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Abstract

Autonomous Vehicles (AVs) have shown indelible and revolutionary effects on accident
reduction and more efficient use of travel time, with outstanding socio-economic impact.
Despite these benefits, to make AVs accepted by a wide demographic and produce them
on an industrial scale with a reasonable price, there are still a number of technolog-
ical and social challenges that need to be tackled. Path Tracking Controller (PTC) of
AVs is one of the high potential subsystems that can be further improved in order to
achieve more accurate, robust and comfortable tracking performance. This study pro-
vides a critical review and simulation study of several selected techniques used for the
design of PTC of AVs. The AVs are assumed to have limited controllability due to non-
holonomic constraints, such as car-like vehicles and differential drive mobile robots. A
detailed discussion will be provided on the simulation outcomes as well as the pros and
cons of each technique for the sake of implementation and improvement of state-of-the-art
PTC.

1 INTRODUCTION

The interest in Autonomous Vehicles (AVs) has been increas-
ing over the last few decades with rapid advancements in sen-
sor technology and portable computing devices. The socio-
economic impact of AVs is not only confined to the end vehi-
cle users; they have also shown an indelible and revolutionary
impact on public transportation systems [1, 2]. According to
the World Health Organization (WHO), each year around 1.35
million people die globally due to traffic accidents or accident-
related injuries [3]. More than 80% of these accidents are related
to human errors [3] which can be significantly reduced with
the adoption of Advanced Driver Assistance Systems (ADAS)
and Automated Driving Systems (ADS) technologies. More-
over, AVs can considerably help with reduction and more effi-
cient use of travel time, with economic benefits as well as a pos-
itive impact on the physical and mental health of the passengers.
In Australia, 79% of 9.2 million daily commuters drive their cars
and spend 25 min on average traveling to work [4]. In the con-
text of AVs’ social impact, they can provide an excellent alter-
native for the mobility of disabled or elderly people who are
incapable of driving conventional vehicles.
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In spite of all the aforementioned benefits, to make AVs
accepted by a wide demographic and produce them on an indus-
trial scale with a reasonable price, there are still several techno-
logical and social challenges that need to be tackled. The com-
plexity of ADS is highly dependent on the required autonomy
level. According to the standard (SAE-J3016) introduced by
the Society of Automotive Engineers (SAE), ADS can be cat-
egorised into six levels (levels 0–5) from ‘no autonomy’ to ‘fully
autonomous’ [5]. The autonomy level increases with the com-
plexity of driving assistance systems, the responsibility of the
human subject in the driving task, and the operating conditions
of the vehicles.

Level-1 and 2 vehicles are already matured and being pro-
duced on an industrial scale. For any vehicle of level-3 and
above, the driving task is generally divided into three subsystems
(i) sensing and perception, (ii) path planning, and (iii) path track-
ing. In the sensing and perception stage, the information about
the environment such as road conditions, traffic and pedestri-
ans are collected using different sensors and fused to be appli-
cable for mapping and localisation. Based on the mapped data, a
reference trajectory is planned by the path planner for the vehi-
cle to follow. Finally, the path tracking unit controls the vehicle

646 wileyonlinelibrary.com/iet-its IET Intell. Transp. Syst. 2021;15:646–670.

mailto:mpappu@deakin.com.au
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-its


ROKONUZZAMAN ET AL. 647

on the planned path as accurately as possible. Sensing, percep-
tion and path planning have been an active research area and a
considerable amount of work has been done towards improving
these technologies. The focus of the current study is on the Path
Tracking Controller (PTC) of AVs.

PTC of the AV is an interface between vehicle dynamic and
path planner of the AV. Since this unit has access to the ride and
handling control subsystems of the vehicle, for example steer-
ing and lateral control, it can be used to enhance the dynamic
behaviour of the vehicle while implementing an accurate path
tracking task [6]. PTC of the AV normally have access to the
sensory feedbacks, for example IMU-GPS information, and use
them in order to constitute a closed-loop control scheme. While
the control technique is in charge of minimising error and other
possible objective, performance of a PTC depends on a number
of aspects, including the complexity of the vehicle model as well
as the accuracy and robustness of the control scheme. In the
literature, the design and implementation of PTC for AVs have
been investigated in a number of studies. To target the scope
of the current study, we focus on the PTC of Autonomous
Ground Vehicles (AGVs), which have limited controllability due
to non-holonomic constraints such as car-like vehicles and dif-
ferential drive mobile robots. We present a critical review of a
number of selected techniques that are applicable to ADS of
vehicles.

The remainder of the paper is organised as follows. In Sec-
tion 2, two common vehicle models are discussed and their
mathematical formulations are presented. In Section 3, the con-
trol problem of path tracking is elaborated and a systematic
review of some of the most popular control techniques is pre-
sented. Section 4 includes the performance evaluation of dif-
ferent control techniques based on the simulation results for
urban path tracking tasks. In Section 5, a summary of the study
is presented and the review and the simulation outcomes are
discussed. Finally, a conclusion is drawn in Section 6.

2 VEHICLE MODEL

The efficacy of the PTC is highly dependent on the accuracy
and complexity of the vehicle model. Planar vehicle models with
longitudinal and lateral motions are commonly used in the lit-
erature due to their simplicity. An accurate high-fidelity model
provides a better representation of the vehicle motion in differ-
ent directions [7, 8]; however, it would increase the complexity
of controller design and the computation cost. A simpler model
reduces the complexity of the control system; however, it can-
not capture the non-linear effects and introduces uncertainties
to the system.

To start with a planar model, a car-like wheeled vehicle is
assumed as a 2-dimensional rigid body moving in a configu-
ration space. The coordinate system is usually represented by
the position and the orientation of the vehicle which describes
the motion of the vehicle in a special Euclidean group in two
dimension (SE (2)) configuration space. The equations of pla-
nar motion of an AGV are generally expressed using two sets
of coordinate systems, a vehicle coordinate system B(x, y) and

FIGURE 1 Geometry of a car-like wheeled vehicle

global coordinate system G (X,Y ). The motion of the vehicle is
generally expressed using the vehicle coordinate system where x

is the forward/longitudinal axis of the vehicle, y is the lateral axis
to the left of the forward direction. These will be converted to
the global coordinate system to calculate the states of the vehicle
in the configuration space.

Two commonly used vehicle models are briefly introduced
here and later used for the simulation of the PTC.

2.1 Kinematic model

In a kinematic model, the motion is replicated irrespective of
dynamic components of the vehicle, for example force, torque,
inertia effects. A bicycle model is often used to express the kine-
matics of a vehicle. Figure 1 shows the geometry of a car-like
vehicle using a bicycle model where the front and rear wheels are
lumped together and only the front wheel is used for steering.
The configuration of vehicle shown in this figure is represented
by q = (x, y, 𝜃, 𝛿), where x, y is the position of the rear axle, 𝛿 is
the steering angle of the front wheel and 𝜃 is the orientation of
the vehicle in the global reference frame. In this model, x f , y f

denote the position of the front wheel and l shows the distance
between the front and rear axle points.

The kinematic of the vehicle is subjected to non-holonomic
constraint with the assumption that the wheels are purely rolling
without any side slip. The non-holonomnic constraint implies
that dimension of the permissible velocity space of the vehi-
cle is smaller than the dimension of configuration space. The
non-holonomic constraint for each wheel can be expressed
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as [9]

ẋ sin(𝜃) − ẏ cos(𝜃) = 0 (1)

ẋ f sin(𝜃 + 𝛿) − ẏ f cos(𝜃 + 𝛿) = 0, (2)

with a rigid body constraint between the front and rear wheel,
we have

x f = x + l cos(𝜃),

y f = y + l sin(𝜃). (3)

Combining (1), (2) and (3),

ẋ sin(𝜃 + 𝛿) − ẏ cos(𝜃 + 𝛿) − �̇� lcos(𝛿) = 0. (4)

Equation (1) is satisfied when ẋ = cos(𝜃) and ẏ = sin(𝜃) or
any other scalar values of cos(𝜃) and sin(𝜃). This value shows
the forward or longitudinal velocity vr at the rear wheel such
that [10]

ẋ = vr cos(𝜃),

ẏ = vr sin(𝜃).

�̇� =
vr tan(𝛿)

l
. (5)

The kinematic model of a rear-wheel drive vehicle is eventually
described as [9]

⎡⎢⎢⎢⎣
ẋ

ẏ

�̇�

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

cos(𝜃)

sin(𝜃)

tan(𝛿)
l

⎤⎥⎥⎥⎥⎦
vr , (6)

where vr is the longitudinal velocity of the vehicle at the
rear wheel. The steering angle 𝛿 has a singularity at angle

𝜋

2
which means |𝛿max| < 𝜋

2
. Similarly, the kinematic equations for

a front-wheel drive vehicle can be expressed as [9]

⎡⎢⎢⎢⎣
ẋ

ẏ

�̇�

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
cos(𝜃) cos(𝛿)

sin(𝜃) cos(𝛿)

sin(𝛿)
l

⎤⎥⎥⎥⎥⎦
v f , (7)

where v f is the longitudinal velocity of the vehicle at the
front wheel.

The kinematic model has been widely used in the literature
due to its simplicity and sufficient performance at low speeds.
When the vehicle is moving at higher speeds, the dynamic
effects of some components become more prominent and need
to be modelled appropriately.

