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Consistent, accurate, high resolution, long time-series mapping of

built-up land in the North China Plain

Accurate, long time-series, high-resolution mapping of built-up land dynamics is
essential for understanding urbanization and its environmental impacts. Despite
advances in remote sensing and classification algorithms, built-up land mapping
which only uses spectral data and derived indices remains prone to uncertainty.
We mapped the extent of built-up land in the North China Plain, one of China's
most important agricultural regions, from 1990 to 2019 at three-yearly intervals
and 30m spatial resolution. We applied Discrete Fourier Transformation to dense
time-stack Landsat data to create Fourier predictors to reduce mapping
uncertainty. As a result, we improved the overall accuracy of built-up land
mapping by 8% compared to using spectral data and derived indices. In addition,
a temporal correction algorithm applied to remove misclassified pixels further
improved mapping accuracy to a consistently high level (>94%) over the time
periods. A cross-product comparison showed that our maps achieved the highest
accuracies across all years. The built-up land area in the North China Plain
increased from 37,941 km? in 19901992 to 131,578 km? in 2017-2019.
Consistent, high-accuracy, long time-series built-up land mapping provides a
reliable basis for formulating policy and planning in one of the most rapidly

urbanizing regions on this planet.

Keywords: built-up land; urbanization; Fourier transformation; remote sensing;

time-series

Introduction

Economic development and population growth have led to drastic changes in the Earth's
terrestrial surface, not least through the expansion of built-up lands (Elmore et al. 2012),
with urbanization continuing to accelerate (United Nations 2019). Built-up land is
defined as land-use comprising more than 50% human-made structures such as roads,
buildings, and agricultural and industrial facilities (Schneider and Mertes 2014). Built-
up land extent is an essential data input for the analysis of water and carbon cycling

(Chen et al. 2020; Hou et al. 2020; Wang et al. 2018), pollution (Shrivastava et al. 2019;
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Yue et al. 2020), agricultural production (Brown 1997), biodiversity conservation
(Filazzola, Shrestha, and Maclvor 2019), ecosystem services (Bryan et al. 2018;
Calderon-Loor, Hadjikakou, and Bryan 2021; Ye et al. 2018), and climate (Lamb et al.
2019; Kuang et al. 2019).

Tracking built-up land over long periods is a significant challenge because
random misclassifications compromise the consistency of multi-temporal mapping. For
example, the soil surface of fallow cropland has similar spectral characteristics to built-
up land and is commonly reported as a source of confusion in built-up land mapping in
mixed urban/agrarian regions (Gong et al. 2020; Li, Gong, and Liang 2015; Li et al.
2016). In addition, random noise such as cloud and cloud shadows can also lead to
inconsistencies in built-up land mapping (Foga et al. 2017). Therefore, removing these
noise sources is essential to maintain consistency in long time-series built-up land
mapping and enable the reliable assessment of temporal trends in urbanization and
urban land-change dynamics.

Open-data policies combined with advances in computation facilities and
innovative algorithms have enabled built-up land to be mapped at higher resolution
across larger extents, at greater temporal frequency, and over longer time periods (Li
and Gong 2016). Two strategies are typically used to increase mapping accuracy and
reduce inconsistencies over time: 1) integrating multisource data and 2) using temporal
consistency correction. For example, Visible Infrared Imaging Radiometer Suite
(VIIRS) nighttime light (NTL) data has been used as a binary mask to exclude non-
urban land (Gong et al. 2020; He et al. 2019; Liu et al. 2019; Guo et al. 2018), Sentinel-
1 Synthetic Aperture Radar (SAR) data has been merged with Landsat data to increase
classification accuracy (Gong et al. 2020; Zhang et al. 2020), and multisource remotely

sensed data has been combined to enhance urban land mapping (Cao et al. 2019; Li et
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al. 2020b). The tendency of built-up land to not revert to natural or agricultural land
(i.e., its irreversibility) has also been exploited to correct temporal inconsistencies (Li,
Gong, and Liang 2015) and produce stable and reliable control points (Liu et al. 2019).
Temporal correction has improved the overall accuracy of urban mapping by ~6% in
Beijing from 1985 to 2015 (Li, Gong, and Liang 2015), ~3% in Wuhan from 1987 to
2016 (Shi et al. 2017), and ~6% in Tianjin from 1990 to 2014 (Chai and Li 2018).

