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Consistent, accurate, high resolution, long time-series mapping of built-up land 
in the North China Plain
Jinzhu Wang a,b, Michalis Hadjikakoua and Brett A. Bryan a,b

aCentre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, Australia; bEngineering and Built 
Environment, Deakin University, Melbourne, Australia

ABSTRACT
Accurate, long time-series, high-resolution mapping of built-up land dynamics is essential for 
understanding urbanization and its environmental impacts. Despite advances in remote sensing 
and classification algorithms, built-up land mapping which only uses spectral data and derived 
indices remains prone to uncertainty. We mapped the extent of built-up land in the North China 
Plain, one of China’s most important agricultural regions, from 1990 to 2019 at three-yearly 
intervals and 30 m spatial resolution. We applied Discrete Fourier Transformation to dense time- 
stack Landsat data to create Fourier predictors to reduce mapping uncertainty. As a result, we 
improved the overall accuracy of built-up land mapping by 8% compared to using spectral data 
and derived indices. In addition, a temporal correction algorithm applied to remove misclassified 
pixels further improved mapping accuracy to a consistently high level (>94%) over the time 
periods. A cross-product comparison showed that our maps achieved the highest accuracies across 
all years. The built-up land area in the North China Plain increased from 37,941 km2 in 1990–1992 to 
131,578 km2 in 2017–2019. Consistent, high-accuracy, long time-series built-up land mapping 
provides a reliable basis for formulating policy and planning in one of the most rapidly urbanizing 
regions on this planet.
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Introduction
Economic development and population growth have 
led to drastic changes in the Earth’s terrestrial surface, 
not least through the expansion of built-up lands 
(Elmore et al. 2012), with urbanization continuing to 
accelerate (United Nations 2019). Built-up land is 
defined as land-use comprising more than 50% 
human-made structures such as roads, buildings, 
and agricultural and industrial facilities (Schneider 
and Mertes 2014). Built-up land extent is an essential 
data input for the analysis of water and carbon cycling 
(Chen et al. 2020; Hou et al. 2020; Wang et al. 2018), 
pollution (Shrivastava et al. 2019; Yue et al. 2020), 
agricultural production (Brown 1997), biodiversity 
conservation (Filazzola, Shrestha, and MacIvor 2019), 
ecosystem services (Bryan et al. 2018; Calderón-Loor, 
Hadjikakou, and Bryan 2021; Ye et al. 2018), and cli-
mate (Lamb et al. 2019; Kuang et al. 2019).

Tracking built-up land over long periods is 
a significant challenge because random misclassifica-
tions compromise the consistency of multi-temporal 
mapping. For example, the soil surface of fallow crop-
land has similar spectral characteristics to built-up 

land and is commonly reported as a source of confu-
sion in built-up land mapping in mixed urban/agrar-
ian regions (Gong et al. 2020; Li, Gong, and Liang 
2015; Li et al. 2016). In addition, random noise such 
as cloud and cloud shadows can also lead to incon-
sistencies in built-up land mapping (Foga et al. 2017). 
Therefore, removing these noise sources is essential 
to maintain consistency in long time-series built-up 
land mapping and enable the reliable assessment of 
temporal trends in urbanization and urban land- 
change dynamics.

Open-data policies combined with advances in 
computation facilities and innovative algorithms 
have enabled built-up land to be mapped at higher 
resolution across larger extents, at greater temporal 
frequency, and over longer time periods (Li and Gong 
2016). Two strategies are typically used to increase 
mapping accuracy and reduce inconsistencies over 
time: 1) integrating multisource data and 2) using 
temporal consistency correction. For example, 
Visible Infrared Imaging Radiometer Suite (VIIRS) 
nighttime light (NTL) data has been used as a binary 
mask to exclude non-urban land (Gong et al. 2020; He 
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et al. 2019; Liu et al. 2019; Guo et al. 2018), Sentinel-1 
Synthetic Aperture Radar (SAR) data has been merged 
with Landsat data to increase classification accuracy 
(Gong et al. 2020; Zhang et al. 2020), and multisource 
remotely sensed data has been combined to enhance 
urban land mapping (Cao et al. 2019; Li et al. 2020b). 
The tendency of built-up land to not revert to natural 
or agricultural land (i.e. its irreversibility) has also been 
exploited to correct temporal inconsistencies (Li, 
Gong, and Liang 2015) and produce stable and reli-
able control points (Liu et al. 2019). Temporal correc-
tion has improved the overall accuracy of urban 
mapping by ~6% in Beijing from 1985 to 2015 (Li, 
Gong, and Liang 2015), ~3% in Wuhan from 1987 to 
2016 (Shi et al. 2017), and ~6% in Tianjin from 1990 to 
2014 (Chai and Li 2018).

