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ABSTRACT Entity Resolution, which identifies different descriptions referring to the same real-world
entity, is a fundamental stage in data integration process essential for quality data analysis. Identities
recognition is important in encounter network as it defines the entities of encounters. It is usually not
a problem if unique identifier information, e.g., mobile phone number, is available. However, in the
circumstances where unique identifier is not available or in question, further investigated is required to
perform the entity resolution on the encounter dataset. Often the encounter network is a sparse network with
very limited information collected from close-range person-to-person contact reporting, as in epidemiology
contact tracing or traffic collision reports. In this paper, we provide an automatic method to resolve the
ambiguity of entities in sparse encounter network. We develop a Bayesian spatiotemporal inference system
to infer the probability of entity’s visits on places of interest. Then, we propose a hierarchical Markov
logic network to tackle the inference of the entities in the network which analyses the connection strength
of network with multiple types of entities. Experimental results on encounter networks of synthetic and
commercial traffic encounter datasets demonstrate that the proposed method achieves better accuracy than
existing collective classifications.

INDEX TERMS Encounter Network, Entity Resolution, Markov Logic Network, Record Linkage,
Spatiotemporal Inference

I. INTRODUCTION

ENTITY resolution is a fundamental data integration
stage in a data analysis system, which ensures the

input records have unique identities. Also known as record
linkage or data disambiguation, its goal is to decide which
records refer to the same identity with different levels of
confidence [1]. The history of probabilistic record linkage
was pioneered in the healthcare area when the idea of log-
likelihood ratios was introduced in the comparison of similar
records in the late 1950s. A formal mathematical framework
was provided by Fellegi and Sunter in the 1960s, in which
the optimality of rules under fixed upper bounds was proven
[2]. A standard entity resolution system consists of five
stages including data prepossessing, blocking, comparing,
classification and evaluation as shown in Fig. 1. Over the
years, significant advancement of research has been made
in the field of entity resolution, especially in the core part
of classification. A variety of learning methods including su-
pervised, semi-supervised, active learning and unsupervised

FIGURE 1. Entity Resolution System Overview [3]
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methods have been proposed in different data context. Since
the beginning of this century, progress has been made to
compare and classify the data based on a broader scope
beyond the features of the pairwise records. Recently, col-
lective classification techniques have been proposed to make
match decisions in a collective context, which have been
shown to significantly outperform the traditional pairwise
methods. Often data set under this circumstance is organised
in a network like a bibliographical reference network or a
social media network, where the co-authorship or friendship
between nodes is used in the reference for disambiguation. In
this research, the focus of entity resolution is on the encounter
network, where entities physically encounter each other in
geographical space and thus constitute a contact network
whose spatiotemporal information can be utilised for entity
resolution. An encounter is defined as a non-planned by-
chance meeting between two or more persons or vehicles
of unexpected nature and it is referred as the co-location at
the same time in time geography [4]. Identities recognition
in encounter network is not a problem if an unique identifier
information like mobile phone number is available. However,
there are circumstances where entities need to be further
investigated as in the forensic cases of fake phone number
or license plates, or multiple phone numbers and vehicles
used by one person. It also applies in the circumstances
where the tracing information is discontinuous or incomplete
like segments from street CCTV monitoring, information
from multiple epidemiological contact tracing APPs, etc. In
these cases the encounter network is a sparse network with
very limited data obtained from the close-range person-to-
person contact reporting. For all these scenarios, a novel
entity inference system needs to be developed to replace
manual work to help resolve the ambiguity. It is therefore
of special benefit to develop a dedicated framework of entity
resolution in this area to fill the gap at the demands of real life
applications such as forensic investigation, financial fraud
detection and epidemiologic contact tracing [5].

In this work, we first present a Bayesian spatiotemporal
inference system to infer the probability of entities’ access
pattern to places of interest. In this work, we first develop
a hybrid inference method based on Bayesian estimate and
tensor factorization to infer the posterior probabilities of
geolocation access from a power law distribution based prior
probability and encounters’ travel records. Then, we adopt
the Markov Logic Network(MLN), a special type of Markov
Random Field, to deal with the intrinsic features of the
encounter network using maximum likelihood estimation.
Experimental results on encounter networks of synthetic
and commercial traffic encounter dataset demonstrate that
the proposed method achieves better accuracy than existing
entity resolution methods of collective classifications.

II. RELATED WORK
A. ENCOUNTER NETWORK
Encounter network is a special kind of social network created
by human physical movement in daily lives. It is obvious that

human mobility generates encounters and even social links
as a result. It is found that long-range Levy-like distributions
best characterise the emergent social network due to human
travels in the urban space [6]. An empirical probability dis-
tribution is given by Clauset et al. [7] as

P (γ) ∝ γ−δ. (1)

The spacial dynamic parameter has been observed as in the
best fit for δ as 2.37 and 2.45 in metropolis in New York
and Tokyo for displacement of γ within 10km [8]. People’s
whereabout accumulation, however, is far from random walk.
The temporal regularity and spatial structure have been fully
explored by a general gravity model [9]. By mining the
frequent travel pattern, the user mobility profile can be con-
structed in terms of location and temporal semantics [10].
The profile can then be used to measure user similarity. It
has been found that up to 30% of people’s movement in
geophysical space is motivated by their social network, and
thus the locations they share reveal the common social ties
they have [11]. It is natural to describe people’s movement
in the urban area in a set of geographic locations built with
clustering given the self-organised nature of urban districts
and neighbourhoods, and cosine similarity measurements can
be built from the vector of visits on these sites [12] [11]. It has
also been noted that people move with strong spatiotemporal
regularities or patterns and their change of mobility range is
small over time [13]. A number of methods have been put for-
ward to infer people’s movement from their social network. A
distributed localization scheme coupled with hidden Markov
model called SOMA is employed to maximize the probability
of visiting a sequence of locations given the social encounters
[13]. A two step process, STAP, is invented to model the
spatial and temporal additivity preference using tensor factor-
ization and context fusion framework to combine the spatial
and temporal preferences into one prediction [14]. Also,
social ties can be inferred from geographic coincidences.
The most exemplified work in this regard is completed by
Crandall et al. in which the relationship is demonstrated in
an exponential distribution using Bayes’ law [15]. Overall it
has been proved that the accuracy of social link prediction is
improved by the geographical information using a detailed
data TF model, and the accuracy of location prediction is
enhanced when the social links information is provided [16].

