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a b s t r a c t

Because of its efficiency, word embedding has been widely used in many natural language processing
and text modeling tasks. It aims to represent each word by a vector so such that the geometry between
these vectors can capture the semantic correlations between words. An ambiguous word can often have
diverse meanings in different contexts, a quality which is called polysemy. The bulk of studies aimed to
generate only one single embedding for each word, whereas a few studies have made a small number
of embeddings to present different meanings of each word. However, it is hard to determine the exact
number of senses for each word, as meanings depend on contexts. To address this problem, this paper
proposes a novel adaptive cross-contextual word embedding (ACWE) method for capturing the word
polysemy in different contexts based on topic modeling, in which the word polysemy is defined over
a latent interpretable semantic space. The proposed ACWE consists of two main parts, in the first of
which an unsupervised cross-contextual probabilistic word embedding model is designed to obtain the
global word embeddings, and each word is represented by an embedding in the unified latent semantic
space. Based on the global word embeddings, an adaptive cross-contextual word embedding process is
then devised in the second part to learn the local embeddings for each polysemous word in different
contexts. In fact, a word embedding is adaptively adjusted and updated with respect to different
contexts to generate different word embeddings tailored to the corresponding contexts. The proposed
ACWE is validated on two datasets collected from Wikipedia and IMDb on different tasks including
word similarity, polysemy induction, semantic interpretability, and text classification. Experimental
results indicate that ACWE does not only outperform the established word embedding methods,
which consider word polysemy on six popular benchmark datasets, but it also yields competitive
performance compared with state-of-the-art deep learning-based approaches without considering
polysemy. Moreover, the proposed ACWE significantly improves the performances of text classification
both in precision and F1, and the visualizations of the semantics of words demonstrate the feasibility
and advantage of the proposed ACWE model on polysemy.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Representing words as dense or sparse embeddings makes
t possible to improve many language understanding tasks and
rovides the foundation for word recognition. These word em-
eddings can be employed to measure word similarities by com-
uting distances between the corresponding embeddings, which
re widely used in many applications such as information re-
rieval, text classification, and neural language processing (NLP)
asks [1]. Recently, many models have been proposed to learn
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nc-nd/4.0/).
effective word embeddings, such as word2vector (Skip-Gram and
CBOW) [2], GloVe [3], non-negative sparse embedding (NNSE) [4]
and ELMo [5]. In the literature, Bert [6] and transformer-based
methods [7], e.g., XLNET [8] and RoBERTa [9], have achieved great
successes on many NLP tasks, which also provide ways to learn
word representation. To satisfy different tasks, these methods
benefit from large-scale corpora to learn high-quality and unique
word embeddings.

However, due to homonymy and polysemy, it is obvious that
modeling an individual polygamous word with a single embed-
ding is insufficient. Many words have different senses in various
contexts, where each sense captures one semantic in a special
context. Recent studies have analyzed how to develop multiple

embeddings for a polysemous word of various senses. To this end,
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ome studies [10,11] have designed cluster-based models that
ould conduct unsupervised word sense induction by clustering
ord contexts based on nonparametric clustering models [12].
he main drawback of those models is the difficulty of determin-
ng the number of senses for a polysemous word. To handle this
imitation and to construct multiple senses for a word, another
ype of methods [13,14], e.g., WordNet and Wikipedia, have used
xtra knowledge bases. In these methods, the number of mean-
ngs is determined according to pre-defined knowledge bases.
owever, such methods fail to handle new or tailored meanings
f words that appear in new contexts with the meanings not
laborated in the knowledge bases. Thus, it is essential to find
complete solution to capture the polysemy of words based on

heir contexts.
The word senses are usually adaptable and are adjusted based

n different contexts. Intuitively, encountering a word in a par-
icular context, a reader would judge its meaning according to
ts context and the original senses that the reader has already
earned. When the context changes, the reader repeats this pro-
edure. Therefore, a practical and flexible solution is that the
umber of different senses for a polysemous word should not be
imited and adjusted. Instead, the embeddings of a polysemous
ord should be identified and updated based on contexts. To
chieve this, it is first necessary to learn global embeddings for
olysemous words in a multi-semantic space, and then the global
mbeddings in the multi-semantic space should be adjusted and
pdated adaptively to generate local embeddings in specific con-
exts. This is similar to the human learning process by which
eople learn words first and then their specific meanings in
ifferent documents.
Hence, with this inspiration, this paper proposes an Adap-

ive Cross-contextual Word Embedding (ACWE) model based on
opic modeling. The ACWE can capture and represent the poly-
emous words in an interpretable latent semantic space. In the
odel each semantics denotes a sense cluster that is defined as
distribution over the vocabulary. A polysemous word defines
probability distribution over all the latent semantics which

epresent the global word embedding. The latent semantic space
s defined by sentence-level learning through a similar approach
o topic models. In addition, attention signals are considered
hile learning the semantic distribution of a word with its con-
extual words in a sentence. Given different contexts, this paper
roposes an adaptive context-based word embedding process to
ailor a word embedding to generate different local embeddings.
n particular, the proposed adaptive context-based word embed-
ing process inferences a targeted polysemous word by using
ts global embedding and neighboring words in a sentence to
btain a newly adaptive embedding for the targeted word where
eighboring words are treated as the context of the targeted word
n the sentence.

This work conducts experiments to validate the proposed
CWE with two public available datasets, Wikipedia and IMDb.
o evaluate the effectiveness of the proposed model, experiments
re conducted on the tasks of word similarity, text classification,
ord polysemy and word interpretability. With respect to the
asks of word similarity, the experimental results show that
he ACWE significantly outperforms the existing methods on six
enchmark datasets. Meanwhile, the proposed model is tested on
ikipedia and IMDb to demonstrate the capacity of text classi-

ication, and the proposed ACWE method yields state-of-the-art
erformance, and the results are significantly better than those
btained by the other word embedding methods on precision
nd F1. Moreover, by following the methodology of polysemy
nduction [15], the experiments on the tasks of text classification
how that the proposed ACWE is effective on word polysemy.

he visualizations of word embeddings on word polysemy and
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interpretability corroborate that the proposed method is capable
of capturing multi-semantics of the polysemous words, which is
crucial for the tasks of homonymy and polysemy.

The main contributions of this work can be summarized as
follows.

1. To tackle the issue of word polysemy, this paper proposes a
novel adaptive cross-contextual word embedding (ACWE)
method based on topic modeling, which is able to learn
an unlimited number of tailored word embeddings for a
targeted polysemous word in different contexts.

2. An adaptive context-based word embedding process is pro-
posed, by which the proposed ACWE is able to adaptively
generate local and tailored word embeddings in different
contexts for a polysemous word.

3. The proposed ACWE embeds the words into a nonnegative
semantic space, which leads up a fruitful perspective for
word representation learning, where each word embedding
is highly interpretable since each semantic is defined by a
distribution over explicable vocabulary.

4. An online algorithm is also proposed that allows the ACWE
to be employed in different scenarios of the stream doc-
uments to make it efficient and easy to use. It can help
the proposed ACWE to be trained on the large-scale corpus,
such as Wikipedia.

The remainder of the paper is organized as follows. Section 2
surveys the related research on word embedding and polysemy.
Section 3 proposes an adaptive cross-contextual embedding pro-
cess to tackle the issue of word polysemy. Section 4 elaborates
the model inference and the online learning algorithm. Section 5
presents the model analysis and comparisons. Section 6 reports
the experiments on word similarity, polysemy, text classification
tasks, and the case studies on word embedding interpretability.
Section 7 concludes the paper.