Spectral features and vegetation indices have been 
used to map built-up land, but temporal features such 
as land surface phenology have typically been over-
looked (Jönsson et al. 2018). Generally, temporal fea-
tures are derived from indices such as the normalized 
difference vegetation index (NDVI) using smoothing 
methods (Wang et al. 2017) such as logistic models 
(Elmore et al. 2012), Savitzky–Golay filters (Chen et al. 
2004), quadratic functions (Beurs and Henebry 2004), 
and Discrete Fourier Transforms (Wang, Azzari, and 
Lobell 2019). The Discrete Fourier Transform repre-
sents time-series signals as several periodic compo-
nents suitable for extracting temporal features from 
remotely sensed data (Wang, Azzari, and Lobell 2019). 
Although temporal features have been coupled with 
change-detection methods to determine the timing 
of conversion to built-up land (Liu et al. 2019), they 
have not been widely used as mapping predictors 
(Zeng et al. 2020). Because temporal features capture 
relatively predictable greenness patterns following 
interannual plant growth cycles, we hypothesize 
that they could reduce the spectral confusion in built- 
up land mapping from fallow farmland and seasonal 
bare land.

This study aims to make two specific advances on the 
current state of knowledge on built-up land mapping: 1) 
to reduce the confusion of fallow cropland and seasonal 
bare land in mixed urban and agricultural settings by 
integrating temporal features from dense time-stack 
remotely sensed data, and 2) to increase the mapping 
consistency by applying a cloud-based temporal correc-
tion algorithm. The North China Plain region was cho-
sen as the study area because of the fierce competition 

between urbanization and agriculture for land (Jin et al. 
2019). First, we used Discrete Fourier Transformation to 
derive temporal features based on dense time-stack 
Landsat spectral indices (Odenweller and Johnson 
1984; Song et al. 2016). Second, we tested the perfor-
mance improvement of temporal predictor variables 
over traditional spectral approaches by adding them 
to the classification. A temporal correction algorithm 
was then used to remove inconsistent pixel classifica-
tions. Finally, we conducted a cross-product comparison 
to assess our results against other built-up land map-
ping datasets (Stehman and Foody 2019). We discuss 
the benefits of consistent, accurate, high-resolution, 
long time-series built-up land mapping in providing 
more reliable inputs to understanding regional urban 
development and linking social-economic change to 
environmental impacts.

Materials and methods

Study area

Five central and eastern provinces of China (i.e. 
Henan, Hebei, Shandong, Anhui, and Jiangsu) and 
two municipalities (i.e. Beijing and Tianjin), corre-
sponding to the North China Plain region, were 
selected as the study area (Figure 1). The area 
spans 780,000 km2 and is home to over 450 million 
people (National Bureau of Statistics of China 2019b). 
The study area is one of China’s most rapidly devel-
oping regions with the urbanization rate (excluding 
Beijing and Tianjin) tripling from ~20% in 1990 to 
~60% in 2018 (National Bureau of Statistics of China 
2019b). The North China Plain is key to China’s eco-
nomic development and food security (Song and 
Deng 2015), generating ~37% of the gross domestic 
product and ~35% of China’s grain production in 
2019 (National Bureau of Statistics of China 2019a). 
Managing the tension between rapid economic 
development, urbanization, and food production 
in the study area demands accurate quantification 
of built-up land dynamics to support policy formula-
tion and decision making (Li et al. 2020a; Liu et al. 
2020).

Method overview

The approach taken in this study is summarized in 
Figure 2. Due to its high computational performance 

2 J. WANG ET AL.



Figure 1. Map of the North China Plain.

Figure 2. Flowchart outlining the methods used to map built-up land in the North China Plain. The National Settlements Database 
stores the geographic coordinates of government departments and state-owned companies in 2000 (http://www.resdc.cn/). The 
Spectral data refers to the cloud-free image produced from the Landsat data. Indices variables refer to the normalized difference 
vegetation index (NDVI), enhanced vegetation index (EVI), and normalized difference built-up index (NDBI). The Fourier predictors are 
coefficients derived from a discrete Fourier transformation on the Indices data (NDVI, NDBI, and EVI). Terrain data were a digital 
elevation model and slope derived from the Shuttle Radar Topography Mission. Meteorology data were taken from the China 
Meteorological Forcing Dataset (http://data.tpdc.ac.cn/).

GISCIENCE & REMOTE SENSING 3

http://www.resdc.cn/
http://data.tpdc.ac.cn/


and vast historical satellite imagery archive, Google 
Earth Engine was used to process all remotely sensed 
data and map built-up land (Gorelick et al. 2017). 
Control points were visually checked using Landsat 
images from 1990–1992 and Google Earth high- 
definition images (from GeoEye, WorldView, SPOT, 
and Pleiades) from 2014 and 2019. We randomly with-
held 25% of the control points as validation samples. 
Cloud-free Spectral images, normalized Indices (e.g. 
NDVI), Fourier predictors (e.g. Fourier transformation 
coefficients), Terrain, and Meteorological data were 
sequentially added to a Random Forest (RF) classifier 
to assess the additional benefit for classification accu-
racy. A temporal correction algorithm was then 
applied to remove inconsistent classifications. Lastly, 
a cross-product comparison was carried out using the 
withheld control points.