FIGURE 2 Geometry of a dynamic bicycle model of a car-like vehicle

2.2 Dynamic model

Similar to the kinematic model, a dynamic bicycle model is gen-
erally used for designing PTCs [6, 11–14]. Figure 2 shows the
geometry of a dynamic bicycle model. In this model, the vehicle
has a mass m with a moment of inertia Iz at the centre of gravity
of the body and normal to the horizontal plane. The motion of
the vehicle can be expressed using the following Newton–Euler
equations [15, 16]

v̇x =
1
m

[
Fx f cos(𝛿) + Fxr − Fy f sin(𝛿)

]
+ vy�̇�, (8)

v̇y =
1
m

[
Fy f cos(𝛿) + Fyr + Fx f sin(𝛿)

]
− vx �̇�, (9)

�̈� =
1
Iz

[
Fyr lr +

(
Fx f sin(𝛿) + Fy f cos(𝛿)

)
l f

]
, (10)

where Fx is the longitudinal force, Fy is the lateral force, r and f

denote rear and forward wheels, 𝛿 is the steering angle, l f and
lr are the distances between front and rear wheel and the centre
of gravity, and 𝜃 is the yaw angle.

The tyre slip angle for the front 𝛼 f and rear wheel 𝛼r can be
expressed as [15]

𝛼 f = 𝛿 − 𝜃 f = 𝛿 − tan−1

(
vy + l f �̇�

vx

)
, (11)
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𝛼r = −𝜃r = − tan−1

(
vy − lr �̇�

vx

)
. (12)

An accurate tyre model describing tyre-road interaction is
extremely important due to the fact that all driving forces are
applied to a vehicle through the tyres’ patches. Due to the sim-
plicity, the linear tyre model is a commonly used tyre model
for designing controller of AGV. In this model, the corner-
ing forces are estimated based on the assumption of small slip
angles.

If the wheel slip angles are sufficiently small, lateral tyre force
is proportional to the tyre slip angle as [16],

Fy f = −C f 𝛼 f , (13)

Fyr = −Cr𝛼r , (14)

where C f is the cornering stiffness of the front wheels and Cr is
the cornering stiffness of the rear wheel.

The linear tyre model is only applicable for small slip angles
and at low lateral accelerations. Moreover, for designing a con-
troller using the linear model, the longitudinal velocity is gener-
ally assumed constant. This decouples the longitudinal and lat-
eral control of the vehicle where the longitudinal dynamics are
controlled by a separate controller.

In a nonlinear vehicle dynamic model, the forces generated
on wheels for larger slip angles have also been considered. These
models capture the nonlinearity of the vehicle dynamics and
provide a more accurate solution at higher slip angles of the
wheels. However, these models increase the complexity of the
dynamic vehicle model significantly. One of the most commonly
used nonlinear tyre model is the Pacejka tyre model where the
forces are calculated based on an empirical model [17]. Here,
either the later or longitudinal force is calculated using the fol-
lowing formula [17]:

y = D sin [C arctan{Bx(1 − E ) + E arctan(Bx )}] (15a)

Y (X ) = y(x ) + Sv (15b)

x = X + Sh. (15c)

Here, X is the input which represents either longitudinal slip 𝜅
or lateral slip angle 𝛼 and Y is the output which represent either
the longitudinal force Fx = y(𝜅) or lateral force Fy = y(𝛼). In
addition, B is the stiffness factor, C is the shape factor, D is the
peak value, E is the curvature factor, Sh is the horizontal shift
and Sv is the vertical shift. More details on the formulation of
this model can be found in [17].

Another commonly used approach to calculate tyre forces is
the use of an analytical model such as the Brush model. Here,
the tyre forces are a function of the normal force (Fz ), longitu-
dinal slip ratio(𝜅) and lateral slip angle (𝛼) of the wheel. For this

model, the tyre force is expressed as [17]

F = 𝜇Fz [3𝛾𝜎 − 3(𝛾𝜎)2 + (𝛾𝜎)3] if 𝜎 ≤ 𝜎s (16a)

F = 𝜇Fz if 𝜎 > 𝜎s (16b)

where, (16c)

𝜎x =
𝜅

1 + 𝜅
(16d)

𝜎y =
tan𝛼
1 + 𝜅

(16e)

𝜎 =
√
𝜎x

2
+ 𝜎2

y . (16f)

Here, 𝜇 is the tyre-road friction co-efficient , 𝜎x and 𝜎y is the
longitudinal and lateral slip, respectively and 𝜎 is the combined
total slip. In addition, 𝜎s is the slip when the sliding starts and 𝛾
is an isotropic tyre parameter expressed as

𝛾 =
2cpa2

3𝜇Fz
, (17)

where, cp denotes the total stiffness of tread elements per unit
length and a is half of the contact length of the tyre. Now, the
longitudinal and later tyre forces can be calculated as

Fx =
𝜎x

𝜎
F, (18a)

Fy =
𝜎y

𝜎
F . (18b)

A more detailed analysis of different analytical tyre models
including the brush model can be found in [16, 17].

For designing PTC for AVs, the use of the linear tyre model
is the most popular approach due to its simplicity and accuracy
at certain operating regions [18–20]. The use of the linear tyre
model reduces the complexity of the path tracking task as well.
On the other hand, the nonlinear tyre model provides a more
accurate representation of the vehicle dynamics and in turn
increases the performances of the PTC at a higher speed. The
nonlinear tyre model has been used for designing some con-
trol techniques such as Model Predictive Control (MPC) which
has inherent capabilities to handle nonlinear systems. The com-
monly used nonlinear models for designing PTC are the Pacejka
model [21–25], brush model [6, 26] and modified brush model
[27–29] .

3 CONTROL STRATEGIES

In control-oriented terminology, the motion control task of
AGVs can be divided into two categories: i) stabilisation to a
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reference point (point to point motion) ii) stabilisation to a ref-
erence manifold (path following and trajectory tracking). These
control problems are defined as

Point stabilisation:Given a vehicle model as a differential equa-
tion �̇� = F (𝜒, u), and a desired position 𝜒d the objective is to
design a control law such that ||𝜒 − 𝜒re f || ≤ 𝜖 in finite time,
where 𝜖 is arbitrarily small.

Path following:Given a vehicle model as a differential equa-
tion �̇� = F (𝜒, u), and a reference path 𝜒re f : ℝ → ℝn, the con-
trol objective is the design a control law such that lim

t→∞
||𝜒 −

𝜒re f || = 0
Trajectory tracking:Given a vehicle model as a differential equa-

tion �̇� = F (𝜒, u), and a reference trajectory with an associate
timing law 𝜒re f (t ) : ℝ → ℝn, the control objective is the design
a control law such that lim

t→∞
||𝜒(t ) − 𝜒re f (t )|| = 0

In this section, we provide a survey of some selected con-
trol techniques for the path following task of AGVs. The
control strategies are chosen based on their popularity in the
field of path tracking control and the applicability to car-like
autonomous vehicles. First, the mathematical formulation and
the state-of-the-art of two geometry-based controllers, Pure
Pursuit Controller (PPC) and Stanley controllers are presented.
Second, the Feedback Linearisation (FL) and the Lyapunov’s
Direct Method (LDM) are surveyed. Third, two most com-
monly used robust controllers, Sliding Mode Controller (SMC)
and H∞ controller arediscussed. Then, two optimisation-based
controllers, Linear Quadratic Regulator (LQR) and Model Pre-
dictive Control (MPC) are introduced. Finally, Neural Network
(NN) controller, which is the most commonly used AI-based
control technique, is discussed.

3.1 Pure pursuit

PPC was initially implemented for guiding missiles towards a
moving target [30]. It was later used to keep the vehicle on the
middle of the road using road images [31]. In this technique, a
target point on the reference path is chosen at a certain distance
ahead of the vehicle called a ‘look-ahead distance’. The relation-
ship between the position of the vehicle and the trajectory of
the path is established by fitting an arc between the rear wheel
and the target point. Figure 3 shows the geometry of the PPC
approach for a bicycle vehicle model. The radius of the fitted
arc can be found as

R =
ld

2 sin𝛼
, (19)

where 𝛼 is the angle between vehicle forward vector and the
vector connecting the target point and the rear axle of the vehi-
cle, ld is the look ahead distance, R is the radius of the arc, and
𝛿 is the required steering angle. The required steering angle 𝛿 at
any time instance can be calculated as [32]

𝛿 = tan−1

(
2l sin𝛼

ld

)
. (20)

FIGURE 3 Pure pursuit geometry for a bicycle vehicle model. In this
model, the vehicle follows a circular arc to reach the target point at a certain
look-ahead distance ahead

𝛼 can also be expressed using the lateral error between the vehi-
cle and the path el and the look-ahead distance ld as [10]

𝛼 = sin−1 el

ld
(21)

From (20) and (21), it is evident that the steering angle can be
calculated using the lateral error el and the look-ahead distance
ld .

PPC has been widely used by researchers due to the simplic-
ity of its implementation, easily tunable parameters, low com-
putational requirement and performance at low velocity [33].
It has also been used by several participants in DARPA grand
challenge [32, 34]. Amidi et al. investigated the use of a quintic
polynomial instead of an arc fitted between the current vehi-
cle position and the target point and concluded that PPC has
shown significantly better performance in terms of stability and
accuracy [35]. Rankin et al. studied a PID and a PPC controller
using both the simulation and a test vehicle and figured out
PPC is stable and reasonably accurate at small lateral error and
low vehicle speed [36]. It has also been confirmed by the other
authors that the reliability of PPC drops with increasing veloc-
ity of the vehicle [10, 37]. Moreover, it has been suggested that
look-ahead distance is easier to tune than the parameters of the
PID controller [36]. To consider the effect of slip angle at higher
velocities, in [38], a receding horizon optimal control technique
in addition to the PPC was used to handle the effect of wheel
slip.