2. Related works

In the literature, most existing works focus on learning word
embeddings. For example, Bengio et al. [16] extended the tra-
ditional n-gram language models with a neural network. Tomas
et al. [2] presented a computationally efficient log-linear neural
language model to obtain word embeddings, named word2vector
(Skip-Gram and CBOW). Pennington et al. [3] presented GloVe
to obtain embedding for words by aggregating global word-word
co-occurrence statistics. Murphy et al. [4] proposed non-negative
sparse embedding (NNSE), which is a variant of matrix factor-
ization to embed words into a nonnegative semantic space. The
most important limitation of this method is that it does not
consider the word polysemy. Several studies, such as Sparse
Coding [17] and Sparse CBOW [18], have tried to embed words
into a sparse space. Meanwhile, many efforts have been made to
learn word representation through different technology [19,20].
Recently, several researchers have proposed the use of neural
network-based techniques for word embedding called Bidirec-
tional Encoder Representations from Transformers (BERT) [6].
These techniques process words in relation to all the other words
in a sentence, rather than one-by-one. BERT achieved great suc-
cess in many real applications with several variants, such as XL-
NET [8], RoBERTa [9], and SensEmBERT [21]. These transformer-
based methods are the context-aware representation methods,
where the word embeddings are learned through modeling the
contexts of each word. Cove [22] utilized a neural machine
translation encoder to compute contextualized representations.
Context2vec [23] used a bidirectional LSTM to encode the context

around a pivot word.
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Handling words with multiple meanings, so-called polyse-
mous words, has been an interest research topic in the literature.
Reisinger et al. [10] introduced a method for constructing multi-
ple sparse, high-dimensional vector representations of words by
assigning a real-value vector to each meaning. Huang et al. [11]
proposed a word embedding model by leveraging the global
context information to learn multi-prototype embeddings. The
method provided by them clusters embeddings of all the context
words of a word in the corpus. Although many works [24–28]
have been studied the multi-sense words on word similarity
tasks, the probabilistic models [29–31], bilingual resources [32],
or nonparametric models [12,25] have been explored for word
polysemy tasks. Wu et al. [33] disambiguated sense embeddings
from Wikipedia by clustering its documents. Chen et al. [13] used
the WordNet dictionary to predefine word senses. Liu et al. [34]
assumed that a single word embedding can be considered as a
mixture of different word senses and then used context-sensitive
word embedding to learn distributed representations of words
based on the Skip-Gram. Sanjeev et al. [14] showed that each ex-
tracted word sense is accompanied by one of about thousands of
‘‘discourse atoms’’ that gives a succinct description of which other
words co-occur with that word sense. Bahar et al. [35] suggested
using word embeddings to predict combinations of multi-word
expressions, taking into account both single and multi-prototype
word embeddings. Terry et al. [36] proposed a novel approach
called Most Suitable Sense Annotation, that disambiguates and
annotates each word by its specific sense, considering the seman-
tic effects of its context. Ben et al. [37] introduced a probabilistic
FastText model for word embeddings that can capture multiple
word senses, sub-word structure, and uncertainty information,
where each word is represented by a Gaussian mixture density.
Kazuki et al. [38] proposed a method to generate multiple word
representations for each word based on dependency structure
relations. Meanwhile, some researchers have focused on how to
determine whether a word has different meanings [39–42].

The common feature of all the methods examined is that
the word embeddings are fixed after the model training. Pe-
ters et al. [5] presented a deep contextualized word represen-
tation model (ELMo), which can fit the word representations by
the contexts through a pre-trained bidirectional language model.
However, the interpretability of the word representation still
needs to be considered. Due to the ability to capture syntac-
tic and semantic information from text, the topic model is a
standard component of most state-of-the-art NLP architectures,
including document modeling [43], sentence modeling [44], and
word representation learning [45–49]. Li et al. [50] proposed a
novel approach to learn the topics of the documents through the
semantics of the sentences, which fully utilized the bi-directional
sequential information of the sentences in a document. The ben-
efit of topic modeling is that the semantics in corpora can be
extracted through unsupervised learning [51,52] and the seman-
tics are interpretability. This provides a way to learn semantics
for different components, such as paragraphs and words. We thus
take advantage of topic models to build the semantic space for the
multiple senses of polysemous words and represent each polyse-
mous word by a semantic embedding, a process which is different
from the above works. Moreover, the semantic embeddings for
polysemous words are adaptive in different contexts.

3. Adaptive cross-contextual word embedding (ACWE)

Word polysemy is common; however, it is not a common
practice for word embedding to capture and represent the pol-
ysemy that lies in different contexts. This paper proposes an
adaptive cross contextual word embedding (ACWE) method to
tackle with this issue. To this end, this section describes how the
ACWE employs cross-contextual information to generate word
embeddings for word polysemy.
3

3.1. Overview

To capture the multi-senses of a polysemous word, the ACWE
aims to embed words into a continuous semantic space. The
latent semantic space can be extracted through unsupervised
document modeling such as topic models [43,53]. Topic modeling
is a technology for text modeling based on generative probabilis-
tic models. For instance, the latent Dirichlet Allocation (LDA) [43]
presents a three-level hierarchical Bayesian model in which each
document is defined as a finite mixture over a set of latent
topics. Topics are defined as the distributions over words in the
dictionary, and each topic can be treated as a kind of semantics.
A document is represented by a group of topic probabilities
providing an explicit representation.

Inspired by topic models, the ACWE embeds polysemous
words into such a latent semantic space as well as documents.
The main advantage is that the multi-sense of one polysemous
word can be represented by all semantics in the latent space.
This method is completely different from existing polysemous
word embedding models, as they assume that there is a fixed
and limited number of senses for each word. Although not all
the words in the dictionary are polysemous, it is still necessary
to define the semantic distributions for every word. Under this
assumption, we can capture the multiple senses of polysemous
words and also obtain word embeddings for the non-polysemous
words. Evidently, the senses of one word are related to its context.
A sentence is defined as the context of the targeted word for
the ease of presentation. By considering a document as a set of
sentences, each sentence can be treated as a bag of words, where
the words order can be neglected.

Fig. 1 shows the whole process of the proposed ACWE con-
sisting of two main steps. The first step is to train a cross-
contextual probabilistic word embedding model (see Section 3.2).
The adaptive cross-contextual word embedding process is then
implemented (see Section 3.3). In detail, it is first necessary to
build an unsupervised cross-contextual probabilistic word em-
bedding model, which benefits from sentences in large scale
documents to learn the global embeddings for all words in the
dictionary. The global embedding for each word is represented
by the semantic distribution over the latent topic space obtained
from topic modeling. Each dimension of the global embedding
denotes an interpretable semantic. In the second step, an adaptive
cross-contextual embedding process is performed to adaptively
update the word embeddings with different contexts. This pro-
cess is able to generate a tailored word embedding for a targeted
word in a special context. With the proposed adaptive cross-
contextual embedding process, the proposed ACWE can obtain
unlimited word embeddings for polysemous words in different
contexts.

The global word embedding for a polysemous word contains
all the senses or semantic that appeared in the corpus, whereas
the multiple senses of the polysemous word are represented by
the probabilities of its semantic aspects. With special contexts,
these probabilities will be adjusted to form the local or tailored
word embeddings. Thus, the global word embeddings are first
built, and the tailored word embeddings are then generated with
the corresponding contexts.