Data and input predictors

We used five types of remotely sensed data as pre-
dictors to map built-up areas (Table 1). Spectral pre-
dictors comprised cloud-free images computed from 
Landsat and Sentinel 2A. Indices predictors were cal-
culated from Landsat cloud-free data, including the 
NDVI, enhanced vegetation index (EVI), and normal-
ized difference built-up index (NDBI). The Fourier pre-
dictors were derived from the Discrete Fourier 
Transformation of dense time-stacks of Indices data 
(NDVI, NDBI, and EVI). Lastly, Terrain data was taken 
from the Shuttle Radar Topography Mission and the 
Meteorology data was taken from the China 
Meteorological Forcing Dataset (He et al. 2020). The 
Landsat and Sentinel data were subject to geometric 
and radiometric corrections by Google Earth Engine, 

and all data were resampled to 30 m resolution for 
use in the classification.

The Spectral predictors were cloud-free images 
produced from Landsat and Sentinel-2A; the data 
quantity and distribution can be seen in 
Supplementary Material A (Figure SA 1). Spectral pre-
dictors were created using the simpleComposite mod-
ule in Google Earth Engine. For each pixel in the 
collection of Landsat images, this module assigned 
a cloud score (0–100) to it and used the median 
value from pixels with a cloud score <10 to create 
a cloud-free image. For the Sentinel 2 Multi-Spectral 
Instrument (MSI) data, its Quality Assessment band 
that indicates whether the pixel is covered by cloud 
and cirrus was used to remove cloudy pixels, and the 
median value of the remaining pixels was mosaicked 
to create the Spectral predictors.

NDVI, EVI, and NDBI were selected as Indices pre-
dictors because NDVI and EVI are robust for delineat-
ing land covers (Li, Gong, and Liang 2015), and NDBI 
suits the purpose of built-up mapping (Li et al. 2018). 
We calculated these indices as follows: 

NDVI ¼ NIR � Rð Þ= NIRþ Rð Þ (1) 

EVI ¼ 2:5� NIR � Rð Þ= NIRþ 6� R � 7:5� Bþ 1ð Þð Þ

(2) 

NDBI ¼ SWIR1þ NIRð Þ= SWIR1 � NIRð Þ (3) 

where NIR refers to the near-infrared band, R refers to 
the red band, B refers to the blue band, and SWIR1 
refers to the first shortwave infrared band.

The Discrete Fourier Transformation approximates 
a series of discrete values by summing up a linear 

Table 1. Input predictors for built-up land mapping. TM: Thematic Mapper, ETM+: Enhanced Thematic Mapper Plus, OLI: Operational 
Land Imager, MSI: Multispectral Instrument, NDVI: normalized difference vegetation index, EVI: enhanced vegetation index, and NDBI: 
normalized difference built-up index. All bands of the Landsat/Sentinel are used in this research. Note the panchromatic band (15 m 
resolution) of Landsat ETM+ and OLI, and the thermal bands (which have a resolution of 60 m for Landsat5/7 and 100 m for Landsat 8) 
are resampled to 30 m. All Sentinel bands are resampled to 30 m.

Input type Source Spatial resolution Number of bands Years

Spectral Landsat TM 30 m 7 1990–2010
Landsat ETM+ 30 m 9 2011–2013
Landsat OLI 30 m 11 2014–2019
Sentinel-2A MSI 10 m 13 2015–2019

Indices NDVI 30 m 1 1990–2019
EVI 30 m 1 1990–2019
NDBI 30 m 1 1990–2019

Fourier Coefficients of the Discrete Fourier Transformation 30 m 24 1990–2019
Meteorology China Meteorological Forcing Data (Annual product) 0.1° 7 1990–2018
Terrain Elevation 30 m 1 1990–2019

Slope 30 m 1 1990–2019
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function and several pairs of sinuate functions. The 
fitting formulation was as follows: 

pt ¼ β0 þ β1t

þ
Xn

k¼1

½αkcos 2πkωtð Þ þ θksin 2πkωtð Þ� þ et (4) 

where t is the time difference in year fractions 
compared to 1970 following standard practice in 
data science, pt is the pixel value at time t, n is 
the number of sinuate function pairs, β0 and β1 

are the coefficients of the linear function, αk and 
θk are the sinuate coefficients, ω is the frequency, 
and et is the error between the actual observation 
and the fitted value.

