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Abstract

This paper considers the problem of false data injection attacks (FDIAs) on load fre-
quency control of interconnected smart grids (ISGs) with delayed electric vehicles (EVs)
and renewable energies. By intruding incorrect information, unauthorised users can cor-
rupt the system information leading to degradation in the performance and disruptions of
ISGs. In this paper, a model of ISGs subject to FDIAs in aggregator of EVs and power
plants is first presented. This mathematical representation comprises dynamic interactions
of power plants, delayed EVs, renewable energies and FDIAs on both system states and
outputs. Based on recent advanced techniques on functional observers and matrix inequal-
ities for time-delay systems, then a new distributed functional observers based scheme is
developed to realise the tasks of detecting and isolating FDIAs. Also, an effective proce-
dure presented in tractable linear matrix inequalitiesis build with an optimisation process
for the synthesis of the detector. The proposed detector is distributed, of reduced order,
avoids the risk of centralised malicious incidents, therefore easy for implementation and
monitoring tasks. The stability of ISGs and contribution of EVs subject to FDIAs are also
discussed. Comprehensive simulations are given to demonstrate the effectiveness of our
proposed method by using three-area ISGs.

1 INTRODUCTION

1.1 Background and motivations

Load frequency control (LFC) is essential in the effective oper-
ation of ISGs [1]. Because of variations in load demands, the
system frequencies and interchange powers fluctuate from their
planned operating points [2]. By taking appropriate control mea-
sures, LFC can rebuild the stability of ISGs and preserve the fre-
quencies and interchange powers at the preferred values [3]. In
recent years, significant research attention has been focused on
the efficient operation of ISGs subjects to cyber-attacks (please
refer to survey papers on cyber security of power grids [4], smart
grids [5], security control of industrial cyber physical systems [6]
and false data injection attack (FDIAs) against cyber-physical
power systems [7]. Due to the unexpected actions of unautho-
rised users that violate or illegally acquire, modify and disrupt
information of communication networks [5], ISGs are vulnera-
ble to catastrophic disruptions, disclosure of sensitive informa-
tion and frauds [8]. In [9], the control action provided by dis-
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tributed energy resources (DERs) was corrupted by attacks. The
authors in [10] considered a microgrid with deception attacks. In
[11], time delay attacks on LFC of ISGs were addressed.

As a communication network-based component of ISGs,
LFC of ISGs is managed by supervision control and data
acquisition systems [2]. Critical information for control is trans-
ferred within the power network through open communication
systems [12]. LFC is the interface between intelligent cyberspace
and physical facilities [13]. Because it is highly dependent on the
wide utilization of communication networks, LFC is inevitably
facing threats created by attackers aiming to cause service
outages and infrastructural damages [14]. The approach is to
intrude security threats (FDIAs) to interrupt the information
transferring within the ISGs, modify the system data and
results leading to serious degradations in system stability and
performance of LFC [15]. LFC requires reliable information of
the system frequencies, interchange power deviations and their
area control error to determine the correct amount of power
flow within the ISGs. In [16], the authors showed that hackers
potentially can destroy the system’s stability by injecting false
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and disruptive information into the system. This will lead to
incorrect control input signals and hence degrading the system
performance and stability. Therefore, it is important to consider
the problem of FDIAs in the application of LFC of ISGs
and develop efficient regimes to detect and isolate the attacks
happen within the systems.

With the purpose of lowering greenhouse emission and noise
pollution, integration of REs and EVs have received great
research attention in recent literature [3]. REs can provide addi-
tional powers without using natural fuels whereas in [17], the
deployment of EVs can improve the reliability and flexibility of
ISGs. In [18], reserved powers of EVs also support the power
plants in the frequency regulation effectively. Due to the powers
of REs depend on natural features such as weather and wind
speeds, it is unexpectedly intermittent leading to high fluctu-
ation of system frequencies, hence, a bounded control tech-
nique was developed for ISGs with REs and energy storages
in [19]. To achieve an effective LFC operation of ISGs, the
adverse impact of REs intermittent needs to be eliminated for
any control and monitoring tasks such fault detection and iso-
lation. With respect to the use of widespread EVs, in order to
participate into LFC, an aggregator (master control) and net-
worked or wide-area communication systems comprising power
line communications, general packet radio services, internet,
Bluetooth and wireless connections is required [3]. Via net-
work communications, the aggregator collects real time infor-
mation and re-allocate requested power commands to deter-
mine charged/discharged power of connected EVs [20]. One
important issue of EVs integration is the existence of time delay
due to sudden congestion of communication channels, drop-
out and disordering of data packets. In [17, 18, 20], networked
time delays related to the integration of EVs were considered
in the LFC of smart grids. In fact, communication delays can
downgrade or even cause to instability of system dynamic per-
formance, hence robust control laws were introduced for ISGs
[12], isolated SGs with EVs [17], ISGs with energy storages [19],
ISGs with EVs [20], and microgrids [21]. In these works, stabil-
ity conditions were derived according to Lyapunov theory and
techniques based on matrix inequalities to ensure the stability of
the closed-loop systems. By employing high complex communi-
cation infrastructures, the operation of EVs aggregator faces to
the risks of being vulnerable to FDIAs. Indeed, this issue is sim-
ilar to the problem happened in LFC central facility, deceptive
information is potentially and illegally imposed into the trans-
action between the aggregator and connected EVs. Thus, unau-
thorised attackers can deteriorate the performance and stability
of ISGs and the EVs system.

