F. Teixei
Peer review under responsibility of China Ordnan

https://doi.org/10.1016/j.dt.2021.08.001
2214-9147/© 2021 China Ordnance Society. Publishing
ND license (http://creativecommons.org/licenses/by-n

Please cite this article as: S. Thompson, F.
Networks, Defence Technology, https://doi.o
a b s t r a c t

It is important to understand how ballistic materials respond to impact from projectiles such that
informed decisions can be made in the design process of protective armour systems. Ballistic testing is a
standards-based process where materials are tested to determine whether they meet protection, safety
and performance criteria. For the V50 ballistic test, projectiles are fired at different velocities to determine
a key design parameter known as the ballistic limit velocity (BLV), the velocity above which projectiles
perforate the target. These tests, however, are destructive by nature and as such there can be consid-
erable associated costs, especially when studying complex armour materials and systems. This study
proposes a unique solution to the problem using a recent class of machine learning system known as the
Generative Adversarial Network (GAN). The GAN can be used to generate new ballistic samples as
opposed to performing additional destructive experiments. A GAN network architecture is tested and
trained on three different ballistic data sets, and their performance is compared. The trained networks
were able to successfully produce ballistic curves with an overall RMSE of between 10 and 20 % and
predicted the V50 BLV in each case with an error of less than 5 %. The results demonstrate that it is
possible to train generative networks on a limited number of ballistic samples and use the trained
network to generate many new samples representative of the data that it was trained on. The paper
spotlights the benefits that generative networks can bring to ballistic applications and provides an
alternative to expensive testing during the early stages of the design process.
© 2021 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

Predicting the outcome of impulsive events such as ballistic
impacts is a complex problem for researchers due to the difficulties
in characterising material behaviour across a wide range of loading
rates and impact scenarios. In terms of analysis, it is the combined
sum and influence of a number of input variables that ultimately
govern the response of a material and structure under a specific
impulsive loading scenario. Approaches to understand such events
include highly empirical (i.e. experimental [1,2]) and semi-
analytical and numerical methods that are designed to mimic ex-
periments [3]. However, using these methods to make predictions
ra-Dias).
ce Society

services by Elsevier B.V. on behalf
c-nd/4.0/).

Teixeira-Dias, M. Paulino et a
rg/10.1016/j.dt.2021.08.001
outside the range of responses of the empirical data set fromwhich
the analysis has been derived often leads to inaccurate results [4].

Machine learning techniques are well suited to classification
and regression problems, particularly those in high dimension
problem spaces such as dynamic impact events where there are
many influential parameters that govern the response of the
structure. In that sense, machine learning can allow impact events
to be characterised and predictions can be made without the con-
ventional limitation on the number of input variables or dimen-
sionality of the problem. Problems with a larger dimensionality,
however, require more comprehensive training data and thus the
range of application for the machine learning algorithm is defined
by the limits of the training data set [4]. A good dataset used to train
machine learning models should be of both sufficient size and
sufficient quality, where size refers to the total number of samples
and quality refers to the reliability (i.e. the degree to which the data
of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-

l., Ballistic response of armour plates using Generative Adversarial

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:F.Teixeira-Dias@ed.ac.uk
www.sciencedirect.com/science/journal/22149147
http://www.keaipublishing.com/en/journals/defence-technology
https://doi.org/10.1016/j.dt.2021.08.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.dt.2021.08.001


S. Thompson, F. Teixeira-Dias, M. Paulino et al. Defence Technology xxx (xxxx) xxx
can be trusted) and feature representation (i.e. the degree to which
the data includes the features of interest in the problem space) in
the data set. Machine learning is an application of Artificial Intel-
ligence (AI) that provides systems with the ability to improve and
learn from experience without the explicit need for programming.
The term “artificial intelligence” was first coined by McCarthy in
1956 [5] in the first academic conference on the subject. Since then
researchers have made much progress widening the influence that
machine learning techniques have in the world. Home voice as-
sistants and self driving cars are becoming common and are made
possible by Artificial Neural Networks (ANN) that have been
modeled loosely after the human brain. Neural networks are
essentially a set of algorithms that are designed to recognise nu-
merical patterns contained in vectors, into which real-world data
such as images, text or time series must be translated. The basic
building block of the ANN is the perceptron (or node) which exists
as a linear classifier d it produces a single output based on several
inputs by forming a linear combination of the input and the
respective weight that it has assigned to the input to determine its
significance. Nodes can be arranged in many different ways to form
different neural networks to suit the task in hand and the type of
data it will be working with. For example, Long Short-Term Mem-
ory (LSTM) networks are a class of ANN where connections be-
tween nodes form a directed graph along a temporal sequence d

the impact of which has been notable in language modelling and
speech-to-text transcription and are crucial part of what makes
voice home assistants function [6]. A Multi Layer Perceptron (MLP)
is a deep artificial neural network composed of more than one
perceptron. It is composed of an input layer to receive the signal, an
output layer that makes a decision or prediction regarding the
input and the hidden layers that are the computational engine of
the MLP. These networks are often applied to supervised learning
problems where they train on a set of input-output pairs and learn
to model the correlation (or dependencies) between those inputs
and outputs. Training involves adjusting the parameters of the
network such that the error is minimised. Once a model is trained,
it is possible to provide it with new inputs and predict new outputs
as a function of what the model has learned.

A schematic of a projectile perforating an armour plate is shown
in Fig. 1. In a previous publication by the same authors, two MLP
networks were used to predict the residual velocity (vr) of blunt
projectiles perforating multilayer metallic armour systems [7]: (i)
one was trained on a data set generated by a validated analytical
model and (ii) another one trained solely on experimental data. The
model was trained to understand the ballistic response of the
metallic plates and predict the residual velocity for a given impact
velocity, layer thickness and set of material properties. The model
Fig. 1. Projectile perforating an armour plate: vi is the impact velocity and vr is the
residual velocity.