In practice, n and the temporal interval were the two 
variables that should be determined before the fitting. 
We assessed the impact of different n and temporal 
intervals from 1 to 5 and selected 3 for both variables 
because they did not unduly increase the fitting error 
(Figure SA 3). Meanwhile, we selected ω = 1 based on 
the climate and vegetation life-cycle and seasonality in 
the study area (Tang et al. 2020). Discrete Fourier 
Transformation was applied to the normalized indices 
to generate Fourier predictors (Figure 3). Eight coeffi-
cients were generated per index, and 24 coefficient 
bands were created as Fourier predictors.

The China Meteorological Forcing Dataset (http:// 
data.tpdc.ac.cn/) and Shuttle Radar Topography 
Mission data were incorporated as additional predic-
tors to reduce interference of different climatic and 
topographic conditions. The China Meteorological 
Forcing Dataset includes seven variables: temperature 
(K), air pressure (Pa), specific humidity (kg kg−1), wind 
speed (m s−1), downward shortwave radiation 
(W m−2), downward longwave radiation (W m−2), 
and precipitation (mm yr−1). The Shuttle Radar 
Topography Mission data used in this study included 
elevation and slope from the year 2000.

Built-up land mapping

Control point collection
Control points were collected manually via visual 
interpretation against high-resolution imagery and 
Indices images. Built-up and non-built-up control 
points were collected separately. Raw built-up points 
were taken from the National Settlements Database 
of China (http://www.resdc.cn/). Raw non-built-up 
points were generated via stratified sampling using 
NDVI (Figure SB 1). A total of 8,000 control points were 
verified, with an equal number of built-up and non- 
built-up points (i.e. 4,000) to reduce bias caused by 
uneven sample distribution (Stehman and Foody 
2019). We took advantage of the irreversibility of 
built-up land (i.e. built-up land rarely reverts to non- 
built-up land) to ensure that control points were 
located in areas where land-use remained stable 
over time. We used the Indices image for the first 
period (1990–1992) to verify built-up control points, 
and the high-definition Google Earth images in the 
last period (2020) to verify non-built-up control 
points. We then merged the verified control points 
for use in classification throughout the analysis period 
(1990–2019). A sensitivity test showed that using 
more than 50% of control samples achieved high 
accuracies that were stable over time (Figure SC 1). 
Hence, we used 75% of control samples as the train-
ing sample for the mapping (of these, 70% were 
employed in classification and 30% to calculate accu-
racy), while the remaining ~25% were held out as 
validation samples for the cross-product comparison.

Classifying built-up land
Random Forest (RF) is an ensemble learning algorithm 
selected for classification due to its flexibility in cap-
turing non-linear patterns between independent and 
dependent variables (Calderón-Loor, Hadjikakou, and 

Figure 3. The discrete fourier transformation of stacked indices data. coefficients of the fitting function were derived as fourier 
predictors.
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Bryan 2021). The tree-based structure of RF is efficient 
in classifying high-dimensional data (Wang, Azzari, 
and Lobell 2019). To grow trees for the RF, we set 
the split nodes as the square root of the input pre-
dictors, the bag fraction to 50%, and the minimum 
leaf nodes to 1. The number of trees in the RF was set 
to 100 because no more improvement was possible 
by increasing tree numbers (Figure SC 1).

The input predictors were resampled to 30 m reso-
lution and stacked into a single multi-band image in 
the classification process. The control samples were 
overlayed upon this image to extract values for each 
band. These samples were then used to train the RF 
model. Lastly, the trained model was used to map the 
spatial distribution of built-up land pixels (allocated 
a value of 1) versus non-built-up land pixels (allocated 
a value of 0) based on the input predictor bands.

All five types of predictors used in mapping were 
introduced in the following order: Spectral, Indices, 
Fourier, Terrain, Meteorology. The incorporation of 
predictors in this order enabled us to explore how 
temporal features improved built-up land mapping 
over the more traditional inputs. We first applied the 
traditional approach of using Spectral data only, then 
introduced the Indices data, then the Fourier predic-
tors. Terrain and Meteorology data were added last to 
reduce interference from topographic and climatic 
conditions.

We classified built-up land using a random selec-
tion of control points and repeated this ten times to 
eliminate bias and capture uncertainty in accuracy 
metrics. In each classification, 70% of the training 
samples were randomly selected to train the RF clas-
sifier, and the remaining 30% were used to compute 
overall accuracy. Uncertainty was then calculated as 
the standard error of the accuracies of the ten 

simulations. We summed the 10 classifications and 
identified the built-up land pixels as the pixels with 
>4 value to derive the final classification of built-up 
land. Four was chosen as the threshold because it led 
to the highest classification accuracy (Figure SC 2).