Spectral features and vegetation indices have been used to map built-up land, but
temporal features such as land surface phenology have typically been overlooked
(Jonsson et al. 2018). Generally, temporal features are derived from indices such as the
normalized difference vegetation index (NDVI) using smoothing methods (Wang et al.
2017) such as logistic models (Elmore et al. 2012), Savitzky—Golay filters (Chen et al.
2004), quadratic functions (Beurs and Henebry 2004), and Discrete Fourier Transforms
(Wang, Azzari, and Lobell 2019). The Discrete Fourier Transform represents time-
series signals as several periodic components suitable for extracting temporal features
from remotely sensed data (Wang, Azzari, and Lobell 2019). Although temporal
features have been coupled with change-detection methods to determine the timing of
conversion to built-up land (Liu et al. 2019), they have not been widely used as
mapping predictors (Zeng et al. 2020). Because temporal features capture relatively
predictable greenness patterns following interannual plant growth cycles, we
hypothesize that they could reduce the spectral confusion in built-up land mapping from
fallow farmland and seasonal bare land.

This study aims to make two specific advances on the current state of knowledge
on built-up land mapping: 1) to reduce the confusion of fallow cropland and seasonal
bare land in mixed urban and agricultural settings by integrating temporal features from

dense time-stack remotely sensed data, and 2) to increase the mapping consistency by



93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

applying a cloud-based temporal correction algorithm. The North China Plain region
was chosen as the study area because of the fierce competition between urbanization
and agriculture for land (Jin et al. 2019). First, we used Discrete Fourier Transformation
to derive temporal features based on dense time-stack Landsat spectral indices
(Odenweller and Johnson 1984; Song et al. 2016). Second, we tested the performance
improvement of temporal predictor variables over traditional spectral approaches by
adding them to the classification. A temporal correction algorithm was then used to
remove inconsistent pixel classifications. Finally, we conducted a cross-product
comparison to assess our results against other built-up land mapping datasets (Stehman
and Foody 2019). We discuss the benefits of consistent, accurate, high-resolution, long
time-series built-up land mapping in providing more reliable inputs to understanding
regional urban development and linking social-economic change to environmental

impacts.

Materials and methods

Study area

Five central and eastern provinces of China (i.e., Henan, Hebei, Shandong, Anhui, and
Jiangsu) and two municipalities (i.e., Beijing and Tianjin), corresponding to the North
China Plain region, were selected as the study area (Figure 1). The area spans 780,000
km? and is home to over 450 million people (National Bureau of Statistics of China
2019b). The study area is one of China's most rapidly developing regions with the
urbanization rate (excluding Beijing and Tianjin) tripling from ~20% in 1990 to ~60%
in 2018 (National Bureau of Statistics of China 2019b). The North China Plain is key to
China’s economic development and food security (Song and Deng 2015), generating

~37% of the gross domestic product and ~35% of China's grain production in 2019
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(National Bureau of Statistics of China 2019a). Managing the tension between rapid
economic development, urbanization, and food production in the study area demands
accurate quantification of built-up land dynamics to support policy formulation and

decision making (Li et al. 2020a; Liu et al. 2020).

110° 115° 120°
L L

INNER
MONGOLIA

Elevaton | . f
y .

s | g
.0

| 7 Province .

River

SHANXI

35°

HUBEI

40 80 160 240 320
[ = = s L)
300 A

}S:ﬂ\\'\/\/ " +
i HUNAN /i JIANGXI

Figure 1. Map of the North China Plain.
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Method overview

The approach taken in this study is summarized in Figure 2. Due to its high
computational performance and vast historical satellite imagery archive, Google Earth
Engine was used to process all remotely sensed data and map built-up land (Gorelick et
al. 2017). Control points were visually checked using Landsat images from 1990-1992
and Google Earth high-definition images (from GeoEye, WorldView, SPOT, and
Pleiades) from 2014 and 2019. We randomly withheld 25% of the control points as

validation samples. Cloud-free Spectral images, normalized Indices (e.g., NDVI),
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Fourier predictors (e.g., Fourier transformation coefficients), Terrain, and
Meteorological data were sequentially added to a Random Forest (RF) classifier to
assess the additional benefit for classification accuracy. A temporal correction algorithm
was then applied to remove inconsistent classifications. Lastly, a cross-product

comparison was carried out using the withheld control points.

Control sample Random Forest Classifier Temporal correction Built-up map series
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Figure 2. Flowchart outlining the methods used to map built-up land in the North China
Plain. The National Settlements Database stores the geographic coordinates of

government departments and state-owned companies in 2000 (http://www.resdc.cn/).

The Spectral data refers to the cloud-free image produced from the Landsat data.
Indices variables refer to the normalized difference vegetation index (NDVI), enhanced
vegetation index (EVI), and normalized difference built-up index (NDBI). The Fourier
predictors are coefficients derived from a discrete Fourier transformation on the Indices
data (NDVI, NDBI, and EVI). Terrain data were a digital elevation model and slope
derived from the Shuttle Radar Topography Mission. Meteorology data were taken from
the China Meteorological Forcing Dataset (http://data.tpdc.ac.cn/).