2

proved successful in making predictions on monolithic cases with
an error of less than 10 %. However, the statistical quality of the
experimental data set used to train the MLP network suffered from
a high degree of clustering about impact conditions and material
choice. This is expected to be the case in any terminal ballistics
problem where the cost of testing will naturally limit its scope [4].
2. Generative Adversarial Networks

The Generative Adversarial Network is a framework that was
first proposed by Goodfellow et al. [8] for estimating generative
models via an adversarial process, in which two neural networks
compete against one another and are trained together. It is a ma-
chine learning technique that learns to generate fake samples
indistinguishable from real ones via a competitive game.

For a machine learning application, a perfect training set should
include observations from experiments performed across a range of
impact velocities with different materials and different armour
system configurations (i.e. different thicknesses). However, due to
the destructive nature of these tests, there is a high cost associated
with ballistic experiments. As a potential solution to this problem,
this paper proposes the use of a different neural network, a GAN,
that has been specifically developed to supplement ballistic data
sets. A Generative Adversarial Network is a more recent class of
machine learning system that has the ability to generate entirely
new data and make predictions through unsupervised learning [9].
Given a training set, this technique learns to generate entirely new
data with the same statistical representation as the training set.
This allows additional ballistic samples to be generated using the
model as opposed to performing additional destructive tests.

The base architecture of a GAN is composed of two neural net-
works: a discriminator and a generator, as shown in Fig. 2. The
discriminator D is set up to maximise the probability of assigning
the correct labels to real and fake samples. Meanwhile, the gener-
ator G is trained to fool the discriminator with synthesised data
[10]. In other words, D and G play the following two-player mini-
max game with value function V(G, D) [8].

min
G

max
D

VðD;GÞ¼ Ex log DðxÞ þ Ez log½1�DðGðzÞÞ� (1)

where x is the input to D from the training set, z is a vector of latent
values input to G, Ex is the expected value over all real data in-
stances, D(x) is the discriminator's estimate of the probability that
real data instance x is real, Ez is the expected value over all random
inputs to the generator and D(G(z)) is the discriminator's estimate
of the probability that a fake instance is real. The primary goal of G
is to fool D and produce samples that D believes come from the
training set. The primary goal of D is to assign a label of 0 to
generated samples, indicating a fake, and a label of 1 to true sam-
ples, that is, samples that came from the training set. The training
procedure for G is to maximise the probability of D making a
mistake, i.e. an incorrect classification. In the space of arbitrary
functions G and D, a unique solution exists, with G able to repro-
duce data with the same distribution as the training set and the
output from D z 0.5 for all samples, ultimately indicating that the
discriminator can no longer differentiate between the training data
and data generated by G.
2.1. Training sets

The primary goal of this work is to develop a new GAN archi-
tecture capable of generating new predictions representative of
those originated in ballistic impact experiments. Ballistic testing is
a standards-based process where materials are tested to



Fig. 2. Schematic diagram of a Generative Adversarial Network (GAN).

Table 1
Lambert parameters used to create the training sets and
test each GAN model.

Lambert parameter Value

a 1
p 3
vbl 100

S. Thompson, F. Teixeira-Dias, M. Paulino et al. Defence Technology xxx (xxxx) xxx
determined whether they meet protection, safety and performance
criteria. In this paper, ballistic experiments refer to the V50 ballistic
test, where projectiles are fired at higher velocities to determine a
key design parameter known as the Ballistic Limit Velocity (BLV). In
this scope, the BLV is the minimum projectile velocity that ensures
perforation [11,12]. This velocity is a property of the threatarmour
system and is determined by a number of parameters, such as the
projectile and target material properties, projectile mass and target
configuration (e.g. thickness). This work aims to reduce the costs
associated with ballistic experiments by minimising the number of
experiments performed and supplementing the data set by using
the GAN model instead. It discusses and compares the results from
three separate GAN models trained on three separate training sets.
An appropriate training set is required such that the discriminator
can learn the distribution of the data.

In this case, the generative networks are trained to generate
new samples of ballistic data. It is therefore important to prepare an
appropriate data set that can be used for this purpose.

The post-impact residual velocity can be calculated with the
relation proposed by Lambert and Jonas [13]:

vr¼ a
�
v
p
i � v

p
bl

�1=p
; with vi > vbl (2)

where vi, vr and vbl are the impact, residual and ballistic limit ve-
locities (BLV) for an orthogonal impact, respectively, and a and p are
coefficients that govern the shape of the ballistic limit curve. The
effect of these parameters on the shape of the curve is shown in
Fig. 5. The residual velocity is the projectile velocity after it has
perforated the target. The definition of the BLV implies that if
vi¼ vbl then vr¼ 0, that is, the residual velocity is zero if the target is
struck by a projectile at its BLV [14]. In this work, Eq. (2) was initially
used to generate ballistic data.

In order to test the capabilities of this method, the samples
generated by the GAN are compared with the equivalent values
produced by the Lambert and Jonas relation (Eq. (2)). This was
selected for two reasons: (i) the Lambert and Jonas equation can be
used to generate the training sets for each test case to effectively
test proof of concept, and (ii) it provides a useful metric through
which to directly compare the results of the GAN predictions.