Based on the characteristic of the irreversibility of 
built-up land development and expansion (Gong 
et al. 2020; Li, Gong, and Liang 2015), we constructed 
temporal check rules to correct inconsistent pixel 
classifications over time (Figure 4). Irreversibility was 
implemented as a check rule such that built-up land 
extent in earlier years could not expand beyond the 
built-up land extent mapped in later years. For each 
built-up land pixel in the map, n subsequent pixels in 
the later years were used to check its consistency: if 
>n/2 of the subsequent pixel were classified as a built- 
up land, the pixel remained as built-up land; other-
wise, it was corrected and specified as non-built-up 
land. The >n/2 threshold was based on a “majority 
vote” rule (Li, Gong, and Liang 2015). This study set 
n = 2 by balancing the amount of data used as a mask 
and the resulting improvements in accuracy (Figure 
SD 1). The temporal correction process was iterated 
eight times to ensure consistency (Figure SD 2).

Cross-product comparison
We compared our data to other datasets available for 
the study area that mapped similar land cover (such 
as impervious surfaces and human settlements) or 
including urban/built-up land (Table 2). Built-up area 
and overall accuracy were used for the comparison. 
The validation sample (25% of all control samples) 
was used to compute overall accuracy because it 
was not used in the original classification of this 
study, thereby eliminating bias from the comparison 
(Stehman and Foody 2019). The other data products 

Figure 4. Temporal correction for built-up land mapping. Left, the temporal correction process for each iteration; right, the stop 
condition of the iteration. Here we choose n = 2 based on a sensitivity test (Figure SD 1).
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tended to be global in coverage. In this sense, our aim 
was not to critically compare our dataset explicitly 
which was created for the study area against global 
datasets (which is an unfair comparison), but rather to 
provide a guide for potential users (i.e. planners, pol-
icy-makers) of the accuracy of our product compared 
to other available products for this specific region and 
to provide a basis for understanding the potential 
implications in terms of the urban land area mapped.

Results

Built-up land mapping using different predictors

The performance of different predictors is shown in 
Figure 5. The mapping accuracy of 2014–2016 and 
2017–2019 were significantly higher because the 
Sentinel-2A MSI data was incorporated in the classifi-
cation, increasing classification accuracy from ~83% 
in 2011–2013 to ~93% in 2017–2019. Fourier and 
Indices were the best predictors, increasing accuracy 
by ~8% and ~3%, respectively. The addition of Terrain 
and Meteorology predictors further improved the 
mapping accuracy by ~1%.

For classifications in the 1990s and 2000s, incorpor-
ating the Fourier predictors raised the overall accu-
racy to ~92%, similar to the overall accuracy in 2014– 
2019 achieved using Sentinel-2A MSI data. Hence, 
incorporating Fourier predictors for the earlier time 
periods (Landsat 5 TM or Landsat 7 ETM+) enabled 
the mapping of built-up land with an accuracy similar 
to the classification based on data sourced from more 
recent and more advanced sensors (i.e. Landsat 8 OLI 
and Sentinel-2A MSI).

Built-up land mapping for the period 1990–1992 
was selected to explore the spatial performance of 
Spectral, Indices, and Fourier predictors (Figure 6). 
Region 1 (row 1, Figure 6) shows villages surrounded 
by farmland, where the classification using Spectral 
predictors misclassified large areas of farmland near 
villages as built-up land. Region 2 (row 2, Figure 6) 
shows a town surrounded by bare lands. The classi-
fication using Spectral predictors misclassified most 
bare land to build-up land. Regions 3 and 4 (rows 3 
and 4, Figure 6) were located in more humid areas 
than regions 1 and 2. Figure 6 shows that bare lands 
and farmland rotation confounded built-up land 
mapping. The addition of Indices predictors reduced 
misclassification in Regions 1 and 3 but worsened 
the classification in regions 2 and 4. However, the 
Fourier predictors provided skilled delineation of 
built-up land mapping across the four example 
regions.

Accuracy improvements via temporal correction

Figure 7a shows classification accuracy before and 
after temporal correction. Temporal correction 
increased built-up land classification accuracy, achiev-
ing consistently high accuracies over the entire study 
period. The highest accuracy increases (1.5%–2.5%) 
occurred in the last two periods, while the accuracy 
of the first two periods decreased by 0.1%–0.5%. We 
further inspected spatial improvements in 2011–2013 
because the classification in this period had the low-
est original accuracy (Figure 7b). The temporal correc-
tion process greatly reduced misclassification of the 
striping in the original imagery created by the Scan- 

Table 2. Global built-up land datasets used for comparison with the outputs of this study. GAIA: Global Artificial Impervious Area, ESA 
CCI: European Space Agency Climate Change Initiative, GHSL: Global Human Settlement Layer, MCD12Q1: MODIS Land Cover Type 
Product, MERIS: Medium-spectral Resolution Imaging Spectrometer, SPOT-VGT: Strategic Planning Online Tool Vegetation Instrument, 
PROBA-V: Project for On-Board Autonomy Vegetation, AVHRR: Advanced Very High-Resolution Radiometer, and MODIS: Moderate 
Resolution Imaging Spectroradiometer.