One of the fundamental requirements for an efficient
PPC is the proper tuning of the look-ahead distance. For a
large value, it can cause ‘cutting the corner’ effect when the
path curvature is large [35, 39]. On the other hand, a too
small look-ahead distance, even though it provides better
accuracy, may produce oscillatory behaviour of the vehicle.
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Along with the look-ahead distance, the velocity of the vehicle
plays an important role in the reliability and efficacy of the con-
troller [10, 40]. It is also noted that as PPC suffers from a lack
of dynamic of the vehicle, with increasing velocity the tracking
error increases and longer look-ahead distance is required [10].

The stability of PPC has been analysed and a crite-
rion was developed to provide a range of look-ahead
distances and velocities for which the controller is
stable [37, 41]. Adaptive approaches were used for calcu-
lating a proper range of look-ahead distance [42–44]. Fuzzy
Logic Systems (FLS) were also employed to tune look-ahead
distance [43, 45, 46]. In these studies, different applications
including controlling a heavy vehicle [46] and designing
an adaptivePPC by calculating the appropriate look-ahead
distance based on the curvature of the path from GPS data, the
speed, and lateral error of the vehicle [42] were implemented.

PPC has shown a number of drawbacks. It does not consider
the orientation of the vehicle at the target point and there is a
limit for feasible look-ahead distances at each velocity. More-
over, it is known to reflect inferior performance when the vehi-
cle is off-path (high lateral and heading error). To solve these
problems, Wit et al. [47] proposed a novel approach of geomet-
ric path tracker based on the screw theory where both position
and orientation of the vehicle at the target are considered. In this
case, it was shown that the vehicle is stable when the look-ahead
distance ranges between 5 and 9 m and the velocity changes
between 2 and 4 m/s.

3.2 Stanley controller

Stanley controller, sometimes also referred to as ‘Hoffman Con-
troller’, is another type of geometry-based PTC implemented
by the winner of the DARPA grand challenge in 2005 [48]. In
this approach, the orientation of the front wheel with respect
to the reference trajectory is used instead of the orientation of
the vehicle body for generating the control actions. Moreover,
unlike the PPC controller, a look-ahead distance is not required
for designing the controller.

The geometry of the Stanley controller is shown in Figure 4.
In this figure, el is the distance between the vehicle front axle
and the reference point and 𝛼 is the angle between the vehicle
heading direction and the tangent at the reference point. From
the geometry of Figure 4, the required steering angle is calcu-
lated as [49]

𝛿(t ) = 𝛼 + tan−1

[
kel (t )
v(t )

]
, (22)

where v denotes the forward speed of the vehicle and k is the
tunable gain. As the controller considers velocity of the vehicle
for generating control actions, the controller is asymptotically
stable for any non-zero velocity and steering angles between 0
and

𝜋

2
, as shown in [49]. Considering the constraints of steering

FIGURE 4 Geometry of Stanley controller for a bicycle model

angle, the steering law can be expressed as [49]:

𝛿(t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛼 + tan−1

[
ke(t )
v(t )

]
if |𝛼 + tan−1

[
ke(t )
v(t )

]| < 𝛿max ;

𝛿max if |𝛼 + tan−1

[
ke(t )
v(t )

]| ≥ 𝛿max ;

−𝛿max if |𝛼 + tan−1

[
ke(t )
v(t )

]| ≤ 𝛿max .

(23)

where 𝛿max is the magnitude for both the maximum and mini-
mum steering angle and 0 < 𝛿max <

𝜋

2
.

The value of the tuning parameter has a significant effect on
the efficacy of the controller. In [10], Snider implemented the
Stanley controller in (22) and compared its performance for dif-
ferent driving scenarios. For the high values of k, the controller
performed relatively good up to a certain value where the con-
troller becomes unstable.

The control law of (22) purely controls the position of the
front wheel and not the orientation of the vehicle. Therefore,
a modified control law was proposed [49]. In the modified law,
yaw error and steering angle rates were also considered for gen-
erating control actions as follows

𝛿(t ) = 𝛼 + tan−1

[
ke(t )
v(t )

]
+ k𝜃 (�̇�re f − �̇�) + k𝛿�̇� (24)

where 𝜃re f is the reference yaw angle, 𝜃 is the yaw angle, and k,
k𝜃 and k𝛿 are gain parameters which need to be tuned.

A set of tuned parameters may only work well for a cer-
tain driving scenario and vehicle. To solve this problem, an
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adaptive approach was proposed for tuning gain parameters for
different road conditions and velocities [50]. In this approach,
a ‘knowledge base’ was created from optimised gains calcu-
lated using the Particle Swarm optimisation technique. An FLS
is then used to choose the appropriate gains from the knowl-
edge base based on the current velocity and path tracking
error.

3.3 Feedback linearisation

For vehicles with non-holonomic constraints, the point stabil-
isation problem is much more complex than the path follow-
ing or trajectory tracking problem [9]. Although the kinematic
model in (6) is fully controllable [9], stabilisation at a given ter-
minal point is not possible using a linear static state feedback
[51, 52]. To address this problem, researchers used discontinu-
ous [53] or dynamic state feedback [52, 54]. Hybrid controllers, a
combination of discontinuous and dynamic feedback, has been
also used to solve point stabilisation problem for AGVs with
non-holonomic constraints [55].

FL)is a popular approach for designing nonlinear control sys-
tems enabling the use of well-defined linear control techniques.
Feedback linearisation of an AGV can be performed using two
approaches: i) full-state linearisation [9, 56, 57], and ii) input-
output linearisation [9, 56, 58–62]. In the full-state linearisation
approach, a linear relationship between the states and the inputs
is established by transforming both states and inputs. On the
other hand, for input-output linearisation, a linear relationship
between the output and input is found by taking the derivatives
of the output until the inputs or derivatives of the inputs appear
independently [63].

The vehicle model in (6) is not input-output linearisable using
static feedback if the controlled point is taken on the centre of
the wheel axis [9]. However, the static FL can be used if the
output is chosen properly [9]. For instance, Figure 5 shows the
geometry of a car-like vehicle where the controlled point is cho-
sen as p at d distance ahead of the front wheel (x f , y f ), where
the error is calculated correspondingly.

From the geometric relationship of Figure 5, the output of
the system can be expressed as [56]

j =

[
xp

yp

]
=

[
x + l cos(𝜃) + d cos(𝜃 + 𝛿)
y + l sin(𝜃) + d sin(𝜃 + 𝛿)

]
. (25)

The derivatives of the output, j̇ can be expressed in the following
form [9]

j̇ = M(𝜃, 𝛿) v, (26)

where,

M(𝜃, 𝛿)

=

[
cos(𝜃) − (sin(𝜃) + d sin(𝜃 + 𝛿)∕l ) tan(𝛿) −d sin(𝜃 + 𝛿)

sin(𝜃) + (cos(𝜃) + d cos(𝜃 + 𝛿)∕l ) tan(𝛿) d cos(𝜃 + 𝛿)

]
.

(27)

FIGURE 5 Modified kinematic model for feedback linearization-based
control implementation

Choosing an auxiliary input u = j̇, we have [9]

v = M−1(𝜃, 𝛿) u. (28)

Now, the trajectory tracking problem can be solved using a lin-
ear state feedback law such that [53]

ux = ẋr + kx (xr − xp),

uy = ẏr + ky (yr − yp), (29)

where (xr , yr ) is the reference trajectory.
For a car-like vehicle, the input-output linearised system has

nonlinear internal dynamics, so the stability of the internal
dynamics also needs to be considered. For example, for the con-
troller in (25)-(29), the yaw angle 𝜃 is not controlled. It is noted
that for a non-holonomic wheeled vehicle, internal dynamics are
asymptotically stable when the reference point is moving for-
ward; however, for a backward moving reference point, internal
dynamics are unstable [64].

The dynamic feedback approach has also been used to
achieve full-state linearisation of AGVs. One of the primary
advantages of full-state linearisation is that it does not have any
internal dynamics. Full-state linearization can be achieved using
the dynamic extension technique [9, 65, 66]. In this technique,
new auxiliary inputs are added as the derivative of the origi-
nal system input until all the system inputs explicitly appear. If
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polar coordinates are used instead of Cartesian coordinates, the
nonlinear kinematic system is transformed into a linear time-
invariant system [65, 66].

Due to the existence of higher-order derivative terms, FL-
based controllers are sensitive to disturbances and do not guar-
antee robust performance against uncertainties [57, 63, 67]. To
improve the robustness of this approach, an adaptive FL con-
troller was proposed using an integrated kinematic and dynamic
model of the vehicle [59]. The adaptive control law was designed
based on the Lyapunov stability approach. Moreover, a com-
bination of input-output FL and output manoeuvering control
approach was suggested to design a robust controller [68]. A
Kalman-based active observer was also used to estimate the
states of the system in the presence of disturbances [58]. In [67],
a p-domain FL controller was designed and combined with an
SMC to increase robustness against vehicle parametric uncer-
tainties.

The efficacy of different FL based PTC has been frequently
reported in theory and simulations; however, only a few efforts
have been made to practically implement this technique [56, 57,
61, 69]. In one of the latest studies, this technique was compared
to a Lyapunov-based controller for different driving scenarios
[61]. It has been reported that in the presence of disturbances,
FL is superior to Lyapunov-based controller in terms of accu-
racy.