Three different test cases were considered, leading to three
different training sets to test the performance of the proposed GAN
architecture. Each training set is a (N,2) array where N is the
number of samples in the training set, the first column corresponds
to the impact velocity vi and the second column to the residual
3

velocity vr. Case 1 represents a best case scenario and consists of
100 logarithmically spaced data points to maximise the number of
points around vbl. These points represent vi with the corresponding
vr calculated using Eq (2) and the parameters listed in Table 1. The
Case 1 training set, shown in Fig. 3(a), covers awide range of impact
velocities, including impacts for velocities both above and below
the BLV, providing the learning algorithm with the best chance to
learn an idealised representation of the data. Case 2, shown in
Fig. 3(b), consists of 50 randomly generated data points in the re-
sidual velocity test range, which in this case is [0,600] m/s. The
training set used for Case 2 is therefore less structured and less
dense than Case 1. The final test case is the most realistic and at-
tempts to replicate experimental data in the form that is typically
found published in the literature [15e21]. 10 points were generated
at random in the residual velocity test range [0,600] m/s and
similarly arranged into a [10, 2] matrix. A ±10 % artificial noise was
added to vr to mimic experimental measurement error, ensuring
that the training data no longer sits on the Lambert ballistic curve,
as can be seen in Fig. 3(c).

Each of the training sets were normalised between the range
[0,1] before training commenced. It should be noted that the
numeric values in the dataset are transformed via a common scale,
without distorting differences in the ranges of values or losing any
information. After training, the output from G is scaled back to
original values by using the same object to undo the trans-
formation. For each test case, the trained GANmodel generates 100
samples and the curve is fitted in accordance with the Lambert and
Jonas model with respect to parameters a, p and vbl to obtain a new
set of Lambert parameters specific to the GAN-generated data and
curve. Due to the stochastic nature of generative models, this is
performed 100 times for each test case and the average values for
each parameter are recorded and compared.
2.2. Model architecture

Multi-Layer Perceptron (MLP) networks were used to create the



Fig. 3. Training sets used to train each GAN model: (a) Case 1, (b) Case 2, and (c) Case 3.

S. Thompson, F. Teixeira-Dias, M. Paulino et al. Defence Technology xxx (xxxx) xxx
G and D networks as MLPs are well equipped to deal with regres-
sion tasks and the adversarial modelling framework is straight
forward to apply when both models are MLPs [8]. An MLP network
consists of at least three layers of nodes: an input layer, a hidden
layer and an output layer. Each layer within an MLP network exists
as an arrangement of nodes (perceptrons) and can be visualised as a
place where computation occurs. Each node combines data from
the input with a set of coefficients, or weights, that either amplify or
dampen that input and thereby assign significance to inputs with
regard to the task that the algorithm is trying to learn. These input-
weight products are summed and passed through the nodes’ acti-
vation function to determine whether, and to what extent, the
signal should progress through the network and influence its final
output. A node within an MLP network performs a function that
takes in multiple inputs and produces a single output. This function
is made up of two parts: (i) a weighted sum of all the inputs plus a
constant (bias), and (ii) an activation function. The operation at a
node can be described mathematically as:

y¼ f

 
bþ

Xn
i¼1

wixi

!
(3)

where y is the output, wi is the vector of weights, xi is the vector of
inputs, b is the bias constant and f is the activation function.
Adjusting the weights and bias at the node makes it possible to
change y to more closely match the desired output, hence training
the network. Fig. 4 shows a schematic of the operations that occur
at a single node within a neural network. More complex operations
can be performed when these nodes are combined and arranged
into layers to create a mesh-like network. The term deep learning is
Fig. 4. Schematic representation of an active node in an MLP neural network (adapted
from Teixeira-Dias et al. [7].

4

given to networks composed of multiple hidden layers.
The discriminator takes an instance from either the generator or

training set as input, and outputs a classification prediction as to
whether the sample is real or fake. It is a binary classification
problem. The discriminator network is an MLP network with 5 fully
connected (FC) hidden layers, with 25, 15, 15, 5 and 1 nodes in each
layer. The model minimises the following binary cross entropy loss
function:

L
�
y; y

_�¼ � 1
N

XN
i¼0

�
y log

�
y
_
i

�
þð1� yÞlog

�
1� y

_
i

�	
(4)

where y
_
is the predicted value, y is the true value and L is the binary

cross-entropy loss. The adam version [22] of the stochastic gradient
descent method was selected to update model parameters during
training and a Leaky Rectified Linear Unit (LReLU) activation func-
tion was selected to moderate the output from each of the hidden
layers in the Discriminator model [23]. The LReLU moderates the
output by allowing positive inputs to pass through unchanged such
that f(x)¼ x for x > 0 and for negative inputs LReLU allows a shallow
non-zero negative gradient. This is contrary to the typical Rectified
Linear Unit (ReLU) activation function where for negative input
values the output is zero such that f(x) ¼max{0, x} [24]. Finally, the
output layer of the discriminator model passes through a Sigmoid
activation function to moderate the output values in the range [0,1]
[25].

The generator model G takes an input z from the latent space
and generates a new sample. A latent variable is a hidden or un-
observed variable, and the latent space is a multi-dimensional
vector space of these variables. Model G uses 10 latent variables
as input to the model that exists as a 10 element vector of Gaussian
random numbers. The majority of GANs published in the literature
focus on using GANs for image generation and analysis. The in-
tentions of the model proposed in this paper differ from the liter-
ature in the sense that the training sets used to train the models are
smaller and contain fewer data, and secondly the desired output is
less complex (training sets considered consist of 100, 50 and 10
samples with two features as opposed to commonly used MNIST
[26] and CIFAR10 [27] image datasets that contain 60,000 and
10,000 image samples respectively with 28/32 features depending
on the size of the image). As a result, the authors considered a
smaller range of latent input sizes between 2 and 30 and found that
a latent input of 10 resulted in a stable model that was able to
capture the key features of ballistic curves consistently for different
datasets. G has two fully connected hidden layers with 11 hidden
nodes and is activated with a Rectified Linear Unit (ReLU) activation
function. The weights associated with each node are initialised



Fig. 5. The effect that modifying the Lambert parameters has on the shape of its ballistic curve. Default Lambert parameters used are a ¼ 1, p ¼ 3 and vbl ¼ 100, plot (a) shows the
effect of changing parameter a, plot (b) shows the effect of varying parameter p and (c) the variation of vbl.