Dataset Sensors Resolution Timeframe Source

GAIA Landsat TM/ETM+/OLI, Sentinel-1&2, VIIRS NTL 30 m Annual map 1985–2018 Gong et al. 2020
ESA CCI MERIS, SPOT-VGT, PROBA-V AVHRR 300 m Annual map 1992–2015 Buchhorn et al. 2020
GHSL Landsat TM/ETM+/OLI 38 m 1975, 1990, 2000, 2014 Corbane et al. 2018
Global Urban Dynamics Landsat, VIIRS NTL 30 m 1990, 1995, 2000, 2005, 2010, 2015 Liu et al. 2019
Global Urban Expansion VIIRS NTL, MODIS 1000 m 1992, 1996, 2000, 2006, 2010, 2016 He et al. 2019
MCD12Q1 MODIS 500 m Annual map 2001–2019 Friedl and Sulla-Menashe 2019
Global Impervious 

Surface
Landsat, Sentinel 30 m 2015 Zhang et al. 2020

GlobeLand30 Landsat TM/ETM+/OLI, Gaofen-1 30 m 2000, 2010, 2020 Jun, Ban, and Li 2014

GISCIENCE & REMOTE SENSING 7



Figure 5. Accuracy of different predictor combinations for built-up land mapping. Lines show the median value of 10 classifications 
with varying sample splits; the margins show the standard error.

Figure 6. Spatial improvement in built-up land mapping for four selected regions. We used a false-color composite scheme to display 
predictors and a two-color map to represent the classification results (with yellow indicating built-up land and the dark color non-built 
-up). Regions 1 and 2 were located in the northern, temperate part of the study area; regions 3 and 4 were located in the more humid 
southern part. NDVI-cos-2, NDVI-sin-1, and EVI-sin-1 are selected to present the Fourier predictors to give maximum visual contrast to 
built-up land. NDVI-cos-2 refers to the cosine coefficient with a frequency of 2 from the Fourier transformation on NDVI. NDVI-sin-1 
and EVI-sin-1 are the sine coefficients with a frequency of 1.
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Line Corrector failure of Landsat ETM+ (regions A and 
C), correctly removed erroneously classified green-
houses (hazy, light gray patches in region B), and 
improved classification quality in hilly and barren 
areas (region D).

Spatio-temporal dynamics of built-up land

We mosaicked all temporally corrected classifications 
into one image and used a warm-cool color scheme 
to represent time from 1990 to 2019 (Figure 8). Cities 
in flatter regions (e.g. Baoding, Shangqiu, and 
Changzhou) tended to expand radially outward. 
Cities near rivers (e.g. Xuyi and Xinyang) grew linearly 

following the geographical constraints, and cities in 
mountainous areas (e.g. Fengning) expanded along 
valleys.

The increase in built-up area accelerated over the 
study period, with all provinces, except for Hebei, 
tripling their built-up area (Figure 9). Shandong and 
Henan provinces had the largest built-up area. 
Jiangsu province rose from the fifth-largest built-up 
land area to the third after 2004, while Hebei and 
Anhui had less built-up land area. Beijing and Tianjin 
showed similar amounts of built-up land area for all 
periods and both increased rapidly. Tianjin demon-
strated the largest change in proportion of built-up 
land, expanding from 6.3% in 1990–1992 to 25.1% in 

Figure 7. Improvement in overall accuracy and spatial performance when using temporal correction. true-color maps in b) were 
obtained from high-definition Google Earth imagery from December 2013.
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2017–2019. The ratio of built-up land increased from 
4.7% to 23.7% in Jiangsu and from 8.2% to 20.6% in 
Shandong. Henan, Beijing, and Anhui shared 
a comparable growth level of ~5% to ~16%. Hebei 
demonstrated the lowest concentration of built-up 
land, increasing from 3.8% in 1990–1992 to 10.9% in 
2017–2019.

Cross-product comparison
Significant differences were found between the 
selected datasets because of the differences in classi-
fication algorithms, data sources, spatial resolution, 
and definitions used (Figure 10). The low-resolution 
datasets (ESA CCI, Global Urban Expansion, and 
MCD12Q1) missed built-up land in smaller villages 

Figure 8. Dynamic map of built-up areas from 1990 to 2019. Warm colors indicate earlier dates, and cool colors indicate later dates. 
Hexagonal insets show zoomed-in views of selected cities.
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and towns. The Global Urban Dynamics used Landsat 
imagery as input data and the VIIRS NTL as a mask to 
map the urban land dynamics but omitted small vil-
lages/towns that emit faint nighttime light. However, 
the GAIA product more skillfully captured built-up 
land in large cities and smaller villages and towns.

We further compared built-up areas and overall 
accuracy between our study and other datasets 
(Figure 11a). Our study computed the second-largest 
built-up area throughout the study period, similar to 
other high-resolution datasets (i.e. GAIA, GHSL, and 
GlobeLand30). In the 1990s, our built-up land esti-
mates were in broad agreement with GAIA and 
GHSL but were significantly higher than ESA CCI, 
Global Urban Dynamics, and Global Urban 
Expansion. GAIA, ESA CCI, and our data showed an 
acceleration in built-up area expansion, while GHSL, 
MODIS, Global Urban Dynamics, and the Global Urban 
Expansion showed linearly increasing trends.