3.2. Cross-contextual probabilistic word embedding

Let C = {d1, d2, . . . , dM
} denote a corpus which contains M

documents, where di, i ∈ {1, . . . ,M} denotes the ith document in
the corpus. A document di is defined as a set of sentences denoted
by (si1, . . . , s

i
Si
), where S i is the number of sentences in di. Each

sentence sij in di is denoted by sij = (wi
j·1, . . . , w

i
i ) with the
j·Nj
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assumption of bag-of-words, where N i
j is the number of words

in sentence sij. v denotes the dictionary in the corpus C , where
he word is indexed by {1, . . . , V }.

We define θ ∈ RV×K as the semantic matrix of the words over
atent semantics, where each row θn is the embedding of the word
n, n ∈ {1, . . . , V } and K is the number of the latent semantics.
ote that all the words in the dictionary are considered to be
olysemous, and each of them defines an individual semantic
istribution. Let β ∈ RK×V denote the matrix of the latent
emantics which defines the distributions over dictionary as in
DA [43]. ϑ i

j is defined as the distribution of the sentence sij over
atent semantics in document di, and λi, a 1 × K row vector, is
efined as the semantic distribution of di.
Here we introduce the attention mechanism into our model.

he attentional mechanism used in deep neural networks [54]
nd topic models [55] is a popular approach to model important
eights among the signals. We assume that the semantic distri-
ution of sentence ϑ i

j is determined by semantic distributions of
he words in it with different attentional values, which means
hat ϑ i

j is a weighted average of the semantic distributions of its
ords. Here we let ϵ ij denote the attentional vector of the words

n the sentence sij.
It is intuitive that the semantics of a sentence is also affected

y that of the host document to which the sentence belongs.
ence, the semantic distribution of the sentence is generated
rom those of both its own words and the host document. So
e can obtain the semantic distribution of the sentence, ϑ i

j , with
efinition 1.

efinition 1. For θ ∈ RV×K , λi ∈ R1×K and ϵ ij ∈ R(N i
j+1)×1, the

emantic distribution of sentence sij, ϑ
i
j = (ϵ ij )

T
×

[
θvwij

λi

]
, where

·

·
] is an operation to stack two matrices into a bigger matrix.

In Definition 1, ϵ ij is an (N i
j + 1) × 1 attentional vector, vwij

enotes the word indices in the dictionary v for the words in sij,
nd θvwij is an N i

j ×K submatrix of θ according to vwij . The element
i
j·l, l ∈ {1, . . . ,N i

j }, in ϑ
i
j is the attention value of the word wl in

entence sij. The element ϵ i
j·(N i

j+1)
is the attention value of the host

ocument.
Fig. 2 shows the graphical model of the cross-contextual prob-

bilistic word embedding model for document di. The generation
 a

4

rocess of it for each document di for i ∈ {1, . . . ,M} is defined
s follows.

1. Draw λi ∼ Dir(α);
2. For sentence sij, j ∈ {1, . . . , S i} in the document di:

(a) Draw z ij·1 ∼ Mult(λi), and draw wi
j·1 ∼ Mult(βzij·1

);

(b) Generate ϑ i
j with Definition 1;

(c) For each word wi
j·l, l ∈ {2, . . . ,N i

j } in sentence sij:

i. Draw z ij·l ∼ Mult(ϑ i
j ) and draw wi

j·l ∼ Mult
(βzij·l

);

ii. update ϑ i
j with wi

j·l;

In this process, Dir(·) denotes a Dirichlet distribution, and
Mult(·) is a multinomial distribution. α is a parameter of a Dirich-
let distribution. Each row in θ is defined as a distribution over
latent semantics, which follows a Dirichlet distribution. Thus,
the nth row in θ satisfies

∑K
k=1 θnk = 1. It is noted that the

generative process starts with generating the first word based on
the semantic distribution of the host document and avoids the
loop between generating the words and the sentence semantics.

Note that the dimension of attention vector ϵ ij depends on the
number of words in the respective sentence. Thus, we let each
attention vector follow a Dirichlet distribution, and the hyperpa-
rameter of the Dirichlet distribution is from a global vector π ∈

R1×(V+1) corresponding to the word index in the host sentence.
The last element πV+1 is a hyperparameter for the attentional
value of the host document. In sentence sij, ϵ

i
j satisfies

∑N+1
l=1 ϵ

i
j·l =

.
After model learning, we can obtain two matrices, θ and β .
represents the word embedding matrix, which contains basic
ord embeddings. Thus, the proposed cross-contextual proba-
ilistic word embedding model takes advantage of the global
ontext and the local contexts when learning the basic word
mbeddings. From the perspective of the generative process, each
ord is generated by the semantic distribution of the correspond-

ng sentence, which is the local context. As shown in Definition 1,
he semantic distribution of the sentence is affected by the se-
antic distribution of the host document, which can be treated

s the global context.
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Fig. 3. The graphical model representation of the adaptive cross-contextual
word embedding process.

3.3. Adaptive cross-contextual word embedding process

Consider a word wl and its contextual word set {wn}
N
n=1. We

define the word set from the host sentence s of wl, where the
host sentence is treated as the context for convenience. Let Cwl
denote the context of wl in its host sentence s, which contains
a list of words {wn}

N
n=1,n̸=l. Within the generative process of the

bove cross-contextual probabilistic word embedding model, wl
s generated by a semantics z with its distribution over the dictio-
ary, and the semantic z is generated by the semantic distribution
f the sentence, ϑ , which is obtained by the weighted average
f the semantic distributions of the other words as shown in
efinition 1.
By Bayes’ theorem with hidden variables, we can easily obtain

he conditional marginal distribution of the word wl given a set
f observed variables Cwl with an assigned semantic zwl as

p(wl|Cwl; zwl ) ∝ p(wl|zwl ) · p(zwl |Cwl ) · p(Cwl )
∝ p(wl|zwl ) · p(zwl |Cwl ),

here zwl , the semantic index for wl, is a hidden variable and
(Cwl ) is a constant with respect to the observed Cwl . The corre-
ponding graphical model representation is depicted in Fig. 3.
Thus, we can get the semantic distribution of wl over the

idden semantics given the context word set Cwl as

p(wl|Cwl ) =

∑
z∈T

p(wl|z) ·

N∑
n=1,n̸=l

p(z|wn),

here T denotes the semantic space and z ∈ T = {z1, . . . , zK }.
ote that p(wl|z) indicates the semantic probability of the word
ver the latent semantic index z, which is obtained from θ , and
(z|wn) indicates the probability of the latent semantics over

ictionary, which is defined in β . Thus, the semantic marginal

5

robability of the wl given the context words with the assigned
emantic zwl = k can be written as

p(wl|Cwl )k =
θvwl ,k

∑N
n=1,n̸=l βk,vwn∑

k′∈T θvwl ,k′
∑N

n=1,n̸=l βk′,vwn

, (1)

where k ∈ (1, . . . , K ). Eq. (1) defines the update process of the
adaptive word embeddings over latent semantics given a specific
context. This embedding of the target word can be adjusted
with the contextual words following Eq. (1), by which we can
inference unlimited word embeddings in a continuous semantic
space depending on various contexts.