3.4 Lyapunov’s direct method

LDM has been introduced to design PTC for AGVs. This
approach has been extracted from Lyapunov’s theorem which
is extensively used for analyzing stability of nonlinear systems.
For designing LDM-based controllers, an error system is initially
created with respect to the current and the reference state of the
vehicle. This error system is used for creating controllers ensur-
ing both asymptotic and Lyapunov stability. For the kinematic
model of (6), an error system with configuration, qe=(xe, ye, 𝜃e)
can be expressed as [70]

⎡⎢⎢⎢⎣
xe

ye

𝜃e

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

cos(𝜃) sin(𝜃) 0

− sin(𝜃) cos(𝜃) 0

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
xr − x

yr − y

𝜃r − 𝜃

⎤⎥⎥⎥⎦ . (30)

where x, y, 𝜃 are the current position and orientation of the vehi-
cle and xr , yr , 𝜃r are the reference position and orientation of the
vehicle. Based on (6) and (30), the open loop error system can
be stated as [70, 71]

ẋe = 𝜔ye + vr cos(𝜃e ) − v,

ẏe = −𝜔xe + vr sin(𝜃e ), (31)

�̇�e = 𝜔d − 𝜔,

where vr and 𝜔r are the reference forward and angular
velocities.

A control law needs to be designed to make the error qe con-
verges to 0 when t →∞. For the control law to be stable, a
Lyapunov function V (qe ) must exist such that V (qe ) is a posi-
tive definite function (V (qe ) > 0) and V̇ (qe ) is a negative semi-
definite(V̇ (qe ) ≤ 0). The Lyapunov stability does not guarantee
the asymptotic stability. The system is asymptotically stable if
V̇ (xe ) is a negative definite function. A control law for these
conditions can be devised using the Lyapunov theorem as [70,
72] [

v

𝜔

]
=

[
k1xe + vr cos(𝜃e )

𝜔r + vr (k2ye + k3 sin(𝜃e ))

]
, (32)

where k1, k2 and k3 are positive gains. Local stability of the sys-
tem can be verified using a Lyapunov candidate function [70,
72].

V =
1
2

(
x2

e + y2
e

)
+

1 − cos(𝜃e )
k2

. (33)

For the above Lyapunov function, for k1, k2, k3 > 0, the func-
tion V > 0 when qe = 0 and the time derivative of the Lya-
punov function V̇ ≤ 0 [70, 72], which is equivalent to Lya-
punov stability of the controller. For the controller to be asymp-
totically stable, vr and 𝜔r must be continuous and bounded
and v̇r and �̇�r must be sufficiently small [70]. A polar coor-
dinate system can be used instead of Cartesian coordinate
systems. This enables use of smooth feedback laws which
is not possible for the case of Cartesian coordinate systems
[71].

The controller of (32) is stable for any positive values of
k1, k2, k3; however, these gains need to be tuned. To find
the appropriate gain values of the controller which meet the
required performance criteria, an LQR algorithm can be used to
tune the parameters of a Lyapunov controller [73]. For design-
ing LDM using (30)-(32), perfect velocity tracking is assumed,
which is not ideal in practice. To address this issue, a back-
stepping method was used to integrate the dynamics and kine-
matics of a vehicle [74–76]. For these works, an additional
torque controller was used to ensure perfect velocity tracking.
LDM has shown to generate a smoother steering angle than the
SMC, despite less robustness in tracking tasks [77].

3.5 Linear quadratic regulator

LQR is an efficient method in balancing control effort and sys-
tem response. In this approach, an optimal feedback control
gain is calculated based on a performance index. In the context
of PTC, LQR requires a linear model of the vehicle in order to
calculate optimal feedback gain. The linearised vehicle dynamic
model (bicycle model) can be expressed as

ẋ = Ax + Bu, (34)

where, x = [vy �̇�], u = 𝛿.
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For the implementation of LQR-based PTC of AGVs, an
error state space model is usually formulated such that the path
curvatures are considered as disturbances to the system [78]. An
error state space model can be formulated as [16, 79]

ẋ = Ax + B1u + B2 ṙre f , (35)

where x = [ey, ėy, e𝜃 , ė𝜃], u = 𝛿, ey is cross-track error and e𝜃 is
heading angle error, rre f is the reference yaw rate . The term
B2 ṙre f is considered as external disturbance to the system [10].
In the simplest version of LQR, the task is to find suitable gain
K for the feedback control law u(k) = −K x(k) by minimizing a
quadratic cost such as [80]

J =

∞∑
k=0

(
xT (k)Qx(k) + uT (k)Ru(k)

)
, (36)

where Q and R are positive definite diagonal weighing matrices.
The optimal solution K for the feedback matrix is obtained

as [80]

K = R−1BT P, (37)

where P is the solution of the matrix Riccati equation

P = AT PA − AT PB(R + BT PB)−1BT PA + Q. (38)

The performance of an LQR controller can be evaluated
compared to other controllers when it is used for designing a
PTC. It has been shown that, in negotiating a curved path, LQR
with path information as disturbance provides much better per-
formance than the PD controller [78]. The LQR has shown
more robust performance in the presence of the unmodelled
dynamic of the system and similar robustness in the presence of
parametric uncertainty, compared to a Dominate Second-Order
Pole (DSOP)-based controller [81].

The LQR undesirably provides steady-state errors when
negotiating high curvature paths [10]. To improve the tracking
performance for paths with dynamic curvatures, the use of an
additional feedforward controller was proposed [10, 79, 82–84].
The feedforward controller uses the road curvature information
and the feedback controller uses the cross-track and yaw error
from the state feedback [85]. The control with the integration
of feedforward control law can be expressed as [79, 83]

u(k) = −Kx(k) + 𝛿 f f (39)

The structure of an LQR controller with the feedforward
controller is shown in Figure 6. The feedforward controller does
not consider the future disturbances of the system and may
introduce overshoot to the system’s response [10]. To avoid this,
an optimal preview with the feedforward LQR controller was
proposed [10, 19, 86]. In this work, the feedforward controller
was designed based on the path information for a preview hori-
zon and the feedback controller was designed using lateral and
yaw error. Similarly, to compensate for future disturbances on

FIGURE 6 Structure of a LQR-based controller with the feedforward
control

the system, the use of IterativeLQR (ILQR) has been suggested
[87].

Due to the use of the linearised model, LQR cannot han-
dle both parametric and unstructured uncertainties, which are
more prone at the higher speeds of AGV. LQR does not pro-
vide proper robustness in cases where uncertainties and external
disturbances exist [88]. To improve tracking accuracy with the
presence of parametric uncertainties, an observer-based LQR
was proposed in [89, 90]. To increase the robustness, Frequency-
Shaped Linear Control (FSLQ) has also been proposed [91].
The frequency-domain approach using gain and phase mar-
gins ensures more robustness. In addition, to compensate for
the problem of model uncertainty and external disturbances,
Robust LQR (RLQR) has been also adopted [20, 92]. In this
work, an additional robust controller was used to diminish the
effect of unstructured and parametric uncertainties. Similarly,
variable structure control such as SMC has been integrated into
the LQR controller [19]. The performance of LQR has been
analysed for different speeds of the AGV in comparison with
Nonlinear Model Predictive Control (NMPC) and it was shown
that NMPC performs significantly better at high speeds [93].
Moreover, in cases where a small parameter changes, causing
fast unstable conditions, the stability of the system becomes
highly dependent on the proper choice of the weighting
matrices.

3.6 Robust control

For a complex nonlinear system such as AGVs with all impre-
cision and external disturbances, which are integral parts of any
practical system, a high-fidelity model is ideally required. The
application of such a model increases the complexity of the con-
trol problem. On the other hand, using a simplified model can
introduce uncertainties to the system, which include paramet-
ric and unstructured uncertainties [63]. To tackle these uncer-
tainties, a number of robust controllers with nonlinear control
structures have been proposed [94]. In this section, two most
commonly used robust controllers for designing PTC for AVs
are discussed.

3.6.1 Sliding mode control

In the context of PTC, SMC is one of the most popular con-
trol techniques. SMC can provide robust performance in the
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presence of uncertainties, is easy to implement, and can facili-
tate fast response [63, 94, 95]. In this technique, a desired sliding
manifold in the state-space, the so-called ‘sliding surface’, is ini-
tially chosen. Next, a controller is designed to drive the system
states to the sliding surface at a finite time while constraining
them. One of the advantages of the SMC approach is that the
system has a reduced order of dynamic when the state is on the
sliding surface which is much easier to control [63].

The first step for designing the SMC is to choose a sliding
surface. A sliding surface for the error system of (30) which can
be defined as [96]

s1 = ẋe + k1xe, (40)

s2 = ẏe + k2ye + k3sgn(ye )𝜃e. (41)

For this sliding surface, a control law which drives the error
asymptotically to zero (s1 = 0, s2 = 0) should be defined. Dif-
ferent techniques can be used to design sliding surface and
corresponding control law for the chosen sliding surface, such
as vehicle kinematic-based [96, 97] and vehicle dynamic-based
approaches [98–100].

The conventional SMC (the first order SMC) has been com-
monly used for designing PTC [98, 101, 102]. A continuous-
time SMC using feedback linearisation was implemented with
the assumptions of coinciding with the initial position of
the reference trajectory and the origin as well as a non-
perpendicular orientation between the heading angle and the
angle of coordinates [98]. In an improvement effort, a polar
coordinate system was employed to eliminate the required
geometric constraints for the proper implementation of the
controller [102]. Although these proposed controllers did not
provide satisfactory results when the state of the system
locates at close vicinity of the origin and the physical actu-
ator constraints were not considered, they provide robust
performance in the existence of uncertainties and external
disturbances.

One of the fundamental problems of SMC is the ‘chatter-
ing’ problem [63]. The discontinuous switching and the time
delay of the control actions cause chattering which requires
high control activity and is not suitable for AGV. Moreover,
it may produce undesired oscillations exciting unmodelled
high-frequency dynamics. To reduce the effect of chattering,
different techniques have been proposed including Boundary
Layer Technique [103, 104]. In this technique, instead of using a
switching function, a saturation function is used. Alternatively, a
second-order SMC can be used [97, 105–107]. A super twisting
SMC, which is a type of second-order SMC, was also designed
without the measurements of the first derivatives of the sliding
variables for the path tracking of an AGV [106, 108, 109].
These techniques can help with reducing chattering; however,
this comes at the cost of reduced robustness.