S. Thompson, F. Teixeira-Dias, M. Paulino et al. Defence Technology xxx (xxxx) xxx
with uniform scaling between 1 and 10. The output layer has two
nodes for the two desired elements vi and vr, and a linear activation
function is used to output real values. The network architectures for
both models are listed in Table 2.
2.3. Training algorithm

The machine learning algorithm was written in Python 3, using
TensorFlow's high-level Keras API for building and training deep
learning models. The training process takes place over 1 million
iterations and a single iteration is completed once the machine
learning algorithm has completed an entire pass through the
training data set (one epoch). Within each iteration, the trainable
parameters of both the D and G networks are updated alternatively;
first the D network is trained and then the G network. D is simply a
classifier that learns to distinguish real data (label ¼ 1) from fake
data generated by G (label ¼ 0). It treats data labelled 1 as positive
examples during training and data labelled 0 as negative examples,
and updates parameters accordingly via the binary cross entropy
loss function and adam optimiser. D can therefore be trained alone
and is trained on both data from the training set and also from fake
data generated by G. The D network is therefore trained on two
epochs of data per iteration and, if left uncorrected, would train at a
faster rate than G, thus giving D an advantage and therefore
affecting the competitive nature of the adversarial process. In order
to correct this, the entire sample fed to D is split in half to form a
batch. This is done randomly at each iteration to ensure that the
total data that D is trained on per iteration is the same as that of G.
The G network is trained entirely on the performance D and its
trainable parameters are optimised in accordance with its output
D(G(z)).

A single iteration of training is complete once the trainable
parameters of both the D and G networks have been updated, twice
Table 2
Architecture of the G and D networks. N is the number of entries in
the respective training set. FC refers to a fully connected layer, FC 25
to a fully connected layer with 25 nodes, and LReLU to a Leaky ReLU
activation function.

Discriminator Generator

Input: (N,2) Input: Latent Dim 10
FC 25, LReLU FC 11, ReLU
FC 15, LReLU FC 11, ReLU
FC 15, LReLU FC 2, Linear
FC 5, LReLU
FC 1, Sigmoid
No. Outputs: 1 No. Outputs: 2

5

for D (on real and fake samples) and once for G. First, real samples
from the training set X are prepared and passed into D to obtain
D(X). A target label of 1 is concatenated with the training data to
identify them as real samples. The output D(X), i.e. its prediction as
to whether the sample is real or fake, then passes into the loss
function and the trainable parameters of D are optimised with the
intention of returning a value closer to the target label of 1 for the
next real sample it receives. Similarly, D is also trained on fake data
from G in the form of G(z) and is concatenated with a target label of
0 to identify them as fake samples. D(G(z)) then passes through the
loss function and the trainable parameters of the D network are
updatedwith the intention ofD(G(z)) returning a value closer to the
target label 0 for future fake samples. The goal of G however, is to
generate samples that D believes to have come from the original
training set X, therefore the output D(G(z)) is used to train the G
network. This defines the zero-sum adversarial relationship be-
tween the two models. As the training of G depends on D, the
network cannot be trained in isolation. A combined model is
therefore required to form the GAN. The GAN is a sequential model
that stacks both the G and D networks such that G receives the
latent Gaussian vector z as input and can directly feed its output
into D. To that end, G(z) is concatenated with a target label of 1
(indicating a real sample) and the output D(G(z)) passes through
the loss function and the trainable parameters of G are updated
with the intention of D(G(z)) returning a value closer to the target
label of 1. It should be noted that the binary cross entropy loss
function and adam optimiser are also used to train the combined
GAN model and that whilst G is being trained, the nodes within
each layer of the D network are frozen and cannot be updated; this
prevents D from being over-trained on fake examples. The com-
plete training algorithm of the GAN is shown in Table 3.

2.4. Model evaluation

This section details the process adopted to evaluate the success
of the proposed models. A total of three separate GAN networks
have been trained and named in reference to the training set that
they were trained on (e.g. GAN1 refers to the generative network
trained on the first training set). In this study, the expected values
are known as the model is aiming to recreate results representative
of the Lambert model. Each model was trained for a total of 1
million iterations and the performance of the GANwas evaluated at
every 1000 iterations as the model in its current form was used to
generate 100 samples. The RMSE was calculated by taking each vr
predicted by the GANmodel and computing the difference with the
expected value from the Lambert model for the respective vi. The
non-linear least squares method was used at each evaluation point



Table 3
Training algorithm for the Generative Adversarial Network.

Training Algorithm Generative Adversarial Network
Input: Training Set X, latent dim z ~ Pz, number of epochs T, learning rate L, batch size m Output: Generated samples G(z)

start
Define the D and G networks as sequential models with Keras API
Initialise parameters of D and G
Create combined sequential model GAN with D and G
for t¼ 1: T do

Collect samples {xi}mi¼ 1 from training set X, label¼ 1
Generate samples {zi}mi¼ 1 from latent Gaussian noise distribution Pz, label¼ 0
Train D on real samples {xi}mi¼ 1 and update D, label¼ 1
Train D on fake samples {zi}mi¼ 1 and update D, label¼ 0
Invert class labels of {zi}mi¼ 1 from 0 to 1
Freeze D modifiable parameters in combined model
Train GAN on {zi}mi¼ 1 with inverted labels and update G

end for
end

S. Thompson, F. Teixeira-Dias, M. Paulino et al. Defence Technology xxx (xxxx) xxx
to fit the Lambert equation to the generated data such that Lambert
parameters specific to the generated model at that point during
training could be obtained. The percentage difference of these pa-
rameters with the expected parameters, listed in Table 1, was
computed and plotted to show how the accuracy of the samples
generated by the GAN changes throughout training. This results in
four parameters, a%, p%, vbl% and the RMSE, that are beingmonitored
during training to evaluate the performance of the model. It should
be noted that for the model's intended application this would not
be the case and instead the generative network would simply be
presented with experimental samples that would form the training
set. It would have no true reference and as such it can be difficult to
know the optimal point in time to terminate the training.