3.4. The ACWE algorithm

Based on the update process of the adaptive word embeddings
defined in Eq. (1), we show the ACWE algorithm for tailored word
embedding. First, given a collection of text data with sequences
of sentences, we train the proposed cross-contextual probabilistic
word embedding model that encodes each word into a basic
representation. We obtain the two matrices, θ and β . Next, for a
arget word wl with a special set of contextual words, we adjust
he representation of wl following Eq. (1) to obtain the tailored
ord embedding.
Thus, given the target word wl and its contextual word set

wn}
N
n=1, the adaptive update algorithm of ACWE for wl is sum-

arized in Algorithm 1.
Algorithm 1 Adaptive Cross-contextual Word Embedding Algo-
rithm.
1: INPUT: Corpus C; Target word wl and the contextual word set

{wn}
N
n=1.

2: OUTPUT: Tailored word embedding of wl.
3: Train θ and β with the corpus C .
4: for Each word wn ∈ {wn}

N
n=1, n ̸= l do

5: for k ∈ (1, · · · , K ) do
6: Update θvwn ,k with Eq. (1).
7: end for
8: end for
9: for k ∈ (1, · · · , K ) do
0: Update θvwl ,k with Eq. (1).
1: end for
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We discuss the complexity of the ACWE. With the well-trained
θ and β , the computational complexity of ACWE is O((N − 1) ×

K + K ) = O(N × K ), where N is the number of contextual
words for the target word in a contextual text. Actually, N is
small in many scenarios, thus, the computational complexity of
ACWE depends on the scale of the dimension of topic space K ,
which is still small for real-world applications. In general, the
complexity of ACWE is dominated by the cost of the proposed
cross-contextual probabilistic word embedding model to train θ
and β (See Step 3 in Algorithm 1). Thus, in our paper, we sort an
online learning algorithm for this step to reduce the complexity of
the proposed ACWE in many real applications. Moreover, θ and β
can be learned off-line, which makes it more efficient and flexible
to use in many real applications.

4. Model inference

The key problem in the inference of a Bayesian graphical
model is to estimate the posterior distribution of latent vari-
ables conditioned on the observed data. This work resorts to the
variational inference for the model inference. A tailored stochas-
tic variational algorithm is proposed for the proposed cross-
contextual probabilistic word embedding to handle large-scale
corpus. The traditional variational learning method is a varia-
tional expectation–maximization procedure, which requires a full
pass through the entire corpus for each iteration. One of the alter-
native methods is to consider mini-batches of the data per update
to reduce the complexity [56–58]. For example, a stochastic in-
ference can easily handle large-scale datasets and outperforms
traditional variational inference shown in [58]. While, when the
proposed model is trained by stochastic variational inference
with a sequence of the mini-batches, the inference process on
batches is limited by the arrival of new words. Each row of θ
s the semantic distribution of each word, and the new batch of
ocuments may contain new words whose semantic distributions
re never learned. Thus, a tailored stochastic variational algorithm
s proposed for the basic word embedding learning to handle
arge-scale corpus.

With the setting of stochastic variational inference, it is needed
o define the locally maximized lower-bound for each document
irst. Given a document di with S i sentences, each sentence sij, j ∈

{1, . . . , S i} contains N i
j words. For document di, the latent variable

is the semantic distribution λi. This work uses ρ i
∈ R1×K to

denote the variational parameter of a Dirichlet distribution for λi.
For sentence sij, the latent variables are attention vector ϵ ij and the

semantic assignments {zl}ij. Let ξ
i
j ∈ R(N i

j+1)×1 be the variational
parameter of a Dirichlet distribution for ϵ ij , and {γl}

i
j be a group of

variational parameters of multinomial distributions for {zl}ij. For
document di, the fully factorized variational distribution is,

qd(λi, ϵ ij , {zl}
i
j|ξ

i
j , {γl}

i
j) = q(λi|ρ i)

Si∏
j=1

q(ϵ ij |ξ
i
j )

N i
j∏

l=1

q(z ijl|γ
i
jl). (2)

Based on the above fully factorized variational distribution,
this work maximizes the lower-bound (ELBO) to find the approx-
imate likelihood estimations of the variational parameters in the
local phase following the update equations:

ρ i
k = αi

k +

Si∑
j

N i
j∑
l

γ i
j·lk ·

ξ i
j·(N i

j+1)∑N i
j+1 i

, (3)
l′=1 ξj·l′

6

and

γ i
j·lk ∝ βk,vwij·l · exp{

N i
j∑

l=1

log θ
v
wi
j·l ,k

·
ξ ij·l∑N i
j+1

l′=1 ξ
i
j·l′

+ [Ψ (ρ i
k) − Ψ (

K∑
k′

ρ i
k′ )]

ξ i
j(N i

j+1)∑N i
j+1

l′=1 ξ
i
j·l′

},

(4)

where the subscripts of [k, vwij·l ] and [vwij·l , k] denote the corre-
sponding items in matrix β and θ , respectively. Ψ (·) indicates the
digamma function, the first derivative of the log of the Gamma
function. Also, for the attentional signals of words and the host
document ξ ij in sentence sij, we maximize the terms which contain
ξ using gradient descent method:

L(ξ ij ) =

N i
j∑

l′′=1

K∑
k=1

γ i
j·l′′k · (

N i
j∑

l=1

log θvwij·l ,k ·
ξ ij·l∑N i
j+1

l′=1 ξ
i
j·l′

+ [Ψ (ρ i
k)

− Ψ (
K∑
k′

ρ i
k′ )]

ξ i
j(N i

j+1)∑N i
j+1

l′=1 ξ
i
j·l′

) +

N i
j+1∑
l=1

(

N i
j+1∑
l′=1

πwi
j·l′

− ξ ij·l)

· [Ψ (ξ ij·l) − Ψ (

N i
j+1∑
l′=1

ξ ij·l′ )] − logΓ (

N i
j+1∑
l′=1

ξ ij·l′ )

+

N i
j+1∑
l′=1

logΓ (ξ ij·l′ ).

(5)

In the training process of stochastic variational inference, we
need to optimize the maximized the lower bound by subsampling
the data to form noisy estimates of the natural gradient, we
randomly selects mini-batches of size B in the training corpus to
obtain a stochastic estimate of the lower bound, where 1 ≤ B ≪

M . Consider a mini-batch b with B documents in a iteration. First,
we compute the local variational parameters, ρ, γ and ξ for the
mini-batch b. Then, we compute the intermediate global parame-
ters of π , α, β and θ . And finally, we update the current estimate
of all the global parameters with the intermediate parameters for
the next iteration. Here we mainly introduce the details of the
learning process of θ , which is the original word embeddings.

For θ , we compute the intermediate global parameter θ̂ given
M replicates of each document in the b, and average them in the
update

θ̂vk ∝
M
B

B∑
i

Si∑
j

γ i
j·vk ·

ξ i
j,vwij∑N i
j+1

l′ ξ ij·l′

. (6)

Let wb denote the unseen words appeared in b, and wb
_ indi-

ates the old words which both observed in b and the previous
ini-batches.
For wb, we update the current estimate of the global θwb with

ˆ directly. For wb
_ , we update θwb

_
using a weighted average of

ts previous values θwb
_
and the new value θb

wb
_
learned by Eq. (6)

n current batch b. After computing the gradient by ∇θwb
_

=

wb
_
− θb

wb
_
, we can update θwb

_
following:

θwb
_

= θwb
_
− ψb

· ∇θwb
_

= θwb
_
− ψb

· (θwb
_
− θb

wb
_
)

= (1 − ψb) · θwb
_
+ ψb

· θb
wb
_
.

(7)

here ψb represents the step-size in the iteration of b. As de-
cribed in [58], the step-size given to θwb

_
is obtained by:

b −η
ψ = (τ0 + b) , τ0 ≥ 0,
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Algorithm 2 Online variational EM algorithm.