Data and input predictors

We used five types of remotely sensed data as predictors to map built-up areas (Table
1). Spectral predictors comprised cloud-free images computed from Landsat and
Sentinel 2A. Indices predictors were calculated from Landsat cloud-free data, including

the NDVI, enhanced vegetation index (EVI), and normalized difference built-up index



152

153

154

155

156

157

158
159
160
161
162
163
164
165

166

167

168

169

170

171

172

173

(NDBI). The Fourier predictors were derived from the Discrete Fourier Transformation
of dense time-stacks of Indices data (NDVI, NDBI, and EVI). Lastly, Terrain data was
taken from the Shuttle Radar Topography Mission and the Meteorology data was taken
from the China Meteorological Forcing Dataset (He et al. 2020). The Landsat and
Sentinel data were subject to geometric and radiometric corrections by Google Earth

Engine, and all data were resampled to 30m resolution for use in the classification.

Table 1. Input predictors for built-up land mapping. TM: Thematic Mapper, ETM+:
Enhanced Thematic Mapper Plus, OLI: Operational Land Imager, MSI: Multispectral
Instrument, NDVI: normalized difference vegetation index, EVI: enhanced vegetation
index, and NDBI: normalized difference built-up index. All bands of the
Landsat/Sentinel are used in this research. Note the panchromatic band (15 m
resolution) of Landsat ETM+ and OLI, and the thermal bands (which have a resolution
of 60 m for Landsat5/7 and 100 m for Landsat 8) are resampled to 30 m. All Sentinel

bands are resampled to 30 m.

Spatial Number of

Input type Source resolution bands Years
Spectral Landsat TM 30 m 7 1990-2010
Landsat ETM+ 30 m 9 2011-2013
Landsat OLI 30 m 11 2014-2019
Sentinel-2A MSI 10 m 13 2015-2019
Indices NDVI 30 m 1 1990-2019
EVI 30 m 1 1990-2019
NDBI 30 m 1 1990-2019
Fourier Coefficients of the Discrete Fourier Transformation 30 m 24 1990-2019
Meteorology ~ China Meteorological Forcing Data (Annual product) 0.1° 7 1990-2018
Terrain Elevation 30 m 1 1990-2019
Slope 30 m 1 1990-2019

The Spectral predictors were cloud-free images produced from Landsat and
Sentinel-2A; the data quantity and distribution can be seen in Supplementary Material A
(Figure SA 1). Spectral predictors were created using the simpleComposite module in
Google Earth Engine. For each pixel in the collection of Landsat images, this module
assigned a cloud score (0—-100) to it and used the median value from pixels with a cloud
score <10 to create a cloud-free image. For the Sentinel 2 Multi-Spectral Instrument

(MSI) data, its Quality Assessment band that indicates whether the pixel is covered by
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cloud and cirrus was used to remove cloudy pixels, and the median value of the
remaining pixels was mosaicked to create the Spectral predictors.

NDVI, EVI, and NDBI were selected as Indices predictors because NDVI and
EVI are robust for delineating land covers (Li, Gong, and Liang 2015), and NDBI suits

the purpose of built-up mapping (Li et al. 2018). We calculated these indices as follows:

NDVI = (NIR — R)/ (NIR + R) (1)
EVI = 25 x ((NIR — R)/(NIR + 6 Xx R- 75 X B +1)) )
NDBI = (SWIR1+ NIR) / (SWIR1 — NIR) (3)

where NIR refers to the near-infrared band, R refers to the red band, B refers to the blue
band, and SWIRI refers to the first shortwave infrared band.

The Discrete Fourier Transformation approximates a series of discrete values by
summing up a linear function and several pairs of sinuate functions. The fitting
formulation was as follows:

pe= Lo + Bit + Y= [« cos(2mkwt) + 6, sin (2mkwt)] + e: 4)
where t is the time difference in year fractions compared to 1970 following standard
practice in data science, p: is the pixel value at time ¢, n is the number of sinuate
function pairs, $o and B are the coefficients of the linear function, «, and 6, are the
sinuate coefficients, w is the frequency, and e: is the error between the actual
observation and the fitted value.

In practice, n and the temporal interval were the two variables that should be
determined before the fitting. We assessed the impact of different #» and temporal
intervals from 1 to 5 and selected 3 for both variables because they did not unduly
increase the fitting error (Figure SA 3). Meanwhile, we selected w = 1 based on the

climate and vegetation life-cycle and seasonality in the study area (Tang et al. 2020).
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Discrete Fourier Transformation was applied to the normalized indices to generate
Fourier predictors (Figure 3). Eight coefficients were generated per index, and 24

coefficient bands were created as Fourier predictors.

Image stack Discrete Fourier Transformation Fourier predictors

Indices variables

- 06
@5 Fourier fit Bo By,
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Figure 3. The Discrete Fourier Transformation of stacked Indices data. Coefficients of

the fitting function were derived as Fourier predictors.