Due to their similar spatial resolution and land- 
cover definition, GAIA, Global Impervious Surface, 
and GlobeLand30 were selected for the accuracy 
comparisons. The accuracy of our study was 10% 
higher than GHSL and Global Impervious Surface, 

and 10–19% higher than GAIA, especially in the earlier 
years. Our accuracy was consistently high (>94%) 
across all years, while that of the Global Impervious 
Surface and GlobeLand30 were ~85%, and GAIA’s 
accuracy ranged from 75% in 1990 to 84% in 2017.

Discussion

Fourier predictors improved built-up land mapping 
accuracy

Landsat has a long and continuous image archive 
which offers a unique opportunity for global and 
regional assessment of land-use change processes 
such as urbanization (Deng and Zhu 2020). However, 
fallow farmland and seasonal bare land introduce 
confusion into built-up land mapping (Gong et al. 
2020; Poursanidis, Chrysoulakis, and Mitraka 2015). 
This study used coefficients from a Discrete Fourier 
Transformation as predictors and achieved an 8% 
accuracy gain compared to using traditional Spectral 
and Indices-based approaches. Fallow farmland and 
seasonal bare land confusion were largely removed 
following the inclusion of Fourier predictors. Our 

Figure 9. Built-up land change in the North China Plain from 1990 to 2019. a) The area change. b) The built-up area proportion change; 
the value shows the percentage of built-up area to region total area.
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results captured fine-scale built-up features, such as 
buildings in small villages and towns, rather than just 
the large-scale features of large cities. As a result of 
the higher accuracy, our study revealed higher esti-
mates of built-up areas than other datasets (except for 
GlobeLand30), suggesting that global assessments of 
urbanization may be underestimated.

The effectiveness of Fourier predictors in delineat-
ing built-up lands may be because features captured 

in dense time-stacks of remotely sensed data are less 
affected by random noise (e.g. cloud, cloud shadow, 
and seasonal changes in land surface) than snapshot 
spectral data or indices. Crop phenology and farming 
rotations lead to regular greenness patterns in culti-
vated sites over the annual growing cycle that are 
distinct from built-up lands (Zeng et al. 2020). While 
it is difficult for Spectral and Indices predictors to 
separate fallow lands from built-up lands – 

Figure 10. Dynamics of built-up area in four selected cities (1990–2019). The true color maps were taken from Google Earth high- 
definition images from 2019. GAIA: Global Artificial Impervious Area, ESA CCI: European Space Agency Climate Change Initiative, GHSL: 
Global Human Settlement Layer, MCD12Q1: MODIS Land Cover Type Product. Note that the start year for GAIA was 1985, making its 
city centers look darker than our product.
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a common source of built-up land mapping error – 
Fourier predictors were sensitive to this distinction. 
Incorporating Fourier predictors reduced this confu-
sion and substantially increased the accuracy of built- 
up land mapping.

Temporal correction increases the consistency of 
long time-series built-up land mapping

In addition to incorporating Fourier predictors, we 
also implemented temporal correction to account 
for the general feature of irreversibility in built-up 
land (i.e. once an area is converted to urban land, it 
tends to remain as urban land (Li, Gong, and Liang 
2015; Li et al. 2018)). We implemented the rule that 
built-up land in earlier years was unlikely to occur 
beyond the extent of built-up land in later years, 
providing the logic for developing a temporal correc-
tion algorithm to remove incorrect pixel classifica-
tions. This correction was able to remove 
misclassified areas resulting from striping caused by 
the ETM+ Scan-Line Corrector failure. Our method can 
be deployed on the Google Earth Engine platform 
and is more straightforward than other temporal cor-
rection algorithms. For example, Li, Gong, and Liang 
(2015) combined a majority vote rule and temporal 

reasoning to construct a spatio-temporal consistency 
check algorithm, which required a complicated pro-
cess to combine transition probabilities and neigh-
borhood characteristics. In comparison, our heuristic 
method is straightforward to apply and achieved 
a significant correction effect.

Combining Fourier predictors and temporal correc-
tion achieved consistently high accuracy in built-up 
land mapping over 30 years. The overall accuracy of 
our product was high and consistent across years 
(>94%), averaging around ~10% higher than the 
GlobeLand30 and ~15% higher than GAIA in the 
1990s and 2000s (Figure 11).