SMC also suffers from sensitivity to external disturbances
during the reaching phase, where the system has not reached
the sliding manifold [110]. To avoid this, the use of Integral Slid-
ing Mode Controller (ISMC) has been proposed [111, 112]. In

TABLE 1 SMC techniques used for reduction of chattering

Control Technique Reference

Second-order SMC [97, 105–107]

Boundary Layer Technique [103, 104],

Super Twisting SMC [106], [108], [109]

Adaptive SMC (Fuzzy-based) [100], [118], [119],[120]

Adaptive SMC (NN-based) [114]

Adaptive SMC (Extended state observer) [115], [122]

this approach, the system trajectory always starts from the slid-
ing surface and an integral term is used along with the sliding
manifold. Two different controllers, (continuous and discon-
tinuous), are designed, the continuous controller is responsible
for the nominal control actions where no disturbance is present
and the discontinuous controller is responsible for rejecting the
disturbances.

Conventional SMC’s are designed with the assumption of
known uncertainty bound, which is not realistic in practice.
The unknown disturbances are generally compensated by over-
conservative control gain producing a chattering effect. When
the bound on uncertainty is not known, an adaptive approach
can be adopted [100, 113–117]. Adaptive Sliding Mode Con-
trol (ASMC) has been implemented using several different
techniques, including Fuzzy logic-based ASMC [100, 118–120].
In [119], a logic inference technique was proposed to adap-
tively calculate the gain of the switching control of SMC. Sim-
ilarly, a variable exponential sliding control law was formulated
using a fuzzy type-2 NN to enhance robustness against uncer-
tainty [121]. In [114], a Self-recurrent Wavelet Neural Network
(SRWNN) was used in conjecture with an SMC to compensate
for the uncertainties and reduce chattering. ASMC can be also
implemented using an extended state observer for estimating
the unknown parameters and external disturbances online [115,
122].

Table 1 shows different techniques which have been used to
reduce the inherent chattering effect of SMC.

3.6.2 H∞controller

Another common approach to design a robust PTC for AVs
is the use of the H∞ method. A number of researchers used
the H∞-based PTC for AVs to reduce the effect of para-
metric uncertainties and external disturbances. In this tech-
nique, the control problem is transformed into an optimi-
sation problem based on some performance indices using
states and control. Here, H∞ norm performance index is used
as constraint while the feedback control laws are generally
obtained by solving a sequence of Linear Matrix Inequality
(LMI).

In [123], the authors proposed an H∞-based controller
to reduce the effect of the backlash-type hysteresis of the
steering system of an AV. The authors used a weighted
gain scheduling approach to assert proportional importance
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FIGURE 7 General structure of an adaptive controller

between the inputs. However, other uncertainties such as
parametric uncertainties and external disturbances are not
considered for the control design. A more elaborated approach
is reported in [124, 125]. In these works, both external distur-
bances and parametric uncertainties are considered for design-
ing H∞-based PTC. An LMI-based approach is used to gener-
ate feedback control law in [125] while a combination of Genetic
algorithm (GA) and LMI is proposed in [124] to obtain the con-
trol law.

The uncertainties in the system increase significantly when
the vehicle operates at the handling limits. This approach is a
viable option for race cars which needs to operate at the han-
dling limit consistently. Recently, the H∞-based controller is
proposed for designing the controller of an autonomous elec-
tric race car [126].

A common approach to improve the performances of
the H∞-based controllers is the integration of fuzzy logic
approaches [127–129]. An observer-based H∞ controller where
a Takagi–Sugeno fuzzy system is used to represent the nonlinear
dynamics of the vehicle is reported in [127]. A similar approach
is proposed in [128] where a fuzzy system is used to replicate
the motion of the vehicle. However, in this case, a combination
of the kinematic and dynamic model is used. Another integrated
fuzzy logic and H∞-based controller is reported in [130], where
parametric uncertainties of the DC motor of the vehicle is con-
sidered.

3.7 Adaptive control

Adaptive control is a capable technique for designing PTC,
especially when dynamic parameters of the system are not com-
pletely known. In this control approach, control laws are gener-
ated based on the estimated values of unknown or slowly vary-
ing parameters which will be adjusted during the operation of
the controller. A general structure of an adaptive controller is
shown in Figure 7. Backstepping is the most frequently used
technique for designing the control law for a PTC and it is
normally designed by integrating a kinematic controller and a
dynamic torque controller [75, 131–135].

For the design of the torque controller, the full dynamic
of the vehicle must be known; however, different dynamic
parameters such as mass, the moment of inertia and friction
are difficult to determine. To tackle these parametric uncer-
tainties, parameter estimation rules were designed to ensure
the Lyapunov stability of the controller and drive the tracking

error towards zero asymptotically. A similar backstepping-based
adaptive controller was used and the experimental results prove
the satisfactory performance of the controller for different
operating conditions [136].

The backstepping control approach suffers from the “explo-
sion of complexity” due to the recursive differentiation of aux-
iliary controls. To avoid this problem, Dynamic Surface Con-
trol (DSC) was proposed [137, 138]. In this technique, a first-
order filter was used for each auxiliary controller and differen-
tiation of auxiliary controls was not required. From the simula-
tion results, the controllers designed based on DSC provide a
robust and accurate performance. NN showing adaptive learn-
ing ability has been used to estimate the unknown or varying
dynamics of AGV [131, 139, 140]. The NN weights can be
tuned online without any offline training. SRWNN [114, 141]
and Radial Basis Function Neural Network (NN) (RBFNN)
[142] were proposed for estimating dynamic parameters of the
vehicle. The application of NN for designing PTC of AGVs will
be discussed in Section 3.9 in more detail.

FLS has also been proposed to learn the full dynamics of the
AGVs online [143–145]. An adaptive FLS can be formulated to
design a function approximating the unknown dynamic parame-
ters of the vehicle. A combination of NN and FLS that is Recur-
rent Fuzzy Neural Network (NN) (RFNN) was also proposed
to design an adaptive controller [146]. The main advantage of
these online learning-based estimators is that no prior infor-
mation on the vehicle dynamic is required. The design of these
intelligent controllers is complex and computationally expensive
in practice.

Another implementation challenge for adaptive control is to
ensure the desired transient performance of the controller. If
the estimation error is large, the controller results in a large tran-
sient peak which is not suitable for practical implementations.
To address this shortcoming, switching between multiple iden-
tification models was proposed for estimating uncertain param-
eters of the system [135]. Prescribed Performance Bound (PPB)
is another technique handling this issue [147]. This technique
constraint the maximum overshoot within a predefined limit
and ensures a minimum convergence rate.

Adaptive controllers perform well for cases of paramet-
ric uncertainties. These techniques lack robustness when
non-parametric uncertainties exist in the system. Under this cir-
cumstance, the problem of “parameter drifting” can occur [63].
A switching adaptive controller was suggested to eliminate the
parameter drift problem [148]. An appropriate adaption law is
selected among three different laws during the switching pro-
cess. The parameters are kept constant when the error is very
small and parameter laws are switched with an increase in the
control error. Another technique used for reducing parameter
drift is the use of an additional modification term 𝜎 in the adap-
tation law [136].

The effect of non-parametric uncertainties can be reduced by
using an additional robust control input [131, 132, 139, 144].
A variable structure control such as SMC can be also inte-
grated into the adaptive control approach [100, 113–117, 149].
Observer-based approaches have been recently employed to
enhance the robustness of adaptive controllers [150, 151]. The
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observer can consider the external effects and unknown param-
eters as a lumped disturbance which is used by the adaptive
control law in a feedforward manner [150]. This approach is
practical if the observer dynamic is faster than the disturbance
dynamic.

3.8 Model predictive control

MPC estimates the future states of the system for a certain time
horizon using an explicit model of the system. At each sam-
pling interval, the objective of the controller is to find an opti-
mised control sequence based on the predicted state. From the
optimised control sequence, only the first control action is sent
to the system and the whole process is repeated at a specific
time interval. For PTC, MPC offers several advantages. The pri-
mary advantage of MPC is its ability to handle multi-variable
states and constraints. On the contrary, solving the online opti-
misation problem adds up to the computation complexity of
the controller. Based on vehicle dynamics of (8)-(14) , transi-
tion of states 𝜒 = [X,Y, vy,𝜓, �̇�] for input u = 𝛿 and output
z = [X,Y,𝜓] can be formulated as

�̇� = F (𝜒, u), (42a)

z = h(𝜒). (42b)

For the implementation of MPC , the continuous nonlinear sys-
tem of (42) can be expressed in a discrete form

𝜒(k + 1) = F (𝜒(k),Δu(k)), (43a)

uk = uk−1 + Δuk, (43b)

z (k) = h(𝜒(k)). (43c)

For a path with reference values zre f , the objective function
is stated as [22, 152]

J (x(t ),t ) =

Np−1∑
k=0

||ẑ (t + k|t ) − z (t + k|t )||2
Q

(44)

+

Nc−1∑
k=0

||Δu(t + k)|t )||2
R

, (45)

where ẑ (t + k|t ) represents the estimated output of the system,
t is the optimising control sequence, Np is the state prediction
horizon, Nc is the control horizon, and Q and R are the weigh-
ing matrices. At each time step, the objective function of (44) is
optimised such that [22, 152]

mint

J (𝜒(t ),t ), (46)

subjected to

𝜒k+1 = F (𝜒k,Δuk ), (47a)

zk = h(𝜒k ) [k = t,…… t + Np], (47b)

uk = uk−1 + Δuk [k = t,…… t + Nc ], (47c)

𝛿min ≥ uk ≥ 𝛿max , (47d)

Δ𝛿min ≥ Δuk ≥ Δ𝛿max , [k = t,…… , t + Nc ]. (47e)

Solving the optimisation problem, an optimised control
sequence Δ ∗

t = [Δu∗t ,…… ,Δu∗
t+Nc

] is found and only the
first control action of the sequence is sent to the vehicle at each
time step. This process is repeated again for the next time inter-
val. A general structure of the MPC is shown in Figure 8.