1: Define ρb
= (τ0 + b)−k.

2: for b = 0 to ∞ do
3: (E-Step:)
4: repeat
5: for each sentence sij of each document di in b do
6: update ξ ij , γ

i
j and ρ i.

7: end for
8: until convergence
9: (M-Step:)

10: for each word in wb do
11: compute θwb via Eq. (6).
12: end for
13: for each word in wb

_ do
14: update θwb

_
via Eq. (7).

15: end for
16: update β via Eq. (8), and update α and π .
17: end for

where η ∈ (0.5, 1] controls the rate at which old values of θwb
_
are

orgotten, and the delay τ0 ≥ 0 down-weights early iterations.
Similarly, the β can be also updated by:

βvk = (1 − ψb) · βvk + ψb
·
M
B

B∑
i=1

Si∑
j=1

N i
j∑

l=1

γ i
j·lk · (wi

jl)
v. (8)

Also, for each mini-batch, we use gradient descent method
by taking derivative of the terms with respect to π and α to
ompute the intermediate parameters of them, respectively. For
he sentence sij, the involved terms which contain π are:

L(πwi
j
) = logΓ (

N i
j+1∑
l=1

πwi
j·l
) −

N i
j+1∑
l=1

logΓ (πwi
j·l
)

+

N i
j+1∑
l=1

(πwi
j·l

− 1)(Ψ (ξ ij·l) − Ψ (

N i
j+1∑
l′=1

ξ ij·l′ )).

(9)

Note that the πwi
j·(Ni

j+1)
indicates the πV+1 for all sentences.

For each document di, the involved terms which contain α are:

L(αi) = logΓ (
K∑

k=1

αi
k) −

K∑
k=1

logΓ (αi
k)

+

K∑
k=1

(αi
k − 1)(Ψ (ρ i

k) − Ψ (
K∑

k′=1

ρ i
k′ )).

(10)

Finally, we update the current global parameters π and α

s same as β . We describe the online learning algorithm in
lgorithm 2.

. Model analysis and comparison

.1. Model analysis on matrix factorization

Nonnegative matrix factorization (NMF) on topic modeling has
een proven to be equivalent to optimizing the same objective
unction as PLSA [59]. This section will analyze the proposed
CWE in the view of matrix factorization.
Consider a corpus with M documents denoted by C =

d1, d2, . . . , dM
}, where di, i ∈ {1, . . . ,M}, indicates the ith
7

ocument in the corpus. The dictionary contains V words. Let F
e the document–word matrix, and Fiv = F (di,wv) denotes the

frequency of word wv in document di, where v ∈ {1, . . . , V }.
For topic modeling, PLSA tries to factorize the matrix F into

two different nonnegative matrices U and H with a fixed K ,
here K is the number of latent topics. U ∈ RM×K is the matrix
f the distributions of documents over latent topics, and H ∈

RV×K is the matrix of the distributions of latent topics over the
dictionary. In brief, topic models can be viewed as one of the
matrix factorization processes:

F (di,wv) = UHT.

In the proposed model, the sentences are represented as the
contexts based on the ‘bag-of-word’ assumption. As mentioned,
let T ∈ {0, 1}M×S denote the document–sentence matrix where S
is the total number of sentences in the corpus. Tij = T (di, sj) is a
binary value that indicates whether di contains sj or not. Based on
the assumption of the proposed model, the semantic distribution
matrix of the sentences is ϑS×K . Hence, F (di,wv) can be factorized
as:

F (di,wv) = TϑHT,

where the main difference from PLSA is that the proposed model
defines the semantic generation process on the sentence level.

Let A ∈ RS×V denote the sentence–word matrix, and Ajv =

A(sj,wv) denote the attention value of the word wv in sentence
sj. Based on the assumption of the proposed model, the semantic
istribution matrix of the sentences ϑS×K can be calculated as
ollows:

ϑ = AUθ ,

here each row in Uθ ∈ RV×K denotes the semantic distribution
of one word from the dictionary. Note that the attention value of
the host document is ignored for ease of presentation.

Thus, the proposed model can be shown in the way of matrix
factorization as follows:

F (di,wv) = TAUθHT.

It is interesting to note that the proposed ACWE obtains the
nonnegative probabilistic word embeddings Uθ through a process
of matrix factorization, which implies that the word embeddings
are distributions over latent semantics.

5.2. Model comparison

There are two main types of models for learning word em-
beddings. The first type includes the global matrix factorization
approaches, e.g., latent semantic analysis (LSA) and non-negative
sparse embedding (NNSE). The second includes the local con-
tent window approaches such as the skip-gram model and its
extensions. The proposed ACWE leverages these two types of
methods to learn word embeddings. As discussed earlier, the
ACWE benefits from the global statistical information to train the
global word embeddings (i.e., θ ). It also trains on separate local
context windows (sentences) to learn adaptive word embeddings.

Many vector-space models of lexical semantics create a single
‘‘prototype’’ embedding to represent the meaning of a word or
learn multi-prototype word embeddings. Some recent studies
attempt to train multi-prototype word embeddings by clustering
context window features [10,11], or determining the number of
word embeddings through topics [30,34], or using a specific prob-
ability process such as the Chinese restaurant process [12,25].
Differently, the ACWE makes no restricted assumptions to learn
multi-prototype word embeddings. Every word has an original
global embedding learned from the document-level information,
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Fig. 4. The results of Spearman correlation coefficient for the word similarity task on different datasets from (a) to (e). (f) is the results of the weighted average
on the five datasets. The higher values indicate better performances.
Table 1
The results of Spearman correlation coefficient on SCWS with baseline models which consider word polysemy.
MP-VSM NTSG PM-MP MSSG TWE Multiple-WP STE ELMo ACWE0 ACWE1

0.594 0.685 0.636 0.692 0.681 0.657 0.680 0.703 0.720 0.733
Table 2
Some cases to show the word similarity by raking the top 9 most similar words, where the numbers are the corresponding cosine
distances.

Ranking lists with the corresponding cosine distances

Education (students, 0.9915), (school, 0.9904), (university, 0.9890), (year, 0.9883),
(college, 0.9883), (post, 0.9880), (report, 0.9879), (public, 0.9877), (teaching, 0.9875)

China (largest, 0.9867), (Chinese, 0.9856), (Singapore, 0.9846), (united, 0.9843),
(Asia, 0.9841), (commission, 0.9834), (kingdom, 0.9832), (Russia, 0.9830), (employees, 0.9824)

Movie (music, 0.9874), (stars, 0.9871), (writer, 0.9851), (famous, 0.9848),
(film, 0.9847), (broadcast, 0.9842), (drama, 0.9841), (song, 0.9840), (actor, 0.9839)

University (school, 0.9930), (academic, 0.9928), (founded, 0.9926), (students, 0.9924),
(college, 0.9921), (year, 0.9899), (science, 0.9890), (education, 0.9889), (international, 0.9888)

Programming (computers, 0.9829), (MIT, 0.9819), (intelligence, 0.9818), (implement, 0.9815), (computing, 0.9814),
(artificial, 0.9810), (technologies, 0.9806), (digital, 0.9805), (communication, 0.9801)

Health (medical, 0.992), (patients, 0.9887), (food, 0.9882), (medicine, 0.9872),
(serves, 0.9863), (social, 0.9861), (families, 0.9860), (largest, 0.9859), (states, 0.9858)

County (district, 0.987), (west, 0.986), (located, 0.985), (valley, 0.985),
(river, 0.985), (city, 0.985), (bay, 0.984), (historic, 0.983), (governor, 0.983)

Bus (port, 0.985), (corporation, 0.985), (north, 0.983), (station, 0.982),
(airport, 0.981), (road, 0.981), (buses, 0.980), (industries, 0.980), (park, 0.979)
and an adjusted word embedding is generated through the origi-
nal global embedding in its present context. Thus, the ACWE tries
to learn the adaptive word embedding to address the problem of
word polysemy.