GANs can be very difficult to train and a lot of research is
ongoing to improve the convergence of generative networks
[28e30]. Often the most meaningful way to interpret the success of
the GAN is with visual interpretation. It would therefore be rec-
ommended to regularly use the GAN during training to generate
ballistic samples as an additional qualitative measure to evaluate
the training process. That being said, the authors found that for this
application 1 million iterations afforded the learning algorithm
enough opportunity to consistently optimise the parameters of the
network on different training sets, without an unreasonable
compromise in computational cost. Once the generative network is
trained, it is important to study the quality of the output to deter-
mine the success of the model. However, due to the stochastic
nature of the GAN and the latent Gaussian input to the network, the
output varies. The authors performed a statistical analysis for each
of the generative networks to gain further insight into its output.
For each of the GAN networks, the 1,000,000th iteration of the
model was used to generate 100 samples of data and parameters a%,
p%, vbl% and the RMSE were once again calculated. This was done
1000 times and each of the four parameters were stored at each
iteration in a [4 � 1000] array, the results of which are discussed in
the next section.

3. Results and discussion

In this study a total of three separate GAN networks have been
trained. The variation of parameters a%, p%, vbl% and the RMSE are
plotted against training time in iterations alongside a 100 sample
output of the final model in Fig. 6. This is done for each of the three
networks, with Fig. 6(a) and (b) referring to GAN1, Fig. 6(c) and (d)
to GAN2 and finally Fig. 6(e) and (f) to GAN3. On inspection, it can
be seen that the samples generated by each of the GAN networks
match the shape of the Lambert curve. In the case of GAN1, which
was trained on the first training set, Fig. 6(a), there is noticeable
6

improvement in the accuracy of the network as training progresses.
Both the RMSE and the respective Lambert parameter errors
determined via the fitting model decrease with training. This is a
clear indication that the model has learned from the training set
and is now able to generate new samples that are representative of
that initial data set. This observation is enforced when looking at
the samples generated by GAN1 in Fig. 6(b). The generated samples
appear to come from the same distribution as the training set and
display close matching both before and after the ballistic limit.

The training set used to train GAN1 was the most structured and
comprehensive of the three training sets and thus provide optimal
conditions for the learning algorithm to optimise its respective
trainable parameters. Fig. 6(c) and (d) show the equivalent results
for GAN2. Once again it can be seen that over time the errors of each
of the Lambert parameters decrease with training time as the
model learns and the output of GAN2 begins to stabilise. Earlier in
the training process large error spikes are visible where the output
from the model is highly inaccurate. These correspond to points
where optimisation was unsuccessful, the loss function would
therefore return larger values and the trainable parameters of the
network would then be updated more rigorously in order to reduce
the loss and improve accuracy. The final iteration of GAN2was used
to generate the 100 samples shown in Fig. 6(d). The generated
samples are also consistent with those of the Lambert model and
representative of the training set that it was trained on. Samples
generated by GAN2 demonstrate good matching with the Lambert
model past the ballistic limit velocity. However, unlike GAN1, GAN2
does not generate samples below the ballistic limit. The training set
used to train the GAN1 model represents an optimal training set
and consists of 100 samples logarithmically spaced around the
ballistic limit velocity. This provides the GAN model with training
data from the entire impact range between [0, 600] m/s and sub-
sequently the best opportunity to learn the behaviour of the correct
ballistic response. The training set used to train GAN2 however,
consists of 50 samples with x values randomly selected between
the impact range of [0, 600] m/s and the corresponding y values
calculated via the Lambert equation. In comparison to the first
training set, this data is unstructured and no priority has been
made to organise the data around the ballistic limit. Of the 50
samples in the training set, only 7 exist below the ballistic limit.
During training, it is likely that GAN2 was optimised such that it
converged to a local minima where a solution was found where D
believes that samples generated byG belong to the training set - but
without including the additional feature that represents the hori-
zontal line at vr ¼ 0 for vi < vbl. It could also be that 7 samples
beneath the ballistic limit is insufficient to correctly learn that
feature of the ballistic curve, however more targeted research



Fig. 6. Plots (a), (c) and (e) show the error of the model during training including the RMSE and the percentage difference of fitted Lambert parameters with that used in the original
Lambert model. Where a% refers to the percentage error of the fitted parameter specific to the GAN network at that point in training with the true Lambert value a etc. Plots (b), (d)
and (f) show a 100 sample output of the networks GAN1, GAN2 and GAN3 after 1 million iterations respectively, where the respective D and G models were trained with a Learning
Rate (LR) of 0.0035. Plot includes omitted values that meet either of the elimination criteria: (i) if vi < vbl then vr must not be less than zero, and (ii) vr > vi.

S. Thompson, F. Teixeira-Dias, M. Paulino et al. Defence Technology xxx (xxxx) xxx

7



S. Thompson, F. Teixeira-Dias, M. Paulino et al. Defence Technology xxx (xxxx) xxx
would have to be conducted to affirm that conclusion. For the
ballistic application however, this is not an issue as residual ve-
locities beneath the ballistic limit velocity are, by definition, equal
to zero.