B. MARKOV LOGIC NETWORK
With advances in Bayesian network technology, research
topics such as Markov Random Field (MRF) and Conditional
Random Field (CRF) have attracted significant attention in
the field of entity resolution. With the difficult of relation
based entity resolution, the use of Markov network has drawn
considerable research interest in recent years [17]. Markov
Logic Network is a recent development of statistical relational
learning in probabilistic graphical model put forward by
Richardson and Domingos in 2004 [18]. Since its birth it has
gained tremendous popularity in knowledge based statistical
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learning with success in various fields of probabilistic rea-
soning. The motivation of Markov Logic Network is to make
full use of expert domain knowledge in combination with the
inference capabilities of the graphical graphical model. Over
the years, there has seen much progress in the applications
of Markov Logic including information extraction, entity
resolution, link prediction and collective classification [19]
[20] [21]. The declarative expression power and flexible
probability robustness has made it naturally advantageous in
collective entity resolution and has inspired the solution on
its application in encounter network.

The advantage of Markov logic network based entity res-
olution is demonstrated in the exemplary work by Singla
and Domingos in 2006 which laid the foundation for all
future work in this field [22]. In that paper a database of
records representing mentions of bibliography is given as
a set of functions like HasAuthor(bibligraph, author) and
the goal is to find which bibliography/author/venue refer to
the same underlying entity. The equality of the atoms is
strictly realised by three rules of reflexivity, symmetry and
transitivity. Reverse predicate equivalence is applied so that
not only the same author resolution can lead to the matching
of two papers but also the match of two papers can lead to the
merge of two authors. In that solution each field is a string
composed of tokens like HasWord(field,word) and weight
can be assigned individually for each word to differentiate
the uniqueness. Field similarity is measured by frequency
of common words. The inference uses lazy grounding and
MaxWalkSAT over plausible pairs, based on a combination
of learned weights and assigned infinite weights. Scalability
issue is addressed by applying canopy approach for selection
of candidates [23]. Conditional log likelihood and AUC
(Precision-recall curve) are used as performance measure-
ment on bibliographic datasets.

Since its birth, various extensions have been developed
to enhance the capabilities of MLN in entity resolution. A
hierarchical MLN model has been developed that can merge
the formulas and change the weights dynamically according
to information gained from feature engineering stage [24]. In
another milestone work, a hierarchical model is developed
in a collective entity matching framework where entities are
split into neighbourhoods and covers for blocking purpose
on which two types of MLN matchers are applied [25].
Messages of matched pairs and potentially global matched
pairs are exchanged between neighbourhoods to greatly uplift
the scalability performance of collective entity resolution.
In the field of formula construction, various levels of for-
mulas have been skilfully devised to deal with similarity,
cardinality, preference and global constraints in a multipar-
tite entity resolution framework [26]. In geographical name
resolution, a two level MLN algorithm is put forward to
extract rules for three different domains in the text to perform
resolution [27]. In geographical domain extraction level, two
formulas are created to simulate the emission matrix and
transition matrix of an essential Hidden Markov Model. In
name resolution level, the domain similarity is first resolved

to lay the foundation for the matching of the addresses which
has effectively reduced the noises. MLN can also be used
to treat unsupervised co-reference resolution with natural
language processing technique. An unsupervised learning
and inference method has been used to deal with the unknown
predicates [28]. Also, active learning can be embedded with
MLN for entity resolution on imbalanced data for update on
rules and weights [29].

All these applications show that MLN has overall compre-
hensive inference capabilities and great flexibility in dealing
with relational network data and is robust with low data
quality. This makes it a high priority choice on the entity
resolution in sparse encounter network. In our work we will
leverage some of the state-of-the-art technologies to com-
pliment our bi-level MLN framework for the task of entity
resolution in encounter networks.

III. NOTATION AND PROBLEM DEFINITION
We consider our problem in a generic encounter system,
where the input data records is represented in the format
of 〈Timestamp,Location, Persons〉, from which relevant
information is converted into timeframe, geocoding and a
personal entity pi. If there is only one person involved, then
it is a check-in record type like a person’s mobile phone
checking in a hotel WIFI.

Geolocation Matrix L A site is a place where an en-
counter or check-in happens like an accident scene or a
hotel. In an encounter network, sites of close range are
clustered into one location id lj with geocoding coordinates
〈Longitude, Latitulde〉. The location matrix L is the dis-
tance symmetric matrix in which each element Lj,k measures
the Manhattan or Vincenty’s distance of locations j and k
depending on the urban or rural setting.

Entity list P In the system, each identity or object in the
encounter network is denoted by a unique id pi. A candidate
list, P , is the list of the persons to be compared.

Entity Contact ClusterC The entity contact cluster,C, is
the set of entities linked by a series of contacts or social links
between the persons. For example, if person pi encounters pj
and pj has the same home address with pk, then they are all in
the same cluster, Cpi , where pi is the lowest entity id index.
L(Cpi) is therefore all locations visited by all members in the
cluster.