Informing sustainability assessment and supporting 
policy with high-quality data

Built-up land occupies only a small portion of the 
global terrestrial surface but hosts more than half of 
the world’s population (Chen et al. 2020). Indeed, 70% 
of global anthropogenic greenhouse gas emissions in 
2016 and 80% of local natural habitat loss in 2018 
have been linked to the development of built-up 
lands (Hopkins et al. 2016; Ke et al. 2018). Therefore, 
an accurate understanding of the dynamics of built- 
up land over time is critical to addressing the social 

Figure 11. Area and overall accuracy comparison. The middle year of each period in this study was selected as the x-axis value (for 
example, 1991 was used to indicate the built-up area of 1990–1992).
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and environmental challenges that threaten 
a sustainable future in rapidly urbanizing areas, 
including our study area.

Our consistent, high-accuracy data product can be 
readily used in urban policy and planning. For exam-
ple, urban growth models based on cellular auto-
mata use historical data to project future scenarios, 
but errors in historical data can propagate through-
out the projection, reducing confidence in the 
results (Clarke and Johnson 2020; Roodposhti, 
Aryal, and Bryan 2019). This study provides reliable 
historical data that enables built-up land expansion 
to be projected with higher confidence. 
Environmental change can also be quantified more 
precisely using accurate built-up land maps. For 
example, the Integrated Valuation of Ecosystem 
Services and Trade-offs (InVEST) model uses land- 
use maps as a proxy to calculate carbon sequestra-
tion, water yield, crop production, and habitat qual-
ity (Tallis et al. 2011). High-quality built-up land 
mapping data can provide more reliable input data 
for calculating the anthropogenic impacts of 
urbanization.

Spatially explicit policies and planning are essential 
for supporting sustainable development, and one 
requirement for formulating such policies is access 
to high-quality data. The study area is unique in 
China for its strategic position, rapid urbanization, 
and high agricultural productivity (Song and Deng 
2015). To boost the economy of the study area, the 
Chinese government has announced a series of devel-
opment plans, such as the Beijing-Tianjin-Hebei 
Urban Agglomeration development plan (Fang et al. 
2019) and the Central Plains City Group development 
plan (Li et al. 2020a). These plans include mega- 
infrastructure projects (e.g. high-speed railways and 
long-distance expressways) to enhance economic 
flow among cities (Li et al. 2020a). In parallel, to safe-
guard food security, the Chinese government has also 
enacted strict farmland protection regulations (e.g. 
the Basic Farmland Protection Regulations) that pro-
hibit farmland from being converted to built-up lands 
(Liu et al. 2020). An accurate understanding of built- 
up land dynamics is critical to formulating effective 
development plans that balance rapid urbanization 
with increased demand for food production (Zhong 
et al. 2020). In addition, accurate historical built-up 
data can be used to project future economic devel-
opment and derive opportunity costs for future urban 

expansion (e.g. reduced food security). As a result, 
urbanization, food security, and sustainability can be 
coordinated under one framework, promoting the 
formulation of spatially explicit policies and 
regulations.

Limitations and prospects

Our study has some limitations and uncertainties. We 
derived temporal features from the Discrete Fourier 
Transformation based on three years of data. Hence 
the exact date of built-up land development cannot 
be determined at a finer resolution than three years. 
Another uncertainty was introduced by the temporal 
correction methodology, which assumes that built-up 
land in 1990–1992 remained unchanged during the 
study period. Small areas of built-up land could have 
been converted to other land types over time (Fu 
et al. 2019). However, such conversions typically only 
comprise a small portion of the total built-up land 
area (Gong, Li, and Zhang 2019). Despite these limita-
tions, the results provide the most accurate, high- 
resolution, long time-series built-up land data pro-
duct available for the North China Plain.

The cross-product comparison indicates that our 
built-up land mapping for the North China Plain is 
more consistent and accurate than other available 
products that map built-up land. However, while 
comparing the accuracy of highly-tailored, regional 
mapping applications against other global datasets 
enables potential users to evaluate the merits of the 
products available for a specific region; it is not 
a reflection on the value of the global datasets as 
the accuracy of global products is bound to be 
lower. Our dataset fills a different niche, aimed at 
users that require consistent, high-accuracy, long- 
time series data for a specific region rather than glo-
bal coverage.

Conclusion

We incorporated temporal features based on a dense 
time-stack of Landsat imagery and a temporal correc-
tion method to map the spatial extent of built-up land 
in the North China Plain over 30 years (1990–2019). 
Incorporating Fourier predictors increased overall 
accuracy by 8% compared to using Spectral and 
Indices predictors alone. The temporal correction suc-
cessfully removed incorrectly classified pixels and 
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increased overall accuracy in all periods to 
a consistently high level (>94%). All provinces and 
cities in the study region tripled their built-up area 
over the last three decades, illustrating the fierce 
competition between urban and agricultural land 
uses. Consistent, high-accuracy and long time-series 
mapping of built-up land is invaluable for helping to 
understand recent patterns of rapid urbanization, 
quantifying impacts for food security and the envir-
onment, modeling future land-use change, and 
informing policy and planning for managing future 
urbanization and sustainable development.
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