One of the key functions that smart grid has pledged to per-
form is to offer a power to fulfil electricity needs with friendly
environmentally source of energy while retaining a satisfactory
level of adequacy and security that conventional power systems
promise [22]. It is therefore important to develop an adequate
approach to detect FDIAs in the LFC of the ISGs incorporated
friendly sources such REs and EVs and distinguish the FDIAs
happened into LFC and the one links to EVs. This is the main
motivation of this paper.

1.2 Related works

A novel detection method for LFC based on multilayer per-
ceptron (MLP) classifier was proposed in [14]. For detection
purpose, samples of frequency or area control error (ACE)
were collected under both normal and compromised circum-
stances. MLP classifier was applied to map an optimal function
between normal and attacked signals. In this method, quanti-
ties of training samples are important to the training, testing of
MLP based detector. In [15], the authors introduced a model-
based fault detection method using real-time load forecast and
simulated measurements obtained from equations that govern
the functioning of underlying physical systems. In [16], an online
attacks detection framework was presented. In this framework, a
dynamic watermarking technique was used as the core algorithm
to detect tampered information. A detection scheme based on
recurrent neural networks for cyber-attacks on DC microgrid
was proposed in [23]. In [24], the authors used a full-order
observer (FUO)-based method for a delay-free power grid with
FDIAs. In [25], a robust detection filter was derived to iden-
tify faults on LFC of delay-free power systems. In this work, a
FUO was used to estimate the state vector and a residual gener-
ator was obtained based on the error between the system state
vector and the estimation to determine the existence of faults.
In [26], an unknown input FUO-based detection method was
deployed for the LFC of delay-free power systems consisting of
thermal plants and load demand changes. In [27], the authors
used a stochastic estimator based on the observer proposed in
[26] to build a fault detector. In [26, 27], residual generators were
designed based on the error between the system state vector and
its estimated state vector to trigger an alarm. These proposed
techniques [25–27] are interesting and effective for detecting
FDIAs. However, the structure of these observers used to
build the detectors requires current or last updated informa-
tion of load demand changes. In practice, it is challenging for
ISGs to store and update information of REs for monitoring
assignments frequently. In [28], a robust detection technique
based on unknown input FUO was derived to detect controller
and sensor faults of power plant separately without any need
of accessing information of load disturbances. In [29], a cen-
tralised FUO based detector for actuator and sensing faults were
derived. However, the main problem is that the residual genera-
tors in the above references was fundamentally founded by the
establishment of FUOs [25], unknown input FUOs [24, 26,
28, 29], stochastic estimator based FUOs [27] with centralised
architecture, thus resulted in large size of detector, high cost
of computation and complexity of implementation. It is high-
lighted that these detection methods were proposed for delay-
free interconnected power systems only. Moreover, the integra-
tion of delayed EVs and the issue of FDIAs on EVs were not
considered in any of the above-mentioned works. On the other
hand, in the previous studies for EVs (see [17, 18, 20] and the
references therein), the problem of isolating and detecting of
faults was not considered.

In the light of observer developments, FOs have much more
advantages than state observers considered in [24–29]. Indeed,
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FOs estimate linear functions of the state vector without esti-
mating all the individual states and so minimize the order
of observer (size and weigh) and reduce complexity of the
designed observers [30]. The significance of this is that design
of observer-based detection can now be implemented by using a
minimum-order FO leading to the reduction of the cost, weight,
volume of engineered systems and simplify their maintenance
and installation. Motivated by the benefits of FOs, the authors
in [31] introduced a FO-based detection method for a delay-
free system. In this work, Lyapunov theory was used to ensure
the stability of the estimation error between the function of
state vector and its estimation. An improved detection regime
based on linear matrix inequalities (LMIs) and Lyapunov the-
ory was proposed for a time-delay system with faulty system
dynamics [32]. In these algorithms, the fault diagnosis works
use centralized architecture and require to centrally gather and
the information of measurements as well as linear function of
states from all the remote subsystems, hence leading to the dif-
ficulty of practical constraints on the limitation of computa-
tional workload and communication bandwidth. To overcome
these challenges, a detection based on DFOs infrastructure was
derived [33] to identify the actuator’s faults which are converted
into the model system’s state vector. In this work, the Wringer
based inequality and Lyapunov theory were utilised to synthe-
sis the detector’s parameters. However, the implementation of
the detector required all instant measured output and hence,
the performance of detector is unable to be achieved for ISGs
where the FDIAs occur in the process of computing area error
control signal.

1.3 Contributions and organisation of the
paper

The contributions of this paper are underlined as follows:

i In this paper, we emphasis on the problem of FDIAs for
the LFC operation of ISGs and a proposal of deriving a
new method to detect and differentiate the occurrence of
each attack. To achieve our objective, we first propose a new
model of ISGs incorporating FDIAs, aggregated delay EVs
and REs.

ii A new state space model of ISGs encompassing the dynamic
interactions of multiple FDIAs on both system states and
outputs, communication time delays, EVs and REs is first
derived.

iii In the next stage, we introduce