Entity Encounter Tensor E The 3rd-order encounter
tensor, E, is the representation of the geolocation access
of each person relevant to each encounter and check-in site
in different time frames. Here, the first dimension of rows
represents the collection of persons and second dimension
represent the collection of geolocations. A third dimension
tube represents the time frame, in which the encounter takes
place and is categorised into four segments of weekday
peak hours, weekday non-peak business hours, weekday non-
business hours and weekend hours. and node gi,j,k represents
the frequency of the visits of person pi to the location lj
during the kth timeframe.
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Spatiotemporal Profile Matrix M In the entity en-
counter tensor, we sum each row across all columns and
tubes to obtain a matrix, M , for each entity to represent
its spatiotemporal presence and affinity to all sites. From
two persons’ profile matrices, M1 and M2, we can calculate
the Frobenius distance of the two matrices, FM1,M2 =√

trace ((M1 −M2) ∗ (M1 −M2)′).
Formula Set F We define the set of all formulas in the

framework as F = {f1, f2, ...fk} with weights denoted as
w(fi) respectively.

Canopy CN A canopy is a set of entities built on a core
entity contact cluster Ci by linking personal entities in the
cluster with personal entities outside the cluster on common
spatiotemporal space.

Markov Logic Network Classifier MLN We define an
engine of entity resolution using MLN as a MLN classifier
which combines the set of formulas it has used together
with weights. The input to the classifier function is a tuple
of set of entities comparison pairs < Tm, Tp, Tu > which
corresponds to the set of matched pairs, potential matches
pairs and unmatched pairs respectively. The tuple may not
contain all the possible N × (N − 1) entity pairs as they
only contain the potential pairs among the undecided pairs as
candidates for match decisions.

The goal of this task is to first infer the spatiotemporal
profile preference, M , and space, Sp, from the entire en-
counter network information of L,C and E. The objective
of the framework is to determine which pair of entities of the
same type (like p1, p2) matches as the same real world entity
in the comparison space γ.

IV. METHODOLOGY
The entire framework consists of two major components, the
spatiotemporal inference component and the MLN matcher
component. In the spatiotemporal inference component, all
the encounter and geolocation visits information of all enti-
ties are summarised into encounter network tensorsE to infer
each entity’s spatiotemporal pattern. This inference is imple-
mented with Bayesian method on the power law distribution.
The second component is a bi-level MLN matcher which
performs entity matching on entity pairs in the encounter
cluster and the spatiotemporal canopy additively, based on
the results obtained from the spatiotemporal inference com-
ponent. In this way, a comprehensive comparison on all
possible potential matching entity pairs is achieved with
maximum coverage and minimal computational cost.

V. SPATIOTEMPORAL AFFINITY INFERENCE
In a real encounter network, the scarcity of contact data
makes the comparison of cosine vector spatiotemporal profile
infeasible. In order to compare the spatiotemporal similarity
of the entities, it is essential to extend to the inference of
the probability of entity pi visiting site lj where its affiliated
entities pj has visited, within the constraint of timeframe t
[15]. The whole inference process uses collaborative filtering
with a global baseline, similar to the hybrid recommendation

system. The first step processes the input contact records
into the summarised matrices and tensors. The second step
uses tensor factorization to enrich the personal spatiotem-
poral inference. The last step fuses the extended personal
spatiotemporal tensor into profile matrices for comparison.

A. BAYESIAN INFERENCE OF SPATIOTEMPORAL
DISTRIBUTION
Based on encounter tensor and spatiotemporal profile matrix,
a Bayesian inference analysis system can be established by
treating the probability of visiting a location with distance r
as a power law distribution parameter. The prior distribution
can have a variety of choices and here we choose the non-
informative Jeffreys prior with the density kernel of gamma
distribution to elicit the posterior parameter of the power law
distribution [30].

Pi(r) ∝ θr−θ, r > 0, θ > 0. (2)

Being a non-informative prior, it is commonly used in sit-
uations that has limited information about the parameters.
It is also more efficient in terms of posterior variance than
uniform and gamma priors in this case. As there may have
multiple paths between two locations visited and all the
probabilities of the paths need to be calculated for being in-
tegrated into the Bayesian hierarchical model. The posterior
distribution of r for the given dataset x = x1, x2, ..., xn, is

Pi(θ|x) ∝ θn−1e−θ
∑n

i=1 ln x−1
i , (3)

where n is the number of paths between the two nodes and
xi is the observed distance value of r for each spatiotempo-
ral path between the person’s centroid geolocation and the
visited geolocation. High frequency visits to a geolocation
would naturally strengthen the probability of that distance.

B. GEOLOCATION MATRIX CALCULATION
To build the location matrix, L, all geocoding information of
encountering sites is collected first. Here the geocoding of
the mid-point of street information for the site whose exact
address of encounter is unclear [31]. Without referring to the
road network data, a grid cell network can be used to separate
the geographical space of urban travel area into different
cells as elements of the location matrix [15]. Alternatively, a
density based DBSCAN cluster method can be employed to
cluster the spatial data of nearby sites into locations [32]. The
location matrix can thus be built by measuring the Manhattan
distance as in an urban environment or Vincenty’s distance in
a generic setting. It is noted that only public sites are counted
as private while home addresses are not included though they
are needed to build the encounter cluster.

C. SPATIOTEMPORAL PROFILE TENSOR INFERENCE
The entity encounter tensor stores the probability values of
a person visiting locations in different time frames. To ini-
tialize the tensor, E, the frequency of person, pi, to location
nodeLj at timeframe k is written in the element,Ei,j,k, of the
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tensor. For those places in the cluster locations, L(Ci), where
the person, pi, has no visiting records, we need to infer from
the other members of the encounter cluster. Initially, a default
visit probability by the truncated power law is assigned to
serve as a global baseline prediction [33].