The results of GAN3 are shown in Fig. 6(e) and (f). GAN3 was
trained on the training set that was the least comprehensive and
most representative of data collected via experiments. This training
set contains much fewer samples and, unlike training sets 1 and 2,
was tainted with additional noise of up to 10 %, to mimic experi-
mental measurement errors. Fig. 6(e) shows the variation of
parameter accuracy during training. This time the model did not
converge as successfully as with GAN1 and GAN2, and appears to be
less stable demonstrating more spikes in error throughout training.
This being said, Fig. 6(f) shows the 100 samples from the final
iteration of GAN3 and it can be seen that once again the samples
follow the shape of the ballistic curve. The samples generated by
GAN3 have a larger spread than those generated by GAN1 and
GAN2, but this is consistent with the tainted training set that it was
trained on. GAN3 does not demonstrate samples for impact ve-
locities vi between the range [0,vbl], however this is expected as
samples within that range are not present in the training set. A
comparison of the coefficients generated by the final iteration of
each GAN network can be found in Table 4.

The results in Table 4 compare the average Lambert coefficients
determined by curve fitting the samples generated by each of the
GAN networks 1000 times with the baseline Lambert parameters
defined in Table 1. The results show that all of the GAN networks
performed well with respect to parameter a with the percentage
error in each case <0.1 %. GAN2 was the most successful in regards
to p with an average error of 3.6 %, outperforming GAN1 and GAN3
which had errors of �20.58 % and 47.90 %, respectively. This re-
mains true for the vbl case as GAN2 also produced the lowest
average errors of �0.73 %, GAN1 predicted the vbl with an error of
3.23 % and finally GAN3 with an error of 4.83 %. This metric is
particularly useful as the vbl is an important parameter when
determining the ballistic response of materials and for all GAN
networks the predictive error was <5 %. Fig. 5 shows the influence
that parameters a, p and vbl have on the ballistic curve. In each case,
the Lambert plot with the default parameters listed in Table 1 is
shown and Fig. 5(a), (b) and (c) show how the plot changes by
varying a, p and vbl, respectively.

Fig. 5 (a) demonstrates that decreasing a raises the profile of the
curve and increasing it does the opposite. a ¼ 1 assures that the
ballistic curve approaches the line y ¼ x which is consistent with
ballistic theory. Parameter p controls the gradient of the curve at
impact velocities > vbl; it can be seen that reducing p results in a
much steeper curve whereas increasing it does the opposite. As
expected, it can be seen in Fig. 5 (c) that altering vb shifts the
position.

of the ballistic limit velocity on the x-axis. This plot is important
as the large errors found in Table 4 for parameter p can be
misleading, as despite a large percentage difference to the actual
Lambert parameter, the shape of the ballistic curve does not differ
as much as might be expected. A better metric to consider the
Table 4
Comparison of fittedmodels with the Lambert coefficients. Values shown are average valu
iteration model generating 100 samples of ballistic data.

Coefficients Lambert GAN1

a 1.0 1.01 (þ0.1 %)
p 3.0 2.44 (�20.58 %
Vbl 100.0 96.82 (�3.23 %
RMSE e 10.48 %
Omitted samples e 2.31

8

overall accuracy of the results is the RMSE, where GAN1 was the
most accurate with an overall error of 10.48 % and GAN3 was the
least successful with an overall RMSE of 22.44 %. The notable in-
crease in error between GANs 1 and 2 with GAN3 is expected since
GAN3 was trained on a reduced training set that had been tainted
with additional noise. On Fig. 6 (b), (d) and (f) omitted samples are
plotted on the ballistic curve for completeness. These generated
samples are unrealistic and were omitted for meeting one of two
elimination criteria: the first refers to generated samples with a
negative residual velocity - this would indicate that the projectile
did not possess the kinetic energy necessary to perforate the target
plate and as such rebounded. Ballistic experiments published in the
literature typically do not record the velocity of the rebounded
projectile and label such occurrences with a vr of zero. Therefore
the first elimination criteria is to remove samples where vr < 0. The
second elimination criteria refers to cases where vr > vi, this vio-
lates the law of conservation of energy as energy cannot be created
or destroyed. It is physically impossible for a projectile to perforate
a plate and gain kinetic energy. Instead, kinetic energy from the
projectile would be lost and transformed into heat energy and
strain energy within the plate to facilitate its deformation. Because
of this, vr can never exceed vi and as such samples that meet that
criteria are also eliminated. It should also be noted that the omitted
values were still used when calculating the results in Table 4.

Due to the stochastic nature of the GAN output, it is important to
analyse the output statistically to gain further insight into the re-
sults. The parameters a, p and vbl are determined by curve fitting
the 100 generated samples to the Lambert model to obtain pa-
rameters specific to the GAN. This was done 1000 times and the
values for each GAN were stored to create four matrices of size
[1000 � 4] that corresponds to the output, note this was also done
for the RMSE. A Kernel Density Estimation (KDE) plot was used to
estimate the probability density function of each parameter, the
results are shown in Fig. 7. Statistical parameters from each of the
GAN networks are shown in Table 5. Plot (a) displays the predicted
values of parameter a by each of the GAN networks. It can be seen
that each of the models performed well as the densities for each
GAN are high and the peaks of the KDE curve are close to the ex-
pected Lambert value of 1. From the plot it is clear that the output
fromGAN3 has awider distribution than that of GANs 1 and 2. From
Plot (b) it is clear that the output fromGAN2 is most consistent with
the expected values as the peak of the KDE plot lies closely to the
Lambert prediction. The overall distribution fromGAN1 is narrower
than GAN2 however it consistently under predicts p. The output of
GAN3 with regard to this metric follows a much larger distribution
with no clear peak. The average value of p shown in Table 4 was
4.89 yet in some cases the fitted p value was much higher with
some notable outliers. Plot (c) shows the results for parameter vbl
and each of the models performed well on this metric with the
peaks of each KDE plot lying close to that of the true value of 100
with the traditional bell-shaped curve. Once again the distribution
from GAN3 is much broader and GAN2's output appears non-
normal demonstrating a bi-modal distribution the main peak
before the vbl and the secondary peak after. Finally Plot (d) shows
es taken from 1000 runs where the parameters are determined from the 1,000,000th

GAN2 GAN3

1.00 (þ0.00 %) 1.00 (þ0.00 %)
) 3.11 (þ3.60 %) 4.89 (þ47.90 %)
) 99.27 (�0.73 %) 104.95 (þ4.83 %)

11.99 % 22.44 %
11.70 27.46



Fig. 7. The Kernel Density Estimation (KDE) plot for each Lambert parameter predicted by each of the GAN networks. Plot (a) compares the distributions of a, (b) compares the
distributions of p, (c) compares the vbl and finally (d) the RMSE.