The choice of vehicle model has a decisive role in the
online performance of MPC. A high-fidelity, nonlinear dynamic
model of the vehicle provides a more accurate prediction of
the states; however, this makes the optimisation problem com-
plex and in some cases computationally prohibitive. A kine-
matic model of a vehicle providing sufficiently accurate results
at low speed can be a wise choice. Noting that, at higher speed,
the unmodelled dynamic of the system introduces uncertainty
to the system, deteriorates the performances of the controller,
and occasionally makes the system unstable. In [153], an addi-
tional side-slip compensator was used to improve the perfor-
mance of the controller at higher speeds with low computational
expenses.

The MPC for PTC was generally implemented using two
approaches, i) NMPC, using a nonlinear vehicle model and ii)
linear MPC, using the linear approximation of the model. In
the NMPC framework, a Nonlinear Programming (NLP) prob-
lem is formulated and solved online [152, 154–157]. Several
different techniques have been used to solve the NLP prob-
lem including Interior-Point Method (IPM) [152] and Sequential
Quadratic Programming (SQP) [22, 155, 156, 158] which are
the most popular techniques. These techniques can be solved
using the NPSOL software package [159], MATLAB (fmincon)
[154] and ACADO [158]. Due to the computational complex-
ity of a NLP problem, the real-time implementation of NMPC
is limited to low speeds. For example, in [155], real-time imple-
mentation of NMPC was only possible for the vehicle with a
speed of > 10 m/s. However, NMPC can provide more robust
performance in the presence of external disturbance, such as
wind gust and low friction between tire and road [156] or snowy
road [155]. To reduce the complexity of solving the optimi-
sation problem, different linearisation techniques can be used
which enables the application of Quadratic Programming (QP)
instead of NLP. When successive linearisation approach is used
at each operating point, the system is converted into a Linear
Time-Varying (LTV) system [24, 161, 162]. This step can be
implemented on a kinematic or dynamic model [161]. When
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FIGURE 8 General structure of an MPC (adopted from[160])

linearising the dynamic of the vehicle, tire characteristics play
a crucial role. The force approximation using the linear tyre
model becomes invalid for large slip angles > 5 deg [25, 161].
An additional constraint on the slip angle can be used to keep
it in the linear region [161–164]. It has been also discussed that
if the steering angle is chosen piece-wise linear at low speed,
the motion of the vehicle can be defined as a segment of a
clothoid [165]. Under this circumstance, the optimised input
can be calculated purely based on the curve parameters at the
waypoint of the reference path. The clothoid-based reference
trajectory was generated using a ‘path sparsification’ technique
which also reduces the number of way-points on the reference
path. This approach provides smoother and more comfortable
control actions and requires less computation time compared to
a simple LTV-MPC approach.

Even though the LTV approach reduces the computational
burden, it still needs to perform the successive linearisation
online. To reduce the computational expense even further, a
Linear Parameter Varying (LPV) approach can be adopted [21].
In this approach, the parameters of the model vary for the dif-
ferent polyhedral regions of the state space using a time-varying
parameter vector or a scheduling variable. Moreover, the non-
linear dynamic model of a vehicle was approximated as a linear
piecewise affine parameter varying model. LPV technique does
not require online linearisation, so it saves computational time
and prevents prediction error due to locally diverging linearisa-
tion.

From the discussion so far, it is apparent that MPC signif-
icantly suffers from computation complexity. At low speeds,
the implementation of real-time MPC is feasible due to the
possible use of a simpler (linear) dynamic model. As speed
increases, the online implementation of MPC becomes difficult

as at higher speed the simplified model increases uncertainty. To
reduce computation cost, explicit MPC was proposed in [166].
In addition, the use of ‘Switching MPC’ was proposed, where
several prediction models with different degrees of complex-
ity used. For instance, in [167], two different vehicle models
were used. A kinematic model was used when the vehicle is
operating with small steering angles and a high-fidelity dynamic
model is used for difficult manoeuvres such as obstacle avoid-
ance or sharp turns at low velocity. Another effort was reported
in [168] where a hybrid state machine was proposed as a replace-
ment of Ordinary Differential Equation (ODE) for the vehicle
model. The switching criteria implemented by a machine learn-
ing approach depends on the current state of the system. The
computational complexity of MPC was also moderated using an
adaptive length of prediction horizon using varying time-step
[27, 28]. In fact, a shorter time-step is used for the first few
sampling intervals at each prediction cycle for tracking and
stabilisation and longer time-steps are used for the rest of
the intervals of the cycle to accommodate longer predic-
tion horizon for obstacle avoidance. More recently, adap-
tive prediction horizon length is used to reduce computa-
tional expenses for good initial solution by numerical algorithm
[169].

The application of more detailed models has been identified
as a potential solution for enhancing MPC. For instance, involv-
ing the steering dynamics has been recommenced [170, 171].
This idea can help with achieving more accurate results at high
speeds. Moreover, due to the consideration of the physical lim-
itation of the steering system and safe driving angle, the con-
troller provides smoother control actions. Further experimen-
tal works are required to validate the simulation results of this
solution.
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Obstacle avoidance functionality is generally performed by
a path planner module. The planner may not have sufficient
information about the dynamic limits of the AV as well as the
highly dynamic environment, so it may cause instability of the
vehicle. In addition, tracking performance is also dependent
on the path profile generated by the planning module [172].
An integrated PTC with local path planning capability was
suggested [173–175]. In [173], the authors implemented an
NMPC controller to facilitate avoiding obstacle which is not
detected at the planning phase. A kinematic model of the
vehicle model with a first-order steering dynamics and the
gradient descent algorithm was proposed to solve the nonlinear
optimisation problem. Satisfactory results were reported only
for low speeds where the gradient descent algorithm was
suffering from getting stuck at local minima for the non-convex
optimisation problem. In [174], another implementation of an
integrated PTC was proposed where the local planner works
as a bridge between the high-level path planner and the lower
level path tracker. The local planner uses the MPC algorithm to
generate a feasible trajectory connecting the waypoint provided
by the high-level path planner. The MPC also provides an
optimal control sequence at each sampling interval which is
used besides the local trajectory for designing a feed-forward
control structure. A feedback controller was also implemented
to compensate for the uncertainties due to model mismatch
and external disturbances. Similarly, in [175], an MPC was
used to find a feasible region of the road for the vehicle while
avoiding an obstacle. The road boundaries were considered
as a constraint along with the physical constraints of the
actuators.

An integrated PTC can provide a safe and stable control
functionality when the vehicle is operated at the limit of its
handling where a high-fidelity nonlinear model of the vehicle
is required. In [27, 28], the MPC constraints, including stabil-
ity and obstacle avoidance, were implemented within two dis-
tinct allowable state-space regions, stable handling region and
viable environmental region, (environment between road edges
and free of obstacles). The obstacle avoidance was given a
higher priority than the stability, so the stability criteria may
be violated for a short time. In a similar manner, a multi-
constrained MPC which considers the geometric constraints of
the road and dynamic constraints of the vehicle was proposed in
[176].

NN approach also has been recommended to predict
the future state of AV instead of using an explicit math-
ematical model. For instance, an adaptive NN controller
was proposed in [177]. Noting that tuning the NN-based
prediction model is computationally expensive, which neces-
sitates more improvement prior to practical implementation.
Moreover, with a NN, the cost function of the optimisa-
tion problem is non-convex and may suffer from undesir-
able local minima [178]. To avoid this problem, a Wavelet
Neural Network (WNN), which provides convex cost func-
tion and guarantees global minima, was adopted as the
dynamic model of the vehicle [178, 179]. Table 2 provides
a summary of selected studies reported around the MPC
approach.

3.9 Neural network

The dynamic of a non-holonomic vehicle is inherently nonlin-
ear, so linearisation techniques do not always provide desirable
results. NN, which is well known for its ability for accurate
approximation of nonlinear functions, can be used to identify
the models of nonlinear systems. Furthermore, NN is capable
of handling uncertainties such as friction coefficient. Such capa-
bility is hard to achieve using the classic approach. To subdue
the effect of parametric and unstructured uncertainties, NN has
been employed to design control systems for AGVs.

In the context of PTC, NN has been used in two different
ways, i) to approximate the nonlinear dynamic of the vehicle
[140, 141, 177–179, 186, 187], and ii) to generate control law
based on the training data using different driving scenarios [188,
189]. In the first approach, NN uses the full dynamics or some
parameters of the system in order to estimate the future states.
NN is used to estimate the future states of the vehicle based on
the current states and the control law [177, 187]. The parameters
of the vehicles such as friction coefficient and inertia can be
estimated online by adaptive tuning of the weights of the NN
[142, 186].

Furthermore, NN can be used to generate the control law
for the vehicle [188, 189]. In this case, the network is trained
with different path scenarios. In [188], a multi-layer NN was
trained using the output of an MPC with a variety of driving
conditions to emulate the behaviour of the MPC. In another
effort, two different NN were developed for identifying the
model and generating control action [189]. The first NN is
composed of an Elman recurrent NN trained using input and
output data to approximate the kinematic and dynamic of the
vehicle. The second NN, which is a Multi-layer perception NN,
is implemented to generate control law keeping the vehicle on
the reference trajectory.