Pi(i, j) = (r + ∆r)−βe−
r
s . (4)

Here we obtain the posterior estimates of s and β from the in-
verse of

∑n
i=1 lnx−1i and n− 1 from (3) respectively. As the

tensor records the frequency counts of visits of each personal
entity to each site by each time frame, the probability needs
to be transformed to the frequency count using a scale factor
based on the person’s general travel frequency, f(i, k), at the
kth time frame. A high frequent traveller will get scaled up by
his or her relative high visit frequencies than a low frequent
traveller. This is done through the scaling equation below.

F (i, j, k) = f(i, k) ∗ P (i, j). (5)

The person’s recorded location visits time frame distribution
would be applied to the time frame allocation of the inferred
frequencies.

The second step is to use Tucker decomposition to factor-
ize the tensor using

T =
P∑
1

L∑
1

T∑
1

Gp,l,tAp ◦Bl ◦ Ct (6)

where A,B and C are the person-to-location, location-to-
timeframe and person-to-timeframe matrix respectively, and
G is the core tensor [34]. We use high-order SVD(HOSVD)
method to perform the tensor decomposition, which is un-
folded by each dimension into three fibers and computes
SVD on each of them [35].

A = SV Dra(Ma(T )).

B = SV Drb(Mb(T )).

C = SV Drc(Mc(T )).

(7)

where SV Dr represents the first r left singular vectors of the
matrix. To address the high computation complexity issue,
we use the latest development of the HOSVD method, the
Sparse Tensor Alternating Thresholding SVD (STAT-SVD),
to truncate after each projection before SVD and QR [36].
Then, each blank cell can be reconstructed using

t̂i,j,k =
∑
p

∑
l

∑
t

ĝp,l,tâi,pb̂j,lĉk,t. (8)

where p, l, and t are indices of latent factors. The whole
algorithm is detailed in algorithm 1.

D. PERSONAL SPATIOTEMPORAL PROFILE
COMPARISON
Having constructed the inferred tensor using latent factor
models, we can easily retrieve any person’s spatiotemporal
travel profile,Mi, by slicing the personal id index. To com-
pare the distance of two persons’ profile matrices, we can use
the Frobenius distance of the two matrices:

FM1,M2 =
√

trace ((M1 −M2) ∗ (M1 −M2)′). (9)

Algorithm 1 Spatiotemporal Profile Update
1: /* Calculate Personal Centroids. */
2: for Each Person pi do
3: if pi home address is not null. then
4: ci = hi
5: else
6: ci〈Lg,La〉 =

∑n
s=1 fils
n 〈Lg,La〉

7: end if
8: Initialise a Tensor List.
9: for Each Person pj in the cluster Ci do

10: Spatiotemporal Tensor Initialisation Using Eq.
(4).

11: for Each Location lj do
12: for Each Location tk do
13: if Freq(pi, lj , tk) > 0 then
14: Ti,j,k == Freq(pi, lj , tk)
15: else
16: Ti,j,k == |Ci − Gi,j |−δ ×

e−
|Ci−Gi,j |

k × f(i, k) Using Eq. (5)
17: end if
18: end for
19: end for
20: end for
21: end for
22: Tucker Decomposition of the Tensor T Using Eq. (6)
23: for Each blank cell Ti,j,k do
24: Ti,j,k =

∑
p

∑
l

∑
t ĝp,l,ṫ̂ai,ṗ̂bj,l̇̂ck,t Eq. (8)

25: end for

A conventional cosine distance measurement can also be
calculated on the person-geolocation visit vectors obtained
by averaging on the timeframes of the Mi matrix:

cos θ =
vi · vj

|vi‖vj|
. (10)

In both ways, a quantitative measurement of the spatiotem-
poral profile comparison can be obtained.

VI. HIERARCHICAL ENTITY RESOLUTION USING
MARKOV LOGIC NETWORKS
A. MARKOV LOGIC NETWORKS
Markov Logic Network is a straightforward way of represen-
tation of the combination of probability distribution and first
order logic with the sole requirement of finite set of objects.
In first order logic, non-logical objects are represented by
quantified variables in a set of formulas which constitutes
the Knowledge Base. First order language is comprised of
a set of formulas which are constructed by four types of sym-
bols: constants,variables,functions and predicates defined as
following [18]:

• Constants refer to a real life object like a person or a
vehicle which can be typed.

• Variables refer to any object in the domain. It is also
typed.
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• Functions refer to the mapping from objects to other
objects like owner of a vehicle .

• Predicates refer to the relationships of objects like
encounter relationship between two objects or attributes
of objects like a person being male or female.

Additional important terminology includes grounding which
is to replace all the variables in the functions and predicates
with constants and possible world which assigns true value
to each possible ground atom formula. A logical knowledge
base is a set of such hard constraints on a set of possible
worlds. If we make the hard constraints soft in first order
logic network, the formulas in Markov logic network will
be soft constraints built with weights, which means when
a world violates a formula it becomes less probable but
still possible, thus making the rules more flexible to de-
scribe the real world. The weights can be efficiently learned
from optimization iteration of maximum log likelihood of
relation database with labelled training data. Higher weight
implies stronger constraint and lower weight values means
weaker constraint. The inference is performed via the MCMC
method on the smallest subset required to solve the question
in query predicate. Together the formulas and the weights can
be normalised to define a probability distribution over possi-
ble states of the world which is described by the database.

A Markov logic network N is defined as a set of pairs
(Fi, wi) where Fi represent a set of first-order logic rules
and wi represent the respective weights to the respective
rules [18]. The rules are defined on a finite set of constants
C = {c1, c2, . . . , cn} which together define a Markov net-
work MN,C . For each possible grounding of each predicate
in N there is one binary node in the network. Also for each
possible grounding of formula there is one binary feature in
N as well associated with weights. The implementation of
Markov logic network is to construct a Markov network using
the Markov logic networkN as a template which turns it into
a ground Markov network. The probability distribution over
possible worlds X on the ground Markov network MN,C is
listed as [18]:

P (X = x) =
1

Z
exp

(∑
i∈F

wini(x)

)
=

1

Z

∏
i∈F

φi
(
x{i}

)ni(x)
.