Table 5
Standard deviation (std), minimum (min) and maximum (max) values associated with parameters a, p, vbl and RMSE for generative networks GAN1, GAN2 and GAN3. Values
are fitted from 100 samples generated by each GAN network 1000 times and values are taken from stored array.

GAN3 GAN2 GAN1

a p Vbl RMSE a P Vbl RMSE a p Vbl RMSE
[-] [-] [-] [%] [-] [-] [-] [%] [-] [-] [-] [%]

Std 0.00 0.17 2.13 1.21 0.00 0.38 2.94 1.46 0.01 11.03 11.89 3.16
Min 1.00 1.68 81.72 6.07 0.99 2.51 95.45 7.75 0.96 1.93 94.68 13.78
Max 1.03 2.99 101.48 15.13 1.01 5.83 114.57 18.04 1.05 110.82 180.00 33.99
Mean 1.01 2.44 96.82 10.48 1.00 3.114 99.27 11.99 1.00 4.89 104.95 22.44

S. Thompson, F. Teixeira-Dias, M. Paulino et al. Defence Technology xxx (xxxx) xxx
the calculated values for the RMSE and it can be seen that GAN1
was the most successful model with a narrow distribution and the
tallest peak. GAN2 has a slightly shallower peak at a higher RMSE
and a wider distribution. Finally GAN3 was the worst performing
networkwith the shallowest peak and awider distribution than the
other models.
4. Conclusion

Understanding the ballistic response of materials is crucial such
that informed decisions can be made in the design process of
protective armour systems. Current approaches involve substantial
ballistic testing to assure that materials meet the required
9

protection, safety and performance criteria whilst allowing for
important design parameters such as the Ballistic Limit Velocity vbl
to be obtained. Such tests however, are destructive by nature and
often come with considerable associated costs. In this study, we
proposed a novel approach to generate realistic ballistic samples
through the Generative Adversarial Network (GAN), an unsuper-
vised machine learning technique that can be used to learn directly
from ballistic data and generate new samples representative of the
data of which it was trained.

In this paper, the authors test the feasibility of using GANs in this
problem space and considered three separate GAN networks each
trained on a unique dataset created using the Lambert and Jonas
ballistic model [13]. In total, there were three training sets of



S. Thompson, F. Teixeira-Dias, M. Paulino et al. Defence Technology xxx (xxxx) xxx
degrading structural quality containing 100, 50 and 10 samples in
training sets 1,2 and 3 respectively. Where training set 3 was
afflicted with an additional 10 % noise to mimic that of measure-
ment error. The GAN models were trained for a total of 1 million
iterations and in each case, the trained networks were capable of
generating additional samples that on inspection matched the
shape of the Lambert curve. The models were successfully able to
reproduce samples representative of the training set that it was
trained on. The model was used to generate 100 ballistic samples
1000 times such that a thorough analysis of the output can be
performed. The GAN models predicted the vbl with an error
of �3.23 %, �0.73 % and 4.83 % with an average RMSE of 10.48 %,
11.99 % and 22.44 % respectively. Alternative methods of predicting
the vbl either require a comprehensive experimental testing
campaign or the optimisation of FE numerical models such that
their output is consistent with that of experimental tests. Both of
these approaches induce large costs that increase with complexity
of the target material and the time required to perform the testing/
simulations. The authors believe that the GAN approach offers an
interesting alternative that shows promising signs within this
domain to reduce the cost of material characterisation campaigns
and increase the speed of design prototyping. Improving the sta-
bility and convergence of GANs remains a deep topic of research
that is not explicitly addressed by this study. The GAN architecture
and training parameters proposed resulted in a stable training
process for each of the ballistic test cases considered. The output
from each of the GAN models improved with training and did not
suffer from common issues such as non-convergence and mode
collapse and thus additional stability precautions were not applied.
The authors however recommend regularly challenging the GAN
model during training to generate samples to qualitatively assess
that the model is learning the correct features. For future work, the
authors intend to apply the proposedmethods to real experimental
data and also explore the latent space input to the Generator G -
conditioning it on auxiliary engineering properties such as material
thickness or heat treatment.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the Engineering and Physical Sci-
ences Research Council [grant number: EP/N509644/1].

References

[1] Børvik T, Leinum JR, Solberg JK, Hopperstad OS, Langseth M. Observations on
shear plug formation in weldox 460 e steel plates impacted by blunt-nosed
projectiles. Int J Impact Eng 2001;25(6):553e72.

[2] Børvik T, Hopperstad OS, Langseth M, Malo KA. Effect of target thickness in
10
blunt projectile penetration of weldox 460 e steel plates. Int J Impact Eng
2003;28(4):413e64.

[3] Walker JD, Anderson CE. A time-dependent model for long-rod penetration.
Int J Impact Eng 1995;16(1):19e48.

[4] Ryan S, Thaler S, Kandanaarachchi S. Machine learning methods for predicting
the outcome of hypervelocity impact events. Expert Syst Appl 2016;45:23e39.

[5] McCarthy J, Minsky M, Rochester N, Shannon C. A proposal for the dartmouth
summer research project on arti cial intelligence. AI Mag 2006;27.