NN suffers from a slow convergence rate and a non-convex
nature resulting in local minima solution [190]. To avoid this
problem, a WNN was proposed for model identification of AVs
[140, 178, 179]. WNN transforms the optimisation problem
into a convex problem which is much easier to solve. WNN
also provides a faster convergence rate than conventional NN.
However, as WNN does not require prior information about
the system, it can-not provide satisfactory results in cases of
transient dynamics and varying environment parameters [141].
SRWNN has been developed to address this deficiency [191].
SRWNN has a mother wavelet layer composed of self-feedback
neurons, so it can capture the past information of the net-
work and quickly adapt itself to sudden changes in the control
environment.

When the AV is controlled at the limit of handling, uncer-
tainty in the system has more adverse effects than the usual
driving conditions. Under this circumstance, the vehicle model
acts highly nonlinear and the tire-road force interaction can-
not be approximated linearly. A robust controller with an adap-
tive law for NN was developed using the Lyapunov stabil-
ity theory and the outcomes showed the efficacy of the con-
troller in avoiding the effect of uncertainty at the driving limit
[142].
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TABLE 2 Summary of MPC techniques in a chronological order

Reference

Optimisation

algorithm Prediction model

Controller

type Primary objective

Yang et al. (1998) [177] Dynamic Planning NN - Path following

Ramirez et al. (1999) [180] Genetic Algorithm NMPC Path following and obstacle avoidance

Gu and Hu (2000) [178] Gradient Descent WNN NMPC Path following

Gu and Hu (2002) [179] Gradient Descent WNN NMPC

Kuhne et al. (2004) [181] QP Linearised kinematic Linear MPC

Borelli et al. (2005) [155] SQP (NPSOL) Nonlinear dynamic NMPC Path following

Kuhne et al. (2005) [154] QP (fmincon) Nonlinear kinematic NMPC Point stabilization

Keviczky et al.(2006) [156] SQP (NPSOL) Nonlinear dynamic NMPC Path following

Falcone et al. (2007) [161] QP and SQP Linearised and nonlinear
dynamics

Linear MPC Comparison of MPC and NMPC for
Path following

Vougiouka (2007) [173] Gradient Descend Nonlinear kinematic NMPC Path following

Besselmann and Morari (2008)[21] QP Linearised dynamic Hybrid Path following

Falcone et al. (2008) [182] QP Linearised dynamic LTV MPC Local planning and path following

Falcone et al. (2008) [22] SQP Non-linear dynamic both 4 wheel
and bicycle

NMPC Active steering and braking for path
following

Peters and Lagnemma (2008) [183] QP Linear kinematic and dynamic Linear MPC Path following in sloped terrain.

Raffo et al. (2009) [18] Linear kinematic and dynamic Linear MPC Path following

Katriniok and Abel (2011) [24] QP Linearised dynamic LTV MPC Path following at handling limit

Katriniok et al. (2013) [162] QP Linearised dynamic LTV MPC Path following at handling limit

Katriniok et al. (2013) [162] QP (qpOASES) Linearised dynamic LTV MPC Path following at handling limit

Kim et al. (2014) [171] QP Linearised dynamic Steering
dynamics

Linear MPC Path following

Kim et al. (2014) [171] QP Vehicle dynamic and steering
dynamics

Linear MPC Path following

Li et al. (2014) [174] QP Linearised dynamic Local planning and path following

Lima et al. (2015) [165] QP Linearised dynamic Linear MPC Clothoid fitting between way points
for path following

Yakub and Mori (2015) [163] QP Linearised dynamic Linear MPC Path following

Zhang et al. (2015) [167] QP Linearised kinematic and
Dynamic

Switched MPC path following

Du et al. (2016) [184] Genetic Algorithm Nonlinear kinematic NMPC Path following

Amir and Givargis (2017) [168] QP(ACADO) Hybrid state machine Switched MPC Path following

Brown et al. (2017) [28] QP (CVXGEN) Linearised dynamic Linear MPC Path following and obstacle avoidance

Funke et al. (2017) [27] QP (CVXGEN) Linearised dynamic Linear MPC Path following and obstacle avoidance

Liu et al. (2017) [185] IPM (IPOPT) Nonlinear dynamic NMPC Path following and obstacle avoidance.

Batkovic et al. (2019) [158] SQP(ACADO) Nonlinear kinematic NMPC Path following and obstacle avoidance

For training the NN, a number of techniques and data sets
have been used. In some cases, an adaptive NN is formulated
where no offline training was required [112, 131, 140, 141, 191].
In these works, the NN training and the adaptation of weights
were conducted online. Even though these works show satisfac-
tory results in high-fidelity simulations, no practical implemen-
tations were provided. In some early works, the data set was
generated by controlling the AV in a simulated environment
using some available control techniques [177–179, 188]. For
example, in [179], a PID controller was used to control the

vehicle on a reference path and generating training data set.
More recently, in [189], the training data set was generated
using pseudo random binary signals by ensuring input signal
excited necessary operating regions. In [192], the training dataset
was collected by using real-world driving data using a drive-by-
wire vehicle.

In the NN-based controllers, where it was used to estimate
the full dynamics or some parameters of the vehicle, the con-
straints violation and safety of the system is generally depen-
dent on the design of the controller. On the other hand, in
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TABLE 3 The selected control techniques for simulation

PPC Stanley FL LDM LQR SMC NMPC

[10] [49] [9, 194] [72, 195] [10] [196] [96], [104] [161], [164]

control law generation using a trained NN, the constraints of
the vehicle state and control variables are usually not considered.
Even though the stability of the controller can be theoretically
proved, the physical limit of the vehicle also needs to be con-
sidered for the safe operation of AVs. Recently, in [193], a con-
strained optimisation RNN is developed which considers equal-
ity and inequality constraints to limit the control action within
an allowable physical limit.

4 PERFORMANCE EVALUATION

In this section, the performance of different PTCs discussed
earlier are evaluated. We first discuss simulation aspects of
these PTCs and then present the simulation results for differ-
ent driving scenarios and vehicle speed and with the presence of
disturbances.

A performance comparison of the seven different PTCs
is presented in this section. To this aim, a few assumptions
are used: i) for all control techniques, a kinematic model of
the vehicle is used, ii) for each controller, the most common
proposed configuration of the controller is used, and iii) the
performance of the controllers are evaluated for three differ-
ent driving scenarios of single-lane change, double-lane change
(adapted from ISO-3888) and simple turn. Table 3 shows the
control techniques selected for the simulation and the refer-
ences from which they are adopted.

The performances of the controllers are evaluated using the
following criteria:

maximum lateral error : 𝜀d,max = max
t∈[0,T ]

|𝜀d (t )|
maximum orientation error : 𝜀𝜃,max = max

t∈[0,T ]
|𝜀𝜃 (t )|

average lateral error : 𝜀d,rms =

√
1
T ∫

T

0
𝜀d (t )2

dt

average orientation error : 𝜀𝜃,rms =

√
1
T ∫

T

0
𝜀𝜃 (t )2

dt

All selected controllers have some free gains or weights .
These parameters requiring to be tuned have a dominant effect
on the performance and accuracy of the controller. Therefore,
to have a consistent comparison of these controllers, a Genetic
Algorithm (GA) optimiser is used here to tune these parame-
ters. The objective here is to compare the performances of the
controllers with the same tuning effort. The optimisation is per-
formed in order to find the optimised value of tuning parame-

TABLE 4 Tuning parameter values

Control technique Tuning parameter values

PPC k = 1.01712

Stanley k = 0.243

LDM k1 = 5.0566, k2 = 1.4183, k3 = 2.3049

FL k1 = 0.01, k2 = 0.5, k3 = 3;

LQR Q = diag([0.0058 8.3844 9.8860 9.9899]), R = 9.9306

SMC k0 = 2.1929, k1 = 1.4168, k2 = 5.5397, P1 = 0.0359,
Q1 = 0.9630, P2 = 0.045, Q2 = 0.3887

NMPC Q = diag([0.0238 1.4814 0.08860]), R = 0.03

ter(s) which minimises the RMS and maximum error. The fol-
lowing cost function is used for the GA optimisation:

J = 𝜀d,rms + 𝜀d,max + 𝜀𝜃,rms + 𝜀𝜃,max (48)

For the GA optimiser, a population size of 50 and a maximum
number of generation of 100 are used. The optimised param-
eters for different control techniques using GA optimiser are
shown in Table 4. In addition, for NMPC, a prediction horizon,
Np = 5 and control horizon, Nc = 5 time step is used, where
time step, ΔT = 0.03s.

Figure 9 shows the trajectory and yaw angle of different con-
trollers for three different driving scenarios. The forward speed
of the vehicle is kept constant at 30 km/h and the time interval
dt = 0.03 s is used for all simulation results.

Figure 10 shows the lateral and yaw angle errors and the steer-
ing angle of the vehicle for different controllers. In this figure,
the single lane change driving scenario is used and the vehicle
speed is kept constant at 30 km/h.

In addition, performance of the controllers is compared for
the speed range of 20–60 km/h for different driving scenarios.
Figure 13 shows the RMS lateral error and Figure 14 shows the
maximum lateral error for each driving scenario for different
speeds of the vehicle.

The performance of the controller is also evaluated under the
influence of external disturbances. For this purpose, we simu-
late the measurement error and noise by adding random noise
to the output of the vehicle. The random noise sequence was
assumed to lie in a compact set  ∈ [−0.01 0.01]. Figure 11
shows the trajectory of the vehicle for different controllers with
the addition of disturbances. A single lane change driving sce-
nario and a constant vehicle speed of 30 km/h are used for
the results. Moreover, to compare the effect of disturbances
on the controller, the RMS error of all the controllers for both
with and without the integration of disturbances are shown in
Figure 12.