The China Meteorological Forcing Dataset (http://data.tpdc.ac.cn/) and Shuttle

Radar Topography Mission data were incorporated as additional predictors to reduce
interference of different climatic and topographic conditions. The China Meteorological
Forcing Dataset includes seven variables: temperature (K), air pressure (Pa), specific
humidity (kg kg™!), wind speed (m s™'), downward shortwave radiation (W m™),
downward longwave radiation (W m), and precipitation (mm yr'!). The Shuttle Radar
Topography Mission data used in this study included elevation and slope from the year

2000.

Built-up land mapping

Control point collection

Control points were collected manually via visual interpretation against high-resolution
imagery and Indices images. Built-up and non-built-up control points were collected
separately. Raw built-up points were taken from the National Settlements Database of

China (http://www.resdc.cn/). Raw non-built-up points were generated via stratified

Original value Coefficients
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sampling using NDVI (Figure SB 1). A total of 8,000 control points were verified, with
an equal number of built-up and non-built-up points (i.e., 4,000) to reduce bias caused
by uneven sample distribution (Stehman and Foody 2019). We took advantage of the
irreversibility of built-up land (i.e., built-up land rarely reverts to non-built-up land) to
ensure that control points were located in areas where land-use remained stable over
time. We used the Indices image for the first period (1990-1992) to verify built-up
control points, and the high-definition Google Earth images in the last period (2020) to
verify non-built-up control points. We then merged the verified control points for use in
classification throughout the analysis period (1990-2019). A sensitivity test showed that
using more than 50% of control samples achieved high accuracies that were stable over
time (Figure SC 1). Hence, we used 75% of control samples as the training sample for
the mapping (of these, 70% were employed in classification and 30% to calculate
accuracy), while the remaining ~25% were held out as validation samples for the cross-

product comparison.

Classifying built-up land

Random Forest (RF) is an ensemble learning algorithm selected for classification due to
its flexibility in capturing non-linear patterns between independent and dependent
variables (Calderon-Loor, Hadjikakou, and Bryan 2021). The tree-based structure of RF
is efficient in classifying high-dimensional data (Wang, Azzari, and Lobell 2019). To
grow trees for the RF, we set the split nodes as the square root of the input predictors,
the bag fraction to 50%, and the minimum leaf nodes to 1. The number of trees in the
RF was set to 100 because no more improvement was possible by increasing tree
numbers (Figure SC 1).

The input predictors were resampled to 30m resolution and stacked into a single

multi-band image in the classification process. The control samples were overlayed
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upon this image to extract values for each band. These samples were then used to train
the RF model. Lastly, the trained model was used to map the spatial distribution of
built-up land pixels (allocated a value of 1) versus non-built-up land pixels (allocated a
value of 0) based on the input predictor bands.

All five types of predictors used in mapping were introduced in the following
order: Spectral, Indices, Fourier, Terrain, Meteorology. The incorporation of predictors
in this order enabled us to explore how temporal features improved built-up land
mapping over the more traditional inputs. We first applied the traditional approach of
using Spectral data only, then introduced the Indices data, then the Fourier predictors.
Terrain and Meteorology data were added last to reduce interference from topographic
and climatic conditions.

We classified built-up land using a random selection of control points and
repeated this ten times to eliminate bias and capture uncertainty in accuracy metrics. In
each classification, 70% of the training samples were randomly selected to train the RF
classifier, and the remaining 30% were used to compute overall accuracy. Uncertainty
was then calculated as the standard error of the accuracies of the ten simulations. We
summed the 10 classifications and identified the built-up land pixels as the pixels with
>4 value to derive the final classification of built-up land. Four was chosen as the
threshold because it led to the highest classification accuracy (Figure SC 2).

Based on the characteristic of the irreversibility of built-up land development
and expansion (Gong et al. 2020; Li, Gong, and Liang 2015), we constructed temporal
check rules to correct inconsistent pixel classifications over time (Figure 4).
Irreversibility was implemented as a check rule such that built-up land extent in earlier
years could not expand beyond the built-up land extent mapped in later years. For each

built-up land pixel in the map, » subsequent pixels in the later years were used to check
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its consistency: if >n/2 of the subsequent pixel were classified as a built-up land, the
pixel remained as built-up land; otherwise, it was corrected and specified as non-built-
up land. The >n/2 threshold was based on a "majority vote" rule (Li, Gong, and Liang
2015). This study set » = 2 by balancing the amount of data used as a mask and the
resulting improvements in accuracy (Figure SD 1). The temporal correction process was

iterated eight times to ensure consistency (Figure SD 2).

Temporal correction
2017-2019

2014-2016
Built-up pixels > n/2?

YES NO

Y Y
Keep as built-up ' Change to non built-up Classifications Any inconsistency?