(11)
Here ni(x) stands for the number of true groundings of
Formula Fi and x{i} is the state of truth of all the atoms
in Fi and Z is the normalization constant. As represented
in a Markov random field φi

(
x{i}

)
= ewi is a potential

function normalised by Z the partition function given by
Z =

∑
x∈X

∏
k φk

(
x{k}

)
. The inference of Markov logic

network consists mainly of two types which are maximum
likelihood of the world with existing evidence and condi-
tional probability of one formula given existing evidence.
The first inference task can be defined as [37]

arg max
y

P (y | x) == arg max
y

∑
i

wini(x, y). (12)

This is equivalent to finding the set of truth values for the
relevant variables so that the weights of the clauses achieve
the maximum value. We use the MaxWalkSAT method which
combines random and greedy steps to approximately solve
this NP-hard problem [18]. The conditional probability is
computed using the following:

P (F1 | F2, L, C) = P (F1 | F2,ML,C) =∑
x∈XF1

∩XF2
P (X = x |ML,C)∑

x∈XF2
P (X = x |ML,C)

,

where XFi
is the sets of truth values of variables that satisfy

formula Fi [37]. Due to the scalability problem of atomic
grounding, a slice sampling based MCMC method MC-SAT
is devised to approximate the probability [38]. The weights of
Markov logic network can be assigned manually or learned
via maximum log likelihood of the database. As the com-
putation of the true groundings is intractable, an alternative
method of pseudo-log-likelihood is often used instead [37].

logP ∗w(X = x) =
n∑
l=1

logPw (Xl = xl |MBx (Xl)) .

(13)
Here MBx (Xl) stands for the Markov blanket of Xl in
the database which only includes the truth values of the
ground atoms in the relevant ground formulas. This method,
however, may suffer from unsatisfactory result in long chains
of inference. Instead, discriminative weight learning is em-
ployed by optimising the conditional likelihood probability
of the weights of the query atoms based on the evidenced
atoms as [37]

P (y | x) =
1

Zx
exp

(∑
i∈FY

wini(x, y)

)
. (14)

Here ni(x, y) stands for the number of true grounding of the
ith formula in the database and Zx is the normalization value
over all possible worlds consistent with evidence x.

The design process of a Markov logic network is shown in
Fig. 2.

Domain 
Knowledge

Frist-Order Logic

MLN Formulas

MLN Formulas 
Weight Learning

MLN Inference

Markov Logic Network Design Process

FIGURE 2. Matching Complexity Comparison.

B. MLN FRAMEWORK METHODOLOGY OVERVIEW
This part zooms into the detail of the MLN framework which
consists of two levels of MLN entity matchers, including
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the encounter cluster level and spatiotemporal canopy level.
The cluster is constructed by linking the entities based on
the encounter relationship as well as geolocation inference
information like sharing vehicle, mobile and address. The
canopy is built by linking each entity of the cluster with
entities in the same spatiotemporal space outside the cluster
as demonstrated by the blue and red circles in Fig. 3.

FIGURE 3. Encounter clusters and Spatiotemporal Canopies.

The two level partitioning method serves to reduce the
amount of comparison pairs for probabilistic entity resolution
while maximizing the capture of potential matches. The
overall algorithm is listed in the high level algorithm 2 .

Algorithm 2 Bi-Level MLN Framework
1: Data preprocessing including rule-based de-duplication

to create a complete dataset for entity resolution.
2: Build the encounter network clusters C.
3: Perform spatiotemporal inference calling algorithm 1.
4: for Each Ci ∈ C do
5: for pair of entity of the same type do
6: Calculate connection strength calling algorithm

3.
7: end for
8: Perform cluster level MLN Matcher on Ci.
9: Expand the cluster Ci to Canopy CNi.

10: Perform canopy level MLN Match on CNi with
output from cluster matcher.

11: while Matching pair has entity outside the cluster Ci
do

12: Expand the cluster Ci to include the new entities.
13: Perform cluster level MLN matcher on Ci.
14: Expand the cluster to a canopy CNi.
15: Perform canopy level MLN matcher on CNi.
16: end while
17: Remove the cluster entities from the dataset.
18: end for
19: Return matched result.

In the data preprocessing stage, a round of de-duplication
is needed to remove the obvious duplicated records by the
exact matching of features through simple rule based entity
resolution to enhance linking quality in the construction of
the encounter clusters. MLN cluster classier MLNcl at this

level makes use of similarity of entity features as well as net-
work connection strength features. Once the entity resolution
has been completed on each cluster at this level, the matched
entities are merged and the respective spatiotemporal tensors
and distance matrices are updated. A canopy level Markov
logic network classifier MLNcp will be run on the canopies
to generate new matches on the extended evidence of the
entities in the spatiotemporal space. If any merging happens
on the entity pair from both inside and outside the cluster,
the cluster will expand to include the new entities and will
undergo a new round of MLNcl classification until no new
member is added to the cluster. The present cluster will be
deleted from the graph network once its matching process
has been completed. This process repeats on every encounter
cluster in the queue as the core of the canopy until the
queue becomes empty. This approach of canopy and iterative
blocking has been proven to be superior in terms of accuracy,
runtime performance as well as scalability comparing with
single blocking methods [39] [40] [23].