[6] Sherstinsky A. Fundamentals of recurrent neural network (rnn) and long
short-term memory (lstm) network. Phys Nonlinear Phenom 2020;404:
132306.

[7] Teixeira-Dias F, Thompson S, Paulino M. An artificial intelligence-based hybrid
method for multi-layered armour systems. Cham: Springer International
Publishing; 2019. p. 381e400.

[8] Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al.
Generative adversarial networks. 2014.

[9] Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X. Improved
techniques for training gans. 2016.

[10] Chen Z, Wang C, Wu H, Shang K, Wang J. Dmgan: discriminative metric-based
generative adversarial networks. Knowl Base Syst 2020;192:105370.

[11] Børvik T, Langseth M, Hopperstad O, Malo K. Ballistic penetration of steel
plates. Int J Impact Eng 1999;22(9):855e86.

[12] Zhang T, Stronge W. Theory for ballistic limit of thin ductile tubes hit by blunt
missiles. Int J Impact Eng 1996;18(7):735e52.

[13] Ben-Dor G, Dubinsky A, Elperin T. On the lambertejonas approximation for
ballistic impact. Mech Res Commun 2002;29(2):137e9.

[14] Sikarwar RS, Velmurugan R, Gupta N. Influence of fiber orientation and
thickness on the response of glass/epoxy composites subjected to impact
loading. Compos B Eng 2014;60:627e36.

[15] Xiao X, Wang Y, Vershinin VV, Chen L, Lou Y. Effect of lode angle in predicting
the ballistic resistance of weldox 700 e steel plates struck by blunt projectiles.
Int J Impact Eng 2019b;128:46e71.

[16] Xiao X, Pan H, Bai Y, Lou Y, Chen L. Application of the modified
mohrecoulomb fracture criterion in predicting the ballistic resistance of
2024-t351 aluminum alloy plates impacted by blunt projectiles. Int J Impact
Eng 2019a;123:26e37.

[17] Rosenberg Z, Kositski R, Dekel E. On the perforation of aluminum plates by
7.62mm apm2 projectiles. Int J Impact Eng 2016;97:79e86.

[18] Wei Z, Yunfei D, Sheng CZ, GangW. Experimental investigation on the ballistic
performance of monolithic and layered metal plates subjected to impact by
blunt rigid projectiles. Int J Impact Eng 2012;49:115e29.

[19] Huang X, Zhang W, Deng Y, Jiang X. Experimental investigation on the ballistic
resistance of polymer-aluminum laminated plates. Int J Impact Eng 2018;113:
212e21.

[20] Zhou D, Stronge W. Ballistic limit for oblique impact of thin sandwich panels
and spaced plates. Int J Impact Eng 2008;35(11):1339e54.

[21] Rodriguez-Millan M, Garcia-Gonzalez D, Rusinek A, Abed F, Arias A. Perfora-
tion mechanics of 2024 aluminium protective plates subjected to impact by
different nose shapes of projectiles. Thin-Walled Struct 2018;123:1e10.

[22] Kingma DP, Ba J. Adam: a method for stochastic optimization. 2014.
[23] Nair V, Hinton G. Rectified linear units improve restricted Boltzmann ma-

chines vinod nairvol. 27; 2010. p. 807e14.
[24] Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural network

acoustic models. In: ICML workshop on deep learning for audio, speech and
language processing; 2013.

[25] Han J, Moraga C. The influence of the sigmoid function parameters on the
speed of backpropagation learning. In: Mira J, Sandoval F, editors. From nat-
ural to artificial neural computation. Berlin, Heidelberg: Springer Berlin Hei-
delberg; 1995. p. 195e201.

[26] Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to
document recognition. Proc IEEE 1998;86(11):2278e324.

[27] Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images.
Technical Report 0. Toronto, Ontario: University of Toronto; 2009.

[28] Kodali N, Abernethy J, Hays J, Kira Z. On convergence and stability of gans.
2017.

[29] Nowozin S, Cseke B, Tomioka R. f-gan: training generative neural samplers
using variational divergence minimization. 2016.

[30] Theis L, van den Oord A, Bethge M. A note on the evaluation of generative
models. 2015.

http://refhub.elsevier.com/S2214-9147(21)00137-9/sref1
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref1
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref1
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref1
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref1
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref2
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref2
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref2
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref2
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref2
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref3
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref3
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref3
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref4
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref4
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref4
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref5
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref5
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref6
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref6
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref6
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref7
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref7
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref7
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref7
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref8
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref8
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref9
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref9
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref10
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref10
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref11
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref11
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref11
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref11
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref12
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref12
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref12
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref13
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref13
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref13
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref13
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref14
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref14
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref14
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref14
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref15
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref15
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref15
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref15
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref16
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref16
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref16
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref16
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref16
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref16
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref17
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref17
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref17
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref18
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref18
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref18
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref18
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref19
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref19
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref19
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref19
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref20
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref20
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref20
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref21
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref21
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref21
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref21
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref22
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref23
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref23
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref23
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref24
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref24
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref24
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref25
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref25
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref25
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref25
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref25
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref26
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref26
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref26
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref27
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref27
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref28
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref28
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref29
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref29
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref30
http://refhub.elsevier.com/S2214-9147(21)00137-9/sref30

	Ballistic response of armour plates using Generative Adversarial Networks
	1. Introduction
	2. Generative Adversarial Networks
	2.1. Training sets
	2.2. Model architecture
	2.3. Training algorithm
	2.4. Model evaluation

	3. Results and discussion
	4. Conclusion
	Declaration of competing interest
	Acknowledgements
	References