Compared with ELMo [5], the word embeddings learned by
CWE are nonnegative, as word embeddings θ are generated
y a Dirichlet distribution. As described in [60], a nonnegative
ssumption for word embedding could be efficient in improving
ord embedding interpretability. In particular, the two main
haracteristics of the word embeddings are learned by the pro-
osed model. First, the global word embedding is represented
y a nonnegative vector because it is defined as a probability
8

distribution over all the latent semantics. The nonnegative word
embedding is highly interpretable since each semantics learned
by the proposed method is defined by a distribution over expli-
cable vocabulary. Second, a local and tailored word embedding is
generated in a special context to capture more accurate semantics
of the targeted word, a process which is adaptively adjusted
based on the global word embedding. This method has been in-
novative because it uses topic models to create word embedding.
The proposed method can achieve much better interpretability
and improved flexibility in adjusting semantics. Case studies will
be presented in Section 6 to demonstrate its capacity of capturing
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nd representing word polysemy as well as its advantage in
nterpretability.

. Experiments

In this section, we evaluate the proposed model on word
imilarity, polysemy induction and text classification tasks. We
lso demonstrate the visualizations of the semantics of words
o show the capacity of the proposed ACWE model on word
olysemy and interpretability.

.1. Experimental settings and training configuration

The widely used Wikipedia is taken as the corpus to train
ll the models and a snapshot of the whole Wikipedia is used
n our experiments. It contains about 531,306 pages. Infrequent
ords have been removed from this corpus, and a dictionary of
bout 10,810 frequent words is obtained. The pure digit words are
emoved as well as stop words. The abstract of each article is used
s a document. After splitting the documents into sentences and
emoving the sentences in which the number of words is fewer
han 5, a corpus is obtained with 2.19M sentences, which is called
ikipedia-L. A small subset is also built from Wikipedia which is

alled Wikipedia-S. 68 categories are selected as class labels, such
s education, science, military, and so on. For each category, 250
ocuments are randomly selected from Wikipedia-L. Then, only
he first sentence of each document is kept. After removing the
entences with fewer than 10 words, 16,070 sentences (articles)
re obtained with the corresponding labels. This corpus is used
or the text classification tasks. Meanwhile, the data from Internet
ovie database (IMDb)1 is also used. 31,108 movies with the
torylines and the genres are included. The storylines are treated
s the texts, and the 29 genres are treated as the labels for the
ext classification task.

The proposed ACWE is trained with K = 200, which means
hat the words are embedded into a 200-dimensional semantic
pace. Particularly, the proposed model is first trained on the
mall corpus, Wikipedia-S, with the criterion of topic coherence
escribed in [61,62] to learn an initial β and θ . Then, the param-
ters are updated by the proposed stochastic variational learning
lgorithm onWikipedia-L. The source code of the proposed ACWE
s available online, as well as all the scripts and data of the
xperiments.2

.2. Experiments on word similarity

In this part of the experiments, the quantitative comparisons
f the proposed ACWE method with other baselines are demon-
trated on the word similarity task, which is to measure how
ell the model captures the similarity between two words. This
ask is introduced in [11], which evaluates the performance of
model by calculating the Spearman’s rank correlation between
he ranking of ground truth similarity scores and that based
n the similarity scores produced by the model. There are six
enchmark datasets.
(1) WordSim-353 [63] is a standard dataset for evaluating

ord vector representations. It consists of a list of word types,
he similarity of which is rated in an integral scale from 1 to 10.
onosemic and polysemic words are included.
(2) SimLex-999 [64] contains 999 pairs of nouns, verbs and

djectives. SimLex-999 provides a way of measuring how well
odels capture the word similarity. Note that the word similarity

1 https://www.imdb.com.
2 http://www.shuangyin.li/acwe/.
9

measured by SimLex-999 is about the meaning of words and
concepts but not relationship or association between two words.

(3) Rare Word [65] is a word set focusing on rare words to
complement existing ones and it contains 2034 word pairs.

(4) MTruk-771 [66] dataset that contains 771 word pairs
whose similarity is crowdsourced from Amazon Mechanical Turk.

(5) MEN [67] benchmark consists of 3000 word pairs which
are randomly selected from words that occur at least 700 times
in a freely available corpus.

(6) Stanford Contextual Word Similarity (SCWS) dataset [11]
consists of 2003 word pairs and their sentential contexts with
human judgments.

The proposed ACWE model is evaluated on the word similarity
task by comparing with GloVe, Skip-Gram and CBOW, positive
pointwise mutual information (PPMI), NNSE, Sparse Coding and
Sparse CBOW. Note that the above baseline models can learn
sparse or dense word embeddings without considering the word
polysemy.

The baselines which consider word polysemy are also com-
pared, such as Multi-Prototype Vector-Space Models (MP-VSM)
[10], Multiple-WP [11], PM-MP [29], Multiple-sense Skip-Gram
(MSSG) [12], Topical Word Embeddings (TWE) [30], Neural Tensor
Skip-Gram model (NTSG) [34], Skip-Gram Topical word Embed-
ding (STE) [68] and ELMo [5] on the SCWS dataset. They are
trained on Wikipedia with the same dimensions of word em-
beddings. For ELMo, bi-directional LSTM is considered and the
dimension is 100 for each direction. For the proposed ACWE, we
use ACWE0 to denote the model which learns the global word
embeddings without adjusting the word embeddings adaptively.
For the SCWS dataset, the context is given for the targeted word
in each word pair. Thus, we recalculate the word embedding of
w given the context via Eq. (1) and this approach is named by
ACWE1.

Fig. 4 and Table 1 summarize the results on the word simi-
larity tasks, where the proposed ACWE model outperforms the
baselines except Word2Vector (CBOW and Skip-Gram) on Rare
Word. The main reason is that many words in Rare Word are non-
polysemous. While, the weighted average value of ACWE is still
high, as shown as in Fig. 4(f), where the weight values are from
the word numbers in each benchmark datasets. The experiments
on word similarity demonstrate that the global word embeddings
learned from the proposed ACWE capture the effective features
from the semantic level, which is the main benefit of the usage
of topic modeling. In Fig. 4, ACWE1 achieves the best result,
which demonstrates that the word embeddings can be improved
significantly by the contexts, when the contexts are available in
the SCWS dataset.

To visualize the learned global word embeddings, some cases
are given to show the word similarity. Specifically, we rank the
cosine distances of some target words with other words in the
dictionary and present the top 9 most similar words in Table 2.
The values in Table 2 are the corresponding cosine distances
between two words. Experiments indicate that global word em-
beddings effectively capture the similarities among the words,
and the words of similar meanings have similar embeddings.
Thus, the capacity for capturing the semantics of the proposed
model enables us to learn high-quality word embeddings with an
unsupervised learning framework.