An important assumption of this hierarchical MLN frame-
work is the monotonicity of the match results that would
not degenerate as a result of iterative entity resolution at the
canopy level. The definition is given here [25].
Definition 1: A MLN classifier with output is monotone if for
input E,< Tm, Tu > and alternative input E′, < T ′m, T

′
u >

such that E ⊆ E′ and Tm ⊆ T ′m and Tu ⊆ T ′u the following
output O would hold:
• O(E,< Tm, Tu >) ⊆ O(E′, < Tm, Tu >)
• O(E,< Tm, Tu >) ⊆ O(E,< T ′m, Tu >)
• O(E,< Tm, Tu >) ⊆ O(E,< Tm, T

′
u >)

The monotonicity is maintained by the check against the
Tu in this model. The entire framework is expounded in detail
below on a generic traffic incident encounter network with
entities and features modestly adjusted to fit in experiment
scenarios.

C. NETWORK CONNECTION STRENGTH MODEL
The contact networks for MLN inference are constructed
with each cluster as an undirected graph G(V,E) shown in
Fig. 4. To infer the matching of two entities in the cluster,

Encounter Network Cluster

FIGURE 4. Encounter Network Linked by Encounters, Cars, Mobile and
Home.

we consider embedding a network structure model within the
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MLN framework for two reasons. First, the MLN formulas
are binary predicates and thus difficult to express quantitative
values like frequency of encounters. Secondly, the entities in
the cluster graph may be several hops away and thus require
very complicated composite formulas to capture that long
distance relationship. Therefore, we propose a network con-
nection strength evidence predicate to incorporate all these
factors. The connection strength in the encounter network is
related to a number of factors including the number of simple
paths from node u to v, the length and type of the edges
of each simple path, the node degrees in the path and the
shared sub-paths of these paths. After comparing a number
of existing connection strength models including diffusion
kernels, PageRank and weight-based models [41], we decide
to build a novel weight based model that incorporates all the
factors mentioned above and their interplay. We first find the
subgraph that contains only the simple paths between the two
nodes using standard DFS algorithm. Each edge in the graph
has a type which represents the relationship and is assigned
a type weight as listed in table 1. The encounter type edge
has a weight of 1 − 1

en where n is the number of encounters
experienced between the two people. Zero encounter would
have a weight of zero and high encounter would have a
weight close to 1.

TABLE 1. Weights of Cluster Edges.

Edge Type Weight
Person-Person Encounter 1− 1

en

Person-HomeAddress 0.9
Person-Vehicle 0.8
Person-Mobile 0.7

Then we convert the subgraph into a directed graph and
store all the distinctive edges that makes all the simple paths
from node u to node v into two sets, with one set containing
the end edges with the end point being node v and the rest of
edges in the intermediate edge set. The connection weight of
an end edge is defined as the product of the edge weight and
the reverse of less than one node degree the edge end point
which is defined in (15).

CW (a, b) = W (Edge(a, b))× 1

degree(b)− 1
. (15)

We then sum the log of the product of the connection weight
for all the intermediate edges and edge weight of the end
edges to get the connection strength of two nodes in the
graph.

CS(u, v) =
∑

p∈SInterE

log10 CW (p) +
∑

q∈SEndE

log10W (q).

(16)
The basic idea behind the algorithm is to set the spatiotempo-
ral inference information loss as a log-distance pass model.
The longer the path, the less stable the link is and the more
connections the node has, the less connection strength is
between the two nodes [42]. This strength value decays

quickly along long paths so there is no need to set path length
limit as in a general walk model [43].

And the adaptive weighted connection strength algorithm
is shown in the algorithm 3.

Algorithm 3 Get CS between two Nodes in Graph.
1: Derive the subgraph between the pair of nodes and

convert it to directed graph.
2: Separate the distinctive edges in the subgraph into sets of

Intermediate IE and End EE .
3: c = 1
4: for Each edge e ∈ SubgraphIE do
5: i← GetPathType(e)
6: if e ∈ IE then
7: c← c× wi × 1

degree(p2)−1 Using Eq. (15)
8: else
9: c← c× wi

10: end if
11: end for
12: Sum to get CS(u, v) using Eq. (16).

Here IE stands for the set of end edges.

D. ENCOUNTER CONTACT CLUSTER MLN MATCHER
A set of evidence predicates are defined below to be used in
the MLN formulas:

• Type(entity,type!) indicates which type the entity be-
longs to. The ! symbol indicates mutually exclusive and
exhaustive as used in Alchemy.

• Linked(person,entity) indicates the person has
relations with the entities of types of vehi-
cle/mobile/address.

• Encounter(person,person) indicates the encounter re-
lationship of persons and vehicles.

• PersonSim(person,person) The personal features in-
clude full name,gender and age and returns true if the
JaroWinkler distance of full name is within a threshold
with equal gender and exact age.

• EntitySim(entity,entity) A set of similarity comparison
relations which compare similarity of entities of the
same type with their respective features of string type.
It returns true if the Levenshtein distance of the string
value is less than two.

• ConnStrength(entity,entity) Calculates the connection
strength of two entities in the undirected graph derived
from the encounter cluster and canopy as in the al-
gorithm 3. It returns true if the log value is above a
threshold Tcs which is set to -0.65 as a standard.

These matching predicates are defined below to be used in
the MLN formulas for both query and evidence predicates.

• SamePerson(person,person) queries if the entity pair
of two persons refer to the same person.

• SameEntity(entity,entity) queries the same entity of
two non-persons entity.
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• SameType(entity,entity) queries if the entity pair is of
the same type. It is used as evidence predicate in the
MLN formula set.

Entity type assignment is in the unit clause in the base rules
with ! indicates mutual exclusivity. Similarity of features and
closeness in network will cause entities of same type to be
matched. The exception is on two entities that actually en-
counter each other which cannot be the same person by logic.

Matching process can be transitive and covers the scenario if
two persons are matched, their vehicle, mobile and address
entities should be matched as well. The matching result
comes as the likelihood of the best world. The corresponding
rows in the entity encounter tensor E and spatiotemporal
space S need to be merged for the matched pair entities. To
update the spatiotemporal profile matrix M , we just add the
profile matrices of the two corresponding personal entities
M1 +M2.