1996-1998
1993-1995
1990-1992 . ol ’ YES NO , End iteration

Figure 4. Temporal correction for built-up land mapping. Left, the temporal correction
process for each iteration; right, the stop condition of the iteration. Here we choose n =

2 based on a sensitivity test (Figure SD 1).

Cross-product comparison

We compared our data to other datasets available for the study area that mapped similar
land cover (such as impervious surfaces and human settlements) or including
urban/built-up land (Table 2). Built-up area and overall accuracy were used for the
comparison. The validation sample (25% of all control samples) was used to compute
overall accuracy because it was not used in the original classification of this study,
thereby eliminating bias from the comparison (Stehman and Foody 2019). The other
data products tended to be global in coverage. In this sense, our aim was not to critically
compare our dataset explicitly which was created for the study area against global
datasets (which is an unfair comparison), but rather to provide a guide for potential

users (i.e., planners, policy-makers) of the accuracy of our product compared to other



290

291

292

293
294
295
296
297
298
299
300

301

302

303

304

305

306

307

308

309

available products for this specific region and to provide a basis for understanding the

potential implications in terms of the urban land area mapped.

Table 2. Global built-up land datasets used for comparison with the outputs of this
study. GAIA: Global Artificial Impervious Area, ESA CCI: European Space Agency
Climate Change Initiative, GHSL: Global Human Settlement Layer, MCD12Q1:
MODIS Land Cover Type Product, MERIS: Medium-spectral Resolution Imaging
Spectrometer, SPOT-VGT: Strategic Planning Online Tool Vegetation Instrument,
PROBA-V: Project for On-Board Autonomy Vegetation, AVHRR: Advanced Very
High-Resolution Radiometer, and MODIS: Moderate Resolution Imaging

Spectroradiometer.
Dataset Sensors Resolution Timeframe Source
Landsat TM/ETM+/OLI,
GAIA Sentinel-1&2, VIIRS NTL 30 m Annual map 1985-2018 Gong et al. 2020
MERIS, SPOT-VGT, Buchhorn et al.
ESA CCI PROBA-V AVHRR 300 m Annual map 1992-2015 2020
GHSL Landsat TM/ETM+/OLI 38 m 1975, 1990, 2000, 2014 ggsl"?;e“ ctal
Global Urban 1990, 1995, 2000, 2005, .
Dynamics Landsat, VIIRS NTL 30 m 2010. 2015 Liuetal. 2018
Global Urban 1992, 1996, 2000, 2006,
Expansion VIIRS NTL, MODIS 1000 m 2010, 2016 He et al. 2019
Sulla-Menashe
MCDI12Q1 MODIS 500 m Annual map 20012019 and Friedl 2018
Global Impervious . Zhang et al.
Surface Landsat, Sentinel 30 m 2015 2020
GlobeLand30 Landsat TM/ETM+/OLI, 30m 2000, 2010, 2020 Jun, Ban, and Li
Gaofen-1 2014
Results

Built-up land mapping using different predictors

The performance of different predictors is shown in Figure 5. The mapping accuracy of
2014-2016 and 2017-2019 were significantly higher because the Sentinel-2A MSI data
was incorporated in the classification, increasing classification accuracy from ~83% in
2011-2013 to ~93% in 2017-2019. Fourier and Indices were the best predictors,
increasing accuracy by ~8% and ~3%, respectively. The addition of Terrain and

Meteorology predictors further improved the mapping accuracy by ~1%.
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For classifications in the 1990s and 2000s, incorporating the Fourier predictors
raised the overall accuracy to ~92%, similar to the overall accuracy in 2014-2019
achieved using Sentinel-2A MSI data. Hence, incorporating Fourier predictors for the
earlier time periods (Landsat 5 TM or Landsat 7 ETM+) enabled the mapping of built-
up land with an accuracy similar to the classification based on data sourced from more

recent and more advanced sensors (i.e., Landsat 8 OLI and Sentinel-2A MSI).

'
Input predictors R \/

Spectral + Indices + Fourier + Terrain + Meteorology =

921

—— Spectral + Indices + Fourier + Terrain
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9 "
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—_— =0 \ //;
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Figure 5. Accuracy of different predictor combinations for built-up land mapping. Lines
show the median value of 10 classifications with varying sample splits; the margins

show the standard error.

Built-up land mapping for the period 1990-1992 was selected to explore the
spatial performance of Spectral, Indices, and Fourier predictors (Figure 6). Region 1
(row 1, Figure 6) shows villages surrounded by farmland, where the classification using
Spectral predictors misclassified large areas of farmland near villages as built-up land.
Region 2 (row 2, Figure 6) shows a town surrounded by bare lands. The classification
using Spectral predictors misclassified most bare land to build-up land. Regions 3 and 4

(rows 3 and 4, Figure 6) were located in more humid areas than regions 1 and 2. Figure
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6 shows that bare lands and farmland rotation confounded built-up land mapping. The
addition of Indices predictors reduced misclassification in Regions 1 and 3 but
worsened the classification in regions 2 and 4. However, the Fourier predictors provided
skilled delineation of built-up land mapping across the four example regions.