6.3. Experiments on adaptive word embeddings

The main contribution of this paper is to learn adaptive word
embeddings within different contexts. Thus, in this part of the
experiments, the performance of word embeddings are shown
within different contexts by using the proposed ACWE algorithm.
Some cases of polysemous words in different contexts using the

https://www.imdb.com
http://www.shuangyin.li/acwe/
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Table 3
Adaptive word embeddings with different contexts. The ‘‘papers’’, ‘‘biomedical’’ and ‘‘light’’ are demonstrated.
Books or papers printed today, by the same publisher, and from the same type as when they were first published,
are still the first editions of these books to a bibliographer.
−0.140819 [published, book, written, wrote, edition]
−2.286497 [journal, peer, reviewed, scientific, academic]
−3.945425 [type, volume, frequently, visual, notably]
−5.231559 [included, magazine, leading, editor, press]
−6.079971 [records, record, index, literature, reference]

I know of a research group in a university where students submit some academic papers without their professor
having read them, let alone contributing to the work.
−0.823609 [research, project, foundation, led, projects]
−1.037011 [journal, peer, reviewed, scientific, academic]
−2.664416 [university, professor, faculty, Harvard, department]
−3.089699 [field, study, studies, scientific, fields]
−3.266090 [students, student, teaching, teachers, teacher]

Biomedical definition, application of natural sciences, especially the biological and physiological sciences, to clinical medicine.
−1.009875 [field, study, studies, scientific, fields]
−1.171692 [biology, molecular, biological, genetics, ecology]
−2.172841 [medical, medicine, clinical, patient, surgery]
−2.231589 [institute, established, center, private, institution]
−3.357441 [science, fellow, MIT, Stanford, laboratory]

The treatments available at biomedical center include natural herbs, special diet, vitamins and minerals,
lifestyle counseling, positive attitude, and conventional medical treatments when indicated.
−0.826321 [center, Massachusetts, Boston, Dr., Md.]
−0.864242 [medical, medicine, clinical, patient, surgery]
−2.540809 [include, applications, processing, large, techniques]
−3.798415 [natural, areas, land, environmental, environment]
−4.364615 [disease, treatment, effects, cancer, risk]

Light is electromagnetic radiation within a certain portion of the electromagnetic spectrum.
−0.129370 [nuclear, light, radiation, magnetic, experiments]
−3.438747 [term, refers, word, meaning, means]
−3.585760 [image, images, color, vision, camera]
−3.752776 [line, station, railway, operated, bus]
−4.770996 [energy, mass, particles’, electron, atomic]

A railbus is a light weight passenger rail vehicle that shares many aspects of its construction with a bus.
−0.440478 [line, station, railway, operated, bus]
−1.815225 [body, exercise, lower, weight, strength]
−2.777080 [process, single, typically, multiple, result]
−3.266629 [original, play, stage, theater, tragedy]
−4.287032 [construction, formed, cross, bridge, replaced]

Heavy weights are good for developing strength and targeting specific muscle, and light weights are good
for build and maintain lean muscle.
−1.226888 [common, specific, terms, concept, object]
−1.251034 [body, exercise, lower, weight, strength]
−2.309753 [cell, cells, blood, growth, muscle]
−2.868760 [process, single, typically, multiple, result]
−2.941860 [due, high, low, quality, additional]
proposed ACWE algorithm are shown in Table 3. We compute the
word embeddings of three words in different contexts to show
the adaptive adjustment of our model in different contexts. The
values in Table 3 denote the log-probabilities. Note that the basic
word embeddings of the three words are shown as in Table 4, and
Table 3 shows the results after updating the word embeddings
adaptively. These experiments show the process that the word
semantics are changed with the different contexts surrounded.

6.4. Experiments on polysemy induction

In this section, this work evaluates the performance of the
daptive word embeddings by following the methodology of pol-
semy induction [15]. The sentence classification task is chosen to
nvestigate the effectiveness of the proposed model. For this task,
e use the average over all the word embedding vectors in the
entence as its representation. Wikipedia-S and IMDb are used as
he test sets. For each storyline in IMDb, we only keep the words
hich are in the dictionary trained by Wikipedia-L.
According to [15], There are three steps:
(1) We test the original word embeddings of our model and

he embeddings obtained by other baseline models, which can be
reated as a single representation for each word. For our model,
10
the word embeddings θ are learned on the large-scale corpus, by
setting the semantic number T = 200. As described above, we call
it ACWE0. Particularly, ACWE0 learns the global word embeddings
without adjusting the word embeddings adaptively.

(2) The word embeddings are updated given the correspond-
ing contexts to get the adaptive embeddings, which computes
multiple representations for each polysemous word. In detail,
the word embeddings are updated in each sentence to get the
adaptive word embeddings within different contexts. That is, for
each word w, we let all the other words in the text as the context
words wc for w. We recalculate the word embedding of w given
wc via Eq. (1) and this approach is named by ACWE1. This process
is run for all the words in each sentence, and average all the new
word embeddings as the embedding of the host sentence in the
classification task.

(3) The task is evaluated using the basic word embeddings and
the adaptive word embeddings on the same text classification
task to show the performance gains. Specifically, the sentence
embeddings are treated as the sentence features to train an SVM.
80% sentences are used for training and the rest is for testing to
evaluate the performance of sentence classification.

For comparison, we average the embeddings of all the words
in a sentence as the sentence representation for the baseline
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Table 4
The cases to show the word polysemy and interpretability with the top 5 semantics of each word and the top 5
words in each semantic ranked by the log-probabilities.

Ranking of semantics

County −2.33009 [county, national, historic, located, district]
−2.787075 [park, river, valley, lake, located]
−2.986754 [local, authority, city, area, region]
−3.159863 [south, west, north, east, England]
−3.184729 [house, historic, style, story, places]

Papers −3.121343 [journal, peer, reviewed, editor, published]
−3.132917 [born, American, January, September, December]
−3.271758 [author, books, science, work, German]
−3.421435 [book, published, work, English, history]
−3.453628 [university, professor, academic, philosophy, studies]

Comedians −2.149376 [television, show, aired, episode, episodes]
−2.225051 [American, radio, writer, television, show]
−2.585478 [produced, series, film, films, short]
−2.797709 [released, series, video, TV, DVD]
−2.946048 [film, directed, drama, comedy, starring]

Genomics −1.422867 [biology, molecular, cell, gene, protein]
−1.610026 [species, evolution, biological, natural, humans]
−2.701144 [human, theory, study, social, individual]
−3.071058 [human, brain, mental, cognitive, psychology]
−3.19488 [concept, terms, object, defined, objects]

Prof −3.045664 [professor, university, science, scientist, computer]
−3.12606 [university, professor, academic, philosophy, studies]
−3.262579 [born, American, January, September, December]
−3.352558 [author, books, science, work, German]
−3.425612 [people, group, including, world, country]

Health −2.975491 [care, health, services, hospital, patients]
−3.141724 [blood, symptoms, risk, vaccine, pregnancy]
−3.219858 [development, health, organization, global, European]
−3.27917 [high, includes, including, related, level]
−3.314238 [medical, medicine, center, health, clinical]

Light −2.918804 [station, line, rail, bus, transit]
−3.116566 [light, energy, device, speed, motion]
−3.234566 [human, theory, study, social, individual]
−3.317204 [called, term, considered, word, form]
−3.396814 [concept, terms, object, defined, objects]

Computers −2.97187 [system, systems, developed, based, control]
−3.094254 [design, power, technology, electronic, equipment]
−3.240674 [computer, computing, computers, graphics, dos]
−3.366713 [mobile, devices, phone, software, solutions]
−3.406292 [network, open, access, information, Internet]

Biomedical −2.986134 [research, project, institute, foundation, projects]
−2.988148 [science, physics, field, scientific, sciences]
−3.168841 [biology, molecular, cell, gene, protein]
−3.203789 [human, theory, study, social, individual]
−3.217035 [medical, medicine, center, health, clinical]
models, which is the same as the proposed model. For Ada-
Gram [25], the best word vectors are chosen given the con-
texts. The other comparisons include GloVe, Skip-Gram, NNSE,
AdaGram, ELMo and Bert.