• Base Rules

Type(e, t!), type ∈ { Person,Vehicle,Address,Mobile }

• Similarity Rules

Type(e1, t1) ∧ Type(e2, t2) ∧ (t1 = t2)⇒ SameType (e1, e2)

PersonSim (e1, e2) ∧ ConnStrength (e1, e2)⇒ SamePerson (e1, e2)

EntitySim (e1, e2) ∧ ConnStrength (e1, e2) ∧ SameType (e1, e2)⇒ SameEntity (e1, e2) (17)

• Hard Exclusive Rules

Encounter (e1, e2) ∧ Type(e1, P erson) ∧ Type(e2, P erson)⇒ ¬SamePerson (e1, e2)

Encounter (e1, e2) ∧ Type(e1, V ehicle) ∧ Type(e2, V ehicle)⇒ ¬SameEntity (e1, e2)

• Transitivity Rules

SamePerson (e1, e2) ∧ SamePerson (e2, e3)⇒ SamePerson (e1, e3)

SameEntity (e1, e2) ∧ SameEntity (e2, e3)⇒ SameEntity (e1, e3)

• Dependency Rules

SamePerson (e1, e2) ∧ Linked (e1, e3) ∧ Linked (e2, e4) ∧ SameType(e3, e4)⇒ SameEntity (e3, e4)

E. CANOPY MLN MATCHER

After the merge process of each cluster has completed, we
expand the cluster to the canopy level by joining entities
in other clusters by the spatiotemporal distance within user
defined threshold as illustrated in Fig. 5. In the figure we
can see some of the personal entities in the encounter cluster
have shared spatiotemporal space with some entities outside
the cluster indicated by the red line. Together with their
direct encounter and owned entities they form a canopy
around the cluster. The major difference of our approach with
McCallum’s canopy clustering method is that our canopy is
built around encounter network clusters while the original
canopy is built on randomly selected data points [23] .

Canopy of a Encounter Network Cluster

Cluster

Canopy

FIGURE 5. Encounter Network Linked by Encounters, Cars, Mobile and Home

The canopy level MLN formulas are listed in the rule set
below. Equation (17) has been replaced by (18) in the canopy
network with additional constraint as in the network connec-
tion strength values have been greatly incremented due to the
new paths formed in the canopy network. The inCluster pred-
icate is pertaining to the current local cluster in computing
in the algorithm. Only personal entities are matched in the
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canopy MLN matcher here but other types of entities can be
included if there is sufficient spatiotemporal information to
compare. The edge weight for the spatiotemporal distanced
link is still set to 0.4 as above and connection strength
calculation now extends to the canopy level as shown in Fig.
3. The entity resolution is performed on entities both within
the original cluster and between the entity pairs in the original

cluster and outside the cluster. SpatioSim(person,person)
compares similarity of spatiotemporal profile by the Frobe-
nius distance of their respective profile matrices and returns
true if below a preset threshold Tf . This new evidence
predicate which compares the spatiotemporal profile is used
to negate the pairs that do not have common spatiotemporal
space in the canopy. All the other rules in the cluster level are
automatically inherited at the canopy level.

• Base Rules

InCluster(e)

• Similarity Rules

InCluster(e1) ∨ InCluster(e2)⇒WithinCluster (e1, e2) (18)
PersonSim (e1, e2) ∧ ConnStrength (e1, e2) ∧WithinCluster (e1, e2)⇒ SamePerson (e1, e2) (19)

• Hard Exclusive Rules

¬SpatioSim (e1, e2)⇒ ¬SamePerson (e1, e2)

Given the set of formulas, we learn their weights dis-
criminatingly by maximizing the conditional likelihood the
query predicates Same (ea, eb) given the evidence atoms
[22]. The training set is retrieved from the top N largest
contact networks and the weights of all the soft formulas are
learned from gradient descent as in (20).

∂

∂wi
logPw(y | x) = ni(x, y)− Ew [ni(x, y)] , (20)

where Ew [ni(x, y)] is the expected number of true ground-
ings of the formula fi [22]. The learned weights are trans-
ferred to all the other contact networks and canopies. The
MAP state is then found with MaxWalkSAT algorithm. The
result comes out as a binary outcome instead of log likelihood
by assigning a threshold equivalent to the smallest probability
likelihood of an entity matching pair according the the true
labelled data.

VII. EXPERIMENT
A. DATASETS
we evaluate our model on one simulated dataset and one
commercial dataset using Alchemy 2.0 software [44]. The
simulated dataset comes from fraction sampled Foursquare
dataset of LBSN services [14]. For the Foursquare dataset
we simulate the data by randomly blanking 50% of the visit
records to create a sparse encounter network. The definition
of encounter of users is sharing location at least 5 minutes
within one hour with distance within 100m. The processed
data has the number of encounter clusters as shown in the
table 2.

The Foursquare dataset is anonymous with only user ids
to distinguish each user. Therefore we assign each user
with distinctive masked name and mobile number converted
from a commercial customer database with some names and

TABLE 2. Number of Clusters in NY and TK

FourSquare Number of Users 50% Removal
New York 824 27
Tokyo 1939 69

numbers closely related. We then randomly select 10% of
the users for tampering by adding one extra leading character
to create one Levenshtein distance difference on half of the
records. This minor change is supposed to be detected by
the similarity functions in the MLN model so it would be
used for the validation of entity resolution. As there is no
other feature or type of entities, we simplify the MLN model
by reducing the number of types to two. We use F1 score
as the performance measurement since the data is highly
imbalanced between positive and negative samples.