5 DISCUSSION AND SUMMARY

The simulation of different PTCs was initially shown for ideal
conditions without external disturbances. Then, the RMS
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FIGURE 9 Trajectory and yaw angle of different controllers for (a) single
lane change (b) double-lane change (adapted from ISO-3888) (c) simple turn.
Forward speed of the vehicle is constant at 30 km/h

values of lateral and orientation errors were depicted. The
simulation results show the similar characteristics found in the
literature for each controller. From the observation of results,
all controllers perform reasonably good for ideal road con-
ditions. Under these conditions, lateral and orientation errors
increase with the increase of vehicle speed which is in line with
the previously published works [10, 39, 50, 194]. Figure 13
shows the average RMS error for different vehicle speeds. it can
also be seen that the SMC shows a significant chattering effect
even for ideal conditions which is similar to the discussion
in [63]. However, the chattering effects can be reduced by using

FIGURE 10 Comparison of (a) lateral error, (b) orientation error and (c)
steering angle for different controllers for single lane change driving scenario.
Forward speed was constant at 30 km/h

FIGURE 11 For a single lane change driving scenario with the presence
of external disturbances (a) trajectory of the vehicle (b) yaw angle. Forward
speed is constant at 30 km/h



ROKONUZZAMAN ET AL. 663

FIGURE 12 Error comparison of controllers with and without
disturbances for the single lane change scenario

a higher order SMC [97, 103–107]. For other controllers, no
significant differences can be found in the performances for
ideal conditions and low vehicle speed (< 30 km/h) depicted
in Figures 9 and 10. However, all these controllers have at least
one free parameter that needed to be tuned. We notice that the
parameter tuning for each of these controllers is cumbersome
and sometimes specific to driving scenarios. To avoid this issue,
a Genetic Algorithm-based optimisation technique has been
developed to find the best value for each tuning parameter. The
optimisation process was implemented based on 5 different
driving scenarios (simple turn, sharp turn, single lane change,
double lane change and U turn) and the parameter values
provided by the optimiser work well for these specific driving
scenarios. However, these parameters may not be suitable for
other or changing road conditions, so a more sophisticated
tuning approach is required. One of the possible ways to
solve this issue is to implement a learning-based parameter
estimation approach where parameter values can be updated
online.

To evaluate the performance of the controllers on more real-
istic driving scenarios, we included the effect of external distur-
bances. From the simulation results, it is apparent that, although
the geometric controllers, PPC and Stanley provide satisfactory
performances for ideal conditions, their performance degrades
significantly with the presence of external disturbances which
is similar to the results found in [10, 50]. From the review
study and our simulation outcomes, it is also apparent that,
even though these geometric controllers perform reasonably
well at lower velocities, they may not suitable for highway
driving.

A similar trend is observed for the case of FL, where
the performance of the controller degrades significantly with
the addition of external disturbance. The performance of

this controller deteriorates even further with the increase
in the vehicle speed which makes it not suitable for high-
speed highway driving. Even though the performance of the
controller at higher velocities can be improved by integrat-
ing the dynamics of a vehicle [59], the formulation of this
controller is not straightforward and requires significant tun-
ing. A similar conclusion can be drawn for LDM where per-
formance also degrades due to the effect of disturbances. For
LDM, although the lateral error is low for both ideal and distur-
bance cases, the orientation error increases considerably under
the influence of disturbance.

The optimisation-based controllers, such as LQR and
NMPC,
provide relatively lower lateral and orientation errors than
the other controllers with/out disturbance. From the results,
the LQR shows perfect orientation tracking and a relatively
higher lateral error than NMPC. We found the optimal con-
troller such as LQR and NMPC is more suitable for highway
driving than other controllers. These controllers are easier to
formulate and a dynamic model of the vehicle can be easily
integrated into them. However, due to the use of linearised
model, the LQR is less robust [63] than the NMPC. Even
though NMPC solves optimization for a shortened hori-
zon, it provides the provision to includes constraints such
as physical and dynamic limits of the vehicle. Moreover, it
can handle multiple states and control variables which makes
it highly suitable for the control task of AV. Using these
capabilities, in addition to having a higher tracking accuracy,
the safety and comfort of the passenger can also be ensured
[152].

On the other hand, one of the fundamental drawbacks of the
optimisation-based controller is the computation cost. NMPC
can provide higher accuracy with a more detailed dynamic
model of the vehicle; however, it requires significantly increased
computational cost. A number of different approaches [27, 28,
166, 167, 169] have been already proposed by the researchers
to reduce the computation cost of MPC which is an active field
of research.

Even with superior performances, MPC has a number of free
parameters that needed to be tuned depending on the formu-
lation of the cost function. An appropriate and detailed cost
function is of utmost importance for MPC. With a proper for-
mulation of a cost function and by choosing an appropriate
value for each term, a number of different objectives includ-
ing safety, tracking accuracy and comfort of the passenger
can be achieved. However, from our implementation experi-
ence, the tuning of these weights using trial-and-error approach
requires significant time and effort. To avoid this, a suitable
parameter tuning approach is needed to be developed. One
of the possible ways to achieve this is to implement a
learning-based MPC where parameters can be tuned using
human demonstrations [197] or Bayesian optimisation [198].
Learning-based MPC is currently an active field of research
[199, 200].

From the observation of the reported outcomes and the sim-
ulation results of the current study, the pros and cons of each
technique are shown in Table 5.
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FIGURE 13 RMS lateral error for different velocities (20-60 km/h) for (a) single lane change, (b) simple turn and (c) double lane change

FIGURE 14 Maximum lateral error for different velocities (20–60 km/h) for (a) single lane change, (b) simple turn and (c) double lane change
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TABLE 5 Summary of control techniques reviewed in the current study

Type Advantages Disadvantages

PPC ∙ Easy to implement
∙ Low computational cost
∙ Good performance at lower vehicle speeds
∙ Good tracking performance when started on the

reference path (low lateral and heading error)

∙ Does not consider the orientation of the vehicle at the
target point.

∙ Does not perform well in case of large initial lateral and
heading error.

∙ Performance depends on the proper tuning of
look-ahead distance which may vary for different
trajectories

∙ Performance degrades at higher vehicle speeds

Stanley ∙ Easy to implement
∙ Low computational cost
∙ No look-ahead distance requirement
∙ Performs well at varying path conditions

∙ Performance depends on proper tuning of parameters
∙ Does not perform well in case of path discontinuity
∙ Less robust thanPPC

FL ∙ Allows use of well-defined linear control techniques ∙ Lack robustness
∙ Presence of internal dynamics (for input-output

linearisation)

LDM ∙ Being stable for a large range of gain values ∙ Lyapunov candidate function is not easy to construct

LQR ∙ Control effort and system response can be optimised ∙ Use of linear model increases uncertainty
∙ Not robust at the presence of uncertainty

SMC ∙ Robust performance against uncertainties and external
disturbances

∙ Reduces the order of the system dynamic
∙ simple structure, fast response and transient

performance
∙ Convergence to the stable manifold in finite time

∙ Chattering can happen
∙ Tendency to excite high-frequency unmodelled

dynamics
∙ Sensitive to the unmatched disturbances

Adaptive ∙ Good performance with parametric uncertainty
∙ No prior information about dynamic parameter if an

intelligent algorithm (NN,FLS) is used

∙ Not robust against non-parametric uncertainty
∙ Parameter drifting problem

MPC ∙ Ability to handle multiple variables
∙ Constraints can be included in states and control
∙ Optimised performance based on a cost function

∙ Solves online optimisation problem which is
computationally expensive

6 CONCLUSION

This study has provided a critical review of several selected
techniques used for the design of Path Tracking Controller
(PTC) of AVs. These control strategies were chosen based on
their popularity in the field of path tracking control and the
applicability to car-like autonomous vehicles. These techniques
include Pure Pursuit Controller ( PPC), Stanley, Feedback
Linearisation (FL), Lyapunov’s Direct Method (LDM), Lin-
ear Quadratic Regulator (LQR), Sliding Mode Control (SMC),
Adaptive Control, Model Predictive Control (MPC), and Neu-
ral Network (NN). The AVs were assumed to have limited
controllability due to non-holonomic constraints such as car-
like vehicles and differential drive mobile robots. Two common
vehicle models were also discussed and their mathematical for-
mulations were presented. A simulation study for urban path
tracking tasks was also performed in order to evaluate the per-
formance of the selected techniques. The simulation outcomes
were discussed in detail and the pros and cons of each technique
have been shown for the sake of implementation and improve-
ment of state-of-the-art PTC.

From the extensive literature review and the simulation
results of the controllers, NMPC seems to be most suit-
able for highway driving for an AV. The geometric con-
trollers (i.e. PPC and Stanley) are not suitable for highway
driving due to their poor performance at higher speeds. A
similar conclusion can be made for FL and LDM based
on their performances at different driving scenarios. On the
other hand, the performance of the robust controller (i.e.
SMC), degrades less than the other controllers for external
disturbances; however, they are prone to chattering which
affects the comfort of the passenger and may put a signif-
icant strain on the hardware. The optimisation-based con-
trollers, such as LQR and NMPC, provide relatively lower
lateral and orientation errors than the other controllers with
disturbance. This finding justifies the application of these
approaches when integrated into more intelligent learning-
based techniques in order to establish a robust and adaptive
controller that can act in real-time, irrespective of complexity
in the vehicle dynamic model. The future step of the current
study will be adopted to develop a PTC that can realise these
qualities.
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