Fourier ; ’
(NDVI-cos-2,NDVI-sin-1,EVI-sin-1) SPectral + Indices + Fourier

Cloud-free Landsat

(B4, B3, B2) Spectral Indices (NDVI, NDBI, EVI) Spectral + Indices

1)

118°35'  118°37'

i
=
oo
¥
S
T
©®

2)

g
» b

111°59"

34° 3?'45"

3
3)

115052/25" 115°53'25"

30°33'30"

™
o©
o

o
®

33°12'35™ 339135
|
. - - - >
o 7 b £ ‘.'h s q
) B : oA e
_'I'.' Y L 1 ] 1 :. w11 & T4 I';: Rep
. 36 T
= o, e - a
S E= ...l
N i %
[ a R n &

116°42:20"  116°42'50"

Figure 6. Spatial improvement in built-up land mapping for four selected regions. We
used a false-color composite scheme to display predictors and a two-color map to
represent the classification results (with yellow indicating built-up land and the dark
color non-built-up). Regions 1 and 2 were located in the northern, temperate part of the
study area; regions 3 and 4 were located in the more humid southern part. NDVI-cos-2,
NDVI-sin-1, and EVI-sin-1 are selected to present the Fourier predictors to give
maximum visual contrast to built-up land. NDVI-cos-2 refers to the cosine coefficient
with a frequency of 2 from the Fourier transformation on NDVI. NDVI-sin-1 and EVI-

sin-1 are the sine coefficients with a frequency of 1.
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Accuracy improvements via temporal correction

Figure 7a shows classification accuracy before and after temporal correction. Temporal
correction increased built-up land classification accuracy, achieving consistently high
accuracies over the entire study period. The highest accuracy increases (1.5%—2.5%)
occurred in the last two periods, while the accuracy of the first two periods decreased by
0.1%—0.5%. We further inspected spatial improvements in 2011-2013 because the
classification in this period had the lowest original accuracy (Figure 7b). The temporal
correction process greatly reduced misclassification resulting from striping in the
original imagery from the Scan-Line Corrector failure of Landsat ETM+ (regions A and
C), correctly removed erroneously classified greenhouses (hazy, light gray patches in

region B), and improved classification quality in hilly and barren areas (region D).
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Figure 7. Improvement in overall accuracy and spatial performance when using
temporal correction. True-color maps in b) were obtained from high-definition Google

Earth imagery from December 2013.

Spatio-temporal dynamics of built-up land

We mosaicked all temporally corrected classifications into one image and used a warm-
cool color scheme to represent time from 1990 to 2019 (Figure 8). Cities in flatter

regions (e.g., Baoding, Shangqiu, and Changzhou) tended to expand radially outward.



361  Cities near rivers (e.g., Xuyi and Xinyang) grew linearly following the geographical

362  constraints, and cities in mountainous areas (e.g., Fengning) expanded along valleys.

: Gaobeidian Fengning Fengrun
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364  Figure 8. Dynamic map of built-up areas from 1990 to 2019. Warm colors indicate
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earlier dates, and cool colors indicate later dates. Hexagonal insets show zoomed-in

views of selected cities.

The increase in built-up area accelerated over the study period, with all
provinces, except for Hebei, tripling their built-up area (Figure 9). Shandong and Henan
provinces had the largest built-up area. Jiangsu province rose from the fifth-largest
built-up land area to the third after 2004, while Hebei and Anhui had less built-up land
area. Beijing and Tianjin showed similar amounts of built-up land area for all periods
and both increased rapidly. Tianjin demonstrated the largest change in proportion of
built-up land, expanding from 6.3% in 1990-1992 to 25.1% in 2017-2019. The ratio of
built-up land increased from 4.7% to 23.7% in Jiangsu and from 8.2% to 20.6% in
Shandong. Henan, Beijing, and Anhui shared a comparable growth level of ~5% to
~16%. Hebei demonstrated the lowest concentration of built-up land, increasing from

3.8% in 1990-1992 to 10.9% in 2017-2019.
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Figure 9. Built-up land change in the North China Plain from 1990 to 2019. a) The area
change. b) The built-up area proportion change; the value shows the percentage of built-

up area to region total area.