The commercial dataset in this experiment is converted
from sources of a commercial vehicle insurance claims sys-
tem and road regulatory incident database with locations con-
fined to the metropolitan cities in Australia. The combined
dataset has a collection of approximately 120,000 personal
entities forming over 2,000 encounter clusters of size from
2 to 64 entities. The data is transformed into two basic
types of format. The first type is the encounter information,
which records pairwise encounter information in a specific
spatiotemporal space consisting of geolocation and time seg-
ments in the format of < p1, p2, loci, tj >. Notice that
an encounter cluster of N persons can be converted to

(
n
x

)
pairwise records. The second type is the attribute information
which shows the three features of person including vehicle
license plate, phone number and address. A gold copy of
labelled data is obtained by a legacy rule based system plus
clerical review. We use about 12% of the data for training and
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the rest for testing.

B. EXPERIMENT SETUP
The experiment is performed on a Linux VM with 32 cores
and 128GB memory using alchemy 2.0 as the MLN software
[44]. For the Foursquare dataset we run the bi-level MLN
framework in comparison with the conventional rule-based
model and F-S model. For the traffic encounter dataset, we
first run F-S model followed by spatiotemporal enhanced F-
S model. We then run the encounter network layer MLN
followed by the canopy level MLN for illustration on the
power of iterative canopy blocking methods. Apart from
entity resolution on the persons we also performed entity
resolution on the vehicles using similarity weights on license
number. In each dataset we use 25% for training, 25% for
validation and the rest 50% for test.

C. COMPARISON RESULTS
We first test our proposed MLN method on the simulated
Foursquare dataset described in table 2. The experiment
result on Foursquare dataset from the result table 3 clearly
shows that MLN framework has a overall advantage of
F1 scores on both datasets of New York and Tokyo due
to the enhanced detection capability of link analysis and
spatiotemporal linkage. The slight drop of precision score in
Tokyo dataset against rule-based model is due to the dense
encounter network.

On the traffic encounter network dataset, we performed
three rounds of tests using rule based model of single field
similarity tolerance as bench mark and F-S model with
threshold to cover all the true matches and finally the MLN
model. Then, most importantly, we performed our two MLN
based methods (Cluster level MLN model and bi-level MLN
model) on the same dataset. Apart from entity resolution on
the persons we also performed entity resolution on the vehi-
cles using similarity weights on license number. Table 4 has
shown the a significant improvement of MLN network in the
metrics of recall, precision and F1 score over two traditional
model even with the assistance of the spatiotemporal features
because feature based comparison cannot recognise the un-
derlying network structure between entities and therefore will
not give preference to the nodes within the same encounter
cluster. It also shows the improvement of precision and over-
all F1 score of bi-level MLN model thanks to the expansion
of comparison using common spatiotemporal space as shown
in Fig. 6.

VIII. CONCLUSIONS
In this paper we have demonstrated the bi-level Markov logic
network framework for heterogeneous entity resolution in
encounter network. Experiments on simulated and commer-
cial encounter network datasets have proven the promise of
Markov logic network in the field of entity resolution in a
relationship context. The first contribution we have made
is the inference of the spatiotemporal profile which greatly
extends the scope of detection and is the foundation of
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FIGURE 6. MLN Traffic Incident Dataset Matching Results

further logic inference of upper layers. Secondly, two sets
of MLN formulas are constructed which has simplified the
computation and inference process while maintaining the
accuracy at acceptable level compared with building a sep-
arate framework for each type. Lastly, a novel data matching
mechanism has been devised which integrates both iterative
blocking and network connection strength has resulted in
the great simplification of the first order logic structure and
message passing between different segments of the data.
This ensures maximum scalability of the framework to an
encounter network of up to 300 entities within reasonable
time.

In the future, we will extend our research in both the design
and the experiment. The first aspect is related to the similarity
based deduction in the first order formulas. In almost all of
the MLN work on entity resolution the basic similarity fea-
ture comparison is a requirement which may invalidate possi-
ble matches in forensic scenarios. In the anti-fraud scenario,
for example, many fraudsters would completely change their
names and birthdate before taking the next offence such that
it is impossible to detect the linkage of two entities by these
similarity based formulas. Spatiotemporal profile can help
but is not sufficient for identification. Advanced network
clustering method is needed to identify the underlined links
between these entities in order to perform more intelligent
discovery. The second aspect is about the time series analysis
of the spatiotemporal statistics. All encounter events occur
with a timestamp and their inference power decays as time
goes by. An exponential compensating component is needed
to offset this effect. The third aspect is regarding the entity
resolution of heterogeneous types of objects. Apart from
the elegant way of dealing with the heterogeneous entity
resolution in one batch, an iteration method similar to EM
algorithm could be used to fix all the other types at a time
and perform entity resolution on one type of objects per
batch. In this way, higher accuracy could be achieved as the
problem of mutual dependency could be solved. Finally, we
may apply the proposed MLN method to epidemiological
contact tracing database to verify the effectiveness of entity
inference in a critical scenario with time constraint.
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TABLE 3. Simulated Foursquare Encounter Network Entity Resolution.

Methods Reported Matches Recall Rate Precision F1 Score
NY TK NY TK NY TK NY TK

Rule-Based 88 202 0.991 0.995 0.913 0.991 0.965 0.977
Fellegi-Sunter Model 87 201 0.993 0.995 0.942 0.96 0.977 0.977
Bi-lvel MLN 84 197 0.997 0.998 0.976 0.980 0.988 0.990

TABLE 4. Commercial Road Encounter System Entity Resolution.

Methods Reported Matches Recall Rate Precision F1 Score
Persons Vehicle Persons Vehicle Persons Vehicle Persons Vehicle

F-S Model 1978 742 0.855 0.988 0.885 0.535 0.870 0.686
Spatiotemporal F-S Model 2213 641 0.931 0.952 0.903 0.624 0.912 0.754
Cluster Level MLN Model 2179 520 0.979 0.969 0.939 0.775 0.959 0.861
Bi-level MLN Model 2268 439 0.987 0.983 0.936 0.925 0.961 0.953
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