For GloVe, the released implementation is used,3 and trained
on Wikipedia-L with the dimension of word embedding set to
200. For the ELMo, the released implementation.4 is used, and
the ELMo model is retrained on Wikipedia-L. For the Bert, the
pre-trained Bert is used, which is trained on Wikipedia and Book-
Corpus5 The pre-trained Bert is fine-tuned with Wikipedia-L.
Note that, the dimension of word embedding in the pre-trained
Bert is 768, which is larger than the proposed model and the other
comparisons. For all the comparisons, a bag-of-words averaging
is employed to produce the sentence embedding.

Fig. 5 shows the evaluation results of sentence classification
on Wikipedia-S and IMDb. Both ACWE0 and ACWE1 outperform

3 https://nlp.stanford.edu/projects/glove/.
4 https://allennlp.org/elmo.
5 https://github.com/google-research/bert.
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all baseline methods significantly on Wikipedia-S. These experi-
ments demonstrate that the way of adaptively adjusting the word
embedding with the contexts is effective, where the adaptive
cross-contextual word embedding process can improve the ca-
pacity of capturing the latent features for word embedding with
the neighbored words.

In addition, the methodology of polysemy induction is one
of the popular approaches to evaluate the performance of pol-
ysemy. ACWE0 presents the global embeddings without con-
sidering the adaptive cross-contextual process. Compared with
the other models, ACWE0 also get better performances on the
sentence classification. The main reason is that the polysemy has
been already captured when the global embeddings are learned
in the proposed model. With the adaptive cross-contextual word
embedding process, the proposed ACWE further improves the
capacity of modeling the word polysemy. Compared with ACWE0,
ACWE1 based on the adaptive word embeddings leads to signifi-
cant performance improvement in sentence classification tasks.

To further show the effectiveness of the proposed adaptive
word embeddings, we adjust the ratio of the updated words in
a text. We test with the ratio of r = {0.1, . . . , 1} on sen-
tence classification tasks with Wikipedia-S, where r indicates the

https://nlp.stanford.edu/projects/glove/
https://allennlp.org/elmo
https://github.com/google-research/bert
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Fig. 5. Sentence classification results for different models on Wikipedia-S (up) and IMDb (Down) with 5-fold cross-validation. Error bars: standard deviation.
Fig. 6. (Left) Sentence classification results with different ratios on Wikipedia-S. (Right) The average time for each sentence with different ratios.
roportion of the words that are adaptively updated given the
ontext. Note that r = 0 corresponds to ACWE0 and r = 1 implies
CWE1. Fig. 6 shows the precision on the sentence classification
y varying r . We can see that the adaptive word embeddings
an improve the performance of the sentence classification task.
lso, we notice that, in Fig. 6, the best results come from the
atio between 0.4 and 0.6, which means that we do not need to
djust all the word embeddings. The main reason is that not all
he words in a sentence are polysemous.

Meanwhile, the efficiency of the proposed model is tested on
ikipedia-S. Fig. 6 also shows the average of the update time for

ach sentence, where the average word number in each sentence
s 148. According to the results, we can see that it takes less
han 2 s to update the word embeddings in a long sentence
ith the ratio of 0.6. The computational complexity of ACWE is
(N × K ), where N is the number of contextual words for the
12
target word. As the discussion in Section 3.4, N is always small
in many scenarios, thus, the proposed ACWE is efficient in the
real-world text classification tasks.

6.5. Experiments on word polysemy and interpretability

The polysemy and interpretability of a word embedding are
visualized by showing the top semantics assigned to the word,
where the top semantics can be explained by the largest proba-
bilities of words in the dictionary. The top semantics ranked by
the probabilities in θ can be treated as the multiple senses of the
word, which is an inherent advantage of topic models.

Table 4 shows some words with the top 5 semantics, and each
semantics is represented by the top 5 words, where the values
ahead are the log-probabilities of each semantics for the target
word. We can see that each word has some main semantics over



S. Li, R. Pan, H. Luo et al. Knowledge-Based Systems 218 (2021) 106827

t
p
p
c
s
d
a
o
p
t
o

7

i
t
i
m
i
a
i
d

t
s
p
(
g
A
w
g
d
r
T
b
s
a
i
t
s
r
m

r
a
l
s
p
e
s
c
s
n

he latent semantic space, which matches the assumption of word
olysemy. Benefit from the probability inference of ACWE, the
robability values of each main semantics for a polysemous word
an be obtained, where each semantics can be explained by a
et of words explicitly. This characteristic of this interpretability
oes not exist in the models based on deep neural networks, such
s Skip-Gram, ELMo or Bert. Meanwhile, based on the property
f the probabilistic word embeddings, the semantics of each
olysemous word can be gathered in different contexts and show
he different specific meanings. More cases can be shown with
ur scripts (see footnote 2).

. Conclusions

Understanding the meaning of words is of great importance
n many applications, including helping machines to understand
he text, classifying text, and building knowledge graphs on web
nformation retrieval. Word embedding learning is one of the
ethods to understand words. There are many unresolved issues

n the field of word embedding. In this paper, we have identified
critical issue in most word embedding learning methods, which
s that they are not adaptive to capture word polysemy and build
ifferent representations for different senses of the same word.
To address the problem of word polysemy, this paper explored

he potential of using contextual information to obtain different
enses for the same word. Based on topic modeling, this paper
roposed an adaptive cross-contextual word embedding model
ACWE). The proposed ACWE first understands a word in its
eneral senses and creates a global word embedding, then the
CWE will take advantage of the contextual information of the
ord in different contexts, and adjusts the word embedding to
enerate different local word embeddings. The local word embed-
ing allows the proposed method to use contextual information
epresenting the senses of the word in the corresponding context.
hus, the ACWE is capable to capture the polysemy of a word and
uild multiple word embeddings to represent the word’s different
enses in different contexts. Due to the underlying use of nonneg-
tive vectors, word embeddings produced by the ACWE are highly
nterpretable. Comprehensive experiments have been conducted
o evaluate the performance of the proposed ACWE model. Con-
idering word polysemy on six popular benchmark datasets, the
esults demonstrated that ACWE outperformed state-of-the-art
ethods.
In this paper, we also extended ACWE with an online algo-

ithm to fit in the document stream scenario. Using the online
lgorithm, the proposed ACWE can handle the problem of the
arge-scale corpus and provides a more effective and extensive
emantics of the texts to handle all senses appearing in the
olysemy. By training on a large-scale corpus, i.e., Wikipedia, the
xtended ACWE has been validated by experiments. The results
howed that it can achieve higher precision and F1 on sentence
lassifications than the models without considering word poly-
emy, and can also compete with methods based on deep neural
etworks.
Because the semantic/topic number, K , is predefined in the

proposed ACWE, the capacity of the proposed model to capture
the latent and fine-grained semantics is limited, especially when
the semantics are highly correlated or hierarchical. Therefore, to
model the multiple senses more accurately, in the future work we
focus on extending the proposed ACWE model to learn an infinite
and sparse semantic space.
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