Cross-product comparison

Significant differences were found between the selected datasets because of the
differences in classification algorithms, data sources, spatial resolution, and definitions
used. (Figure 10). The low-resolution datasets (ESA CCI, Global Urban Expansion, and
MCDI12Q1) missed built-up land in smaller villages and towns. The Global Urban
Dynamics used Landsat imagery as input data and the VIIRS NTL as a mask to map the
urban land dynamics but omitted small villages/towns that emit faint nighttime light.
However, the GAIA product more skillfully captured built-up land in large cities and

smaller villages and towns.
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393  Figure 10. Dynamics of built-up area in four selected cities (1990-2019). The true color
394  maps were taken from Google Earth high-definition images from 2019. GAIA: Global
395  Artificial Impervious Area, ESA CCI: European Space Agency Climate Change

396  Initiative, GHSL: Global Human Settlement Layer, MCD12Q1: MODIS Land Cover
397  Type Product. Note that the start year for GAIA was 1985, making its city centers look
398  darker than our product.
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We further compared built-up areas and overall accuracy between our study and
other datasets (Figure 11a). Our study computed the second-largest built-up area
throughout the study period, similar to other high-resolution datasets (i.e., GAIA,
GHSL, and GlobeLand30). In the 1990s, our built-up land estimates were in broad
agreement with GAIA and GHSL but were significantly higher than ESA CCI, Global
Urban Dynamics, and Global Urban Expansion. GAIA, ESA CCI, and our data showed
an acceleration in built-up area expansion, while GHSL, MODIS, Global Urban
Dynamics, and the Global Urban Expansion showed linearly increasing trends.

Due to their similar spatial resolution and land-cover definition, GAIA, Global
Impervious Surface, and GlobeLand30 were selected for the accuracy comparisons. The
accuracy of our study was 10% higher than GHSL and Global Impervious Surface, and
10-19% higher than GAIA, especially in the earlier years. Our accuracy was
consistently high (>94%) across all years, while that of the Global Impervious Surface
and GlobeLand30 were ~85%, and GAIA's accuracy ranged from 75% in 1990 to 84%

in 2017.
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Figure 11. Area and overall accuracy comparison. The middle year of each period in
this study was selected as the x-axis value (for example, 1991 was used to indicate the

built-up area of 1990-1992).

Discussion

Fourier predictors improved built-up land mapping accuracy

Landsat has a long and continuous image archive which offers a unique opportunity for
global and regional assessment of land-use change processes such as urbanization
(Deng and Zhu 2020). However, fallow farmland and seasonal bare land introduce
confusion into built-up land mapping (Gong et al. 2020; Poursanidis, Chrysoulakis, and
Mitraka 2015). This study used coefficients from a Discrete Fourier Transformation as
predictors and achieved an 8% accuracy gain compared to using traditional Spectral and
Indices-based approaches. Fallow farmland and seasonal bare land confusion were
largely removed following the inclusion of Fourier predictors. Our results captured fine-
scale built-up features, such as buildings in small villages and towns, rather than just the

large-scale features of large cities. As a result of the higher accuracy, our study revealed
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higher estimates of built-up areas than other datasets (except for GlobeLand30),
suggesting that global assessments of urbanization may be underestimated.

The effectiveness of Fourier predictors in delineating built-up lands may be
because features captured in dense time-stacks of remotely sensed data are less affected
by random noise (e.g., cloud, cloud shadow, and seasonal changes in land surface) than
snapshot spectral data or indices. Crop phenology and farming rotations lead to regular
greenness patterns in cultivated sites over the annual growing cycle that are distinct
from built-up lands (Zeng et al. 2020). While it is difficult for Spectral and Indices
predictors to separate fallow lands from built-up lands—a common source of built-up
land mapping error—Fourier predictors were sensitive to this distinction. Incorporating
Fourier predictors reduced this confusion and substantially increased the accuracy of

built-up land mapping.

Temporal correction increases the consistency of long time-series built-up land
mapping

In addition to incorporating Fourier predictors, we also implemented temporal
correction to account for the general feature of irreversibility in built-up land (i.e., once
an area is converted to urban land, it tends to remain as urban land (Li, Gong, and Liang
2015; Li et al. 2018)). We implemented the rule that built-up land in earlier years was
unlikely to occur beyond the extent of built-up land in later years, providing the logic
for developing a temporal correction algorithm to remove incorrect pixel classifications.
This correction was able to remove misclassified areas resulting from striping caused by
the ETM+ Scan-Line Corrector failure. Our method can be deployed on the Google
Earth Engine platform and is more straightforward than other temporal correction
algorithms. For example, Li et al. (2015) combined a majority vote rule and temporal

reasoning to construct a spatio-temporal consistency check algorithm, which required a
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complicated process to combine transition probabilities and neighborhood
characteristics. In comparison, our heuristic method is straightforward to apply and
achieved a significant correction effect.

Combining Fourier predictors and temporal correction achieved consistently
high accuracy in built-up land mapping over 30 years. The overall accuracy of our
product was high and consistent across years (>94%), averaging around ~10% higher

than the GlobeLand30 and ~15% higher than GAIA in the 1990s and 2000s (Figure 11).

Informing sustainability assessment and supporting policy with high-quality
data

Built-up land occupies only a small portion of the global terrestrial surface but hosts
more than half of the world's population (Chen et al. 2020). Indeed, 70% of global
anthropogenic greenhouse gas emissions in 2016 and 80% of local natural habitat loss
in 2018 have been linked to the development of built-up lands (Hopkins et al. 2016; Ke
et al. 2018). Therefore, an accurate understanding of the dynamics of built-up land over
time is critical to addressing the social and environmental challenges that threaten a
sustainable future in rapidly urbanizing areas, including our study area.

Our consistent, high-accuracy data product can be readily used in urban policy
and planning. For example, urban growth models based on cellular automata use
historical data to project future scenarios, but errors in historical data can propagate
throughout the projection, reducing confidence in the results (Clarke and Johnson 2020;
Roodposhti, Aryal, and Bryan 2019). This study provides reliable historical data that
enables built-up land expansion to be projected with higher confidence. Environmental
change can also be quantified more precisely using accurate built-up land maps. For
example, the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST)

model uses land-use maps as a proxy to calculate carbon sequestration, water yield, crop



480  production, and habitat quality (Tallis et al. 2011). High-quality built-up land mapping
481  data can provide more reliable input data for calculating the anthropogenic impacts of
482  urbanization.

483 Spatially explicit policies and planning are essential for supporting sustainable
484  development, and one requirement for formulating such policies is access to high-

485  quality data. The study area is unique in China for its strategic position, rapid

486  urbanization, and high agricultural productivity (Song and Deng 2015). To boost the
487  economy of the study area, the Chinese government has announced a series of

488  development plans, such as the Beijing-Tianjin-Hebei Urban Agglomeration

489  development plan (Fang et al. 2019) and the Central Plains City Group development
490  plan (Li et al. 2020a). These plans include mega-infrastructure projects (e.g., high-speed
491  railways and long-distance expressways) to enhance economic flow among cities (Li et
492  al. 2020a). In parallel, to safeguard food security, the Chinese government has also

493  enacted strict farmland protection regulations (e.g., the Basic Farmland Protection

494  Regulations) that prohibit farmland from being converted to built-up lands (Liu et al.
495  2020). An accurate understanding of built-up land dynamics is critical to formulating
496  effective development plans that balance rapid urbanization with increased demand for
497  food production (Zhong et al. 2020). In addition, accurate historical built-up data can be
498  used to project future economic development and derive opportunity costs for future
499  urban expansion (e.g., reduced food security). As a result, urbanization, food security,
500 and sustainability can be coordinated under one framework, promoting the formulation

501  of spatially explicit policies and regulations.

502  Limitations and prospects

503  Our study has some limitations and uncertainties. We derived temporal features from

504  the Discrete Fourier Transformation based on three years of data. Hence the exact date
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of built-up land development cannot be determined at a finer resolution than three years.
Another uncertainty was introduced by the temporal correction methodology, which
assumes that built-up land in 1990-1992 remained unchanged during the study period.
Small areas of built-up land could have been converted to other land types over time (Fu
et al. 2019). However, such conversions typically only comprise a small portion of the
total built-up land area (Gong, Li, and Zhang 2019). Despite these limitations, the
results provide the most accurate, high-resolution, long time-series built-up land data

product available for the North China Plain.

The cross-product comparison indicates that our built-up land mapping for the
North China Plain is more consistent and accurate than other available products that
map built-up land. However, while comparing the accuracy of highly-tailored, regional
mapping applications against other global datasets enables potential users to evaluate
the merits of the products available for a specific region; it is not a reflection on the
value of the global datasets as the accuracy of global products is bound to be lower. Our
dataset fills a different niche, aimed at users that require consistent, high-accuracy,

long-time series data for a specific region rather than global coverage.

Conclusion

We incorporated temporal features based on a dense time-stack of Landsat imagery and
a temporal correction method to map the spatial extent of built-up land in the North
China Plain over 30 years (1990-2019). Incorporating Fourier predictors increased
overall accuracy by 8% compared to using Spectral and Indices predictors alone. The
temporal correction successfully removed incorrectly classified pixels and increased
overall accuracy in all periods to a consistently high level (>94%). All provinces and

cities in the study region tripled their built-up area over the last three decades,



529  illustrating the fierce competition between urban and agricultural land uses. Consistent,
530  high-accuracy and long-time-series mapping of built-up land is invaluable for helping to
531  understand recent patterns of rapid urbanization, quantifying impacts for food security
532 and the environment, modeling future land-use change, and informing policy and

533  planning for managing future urbanization and sustainable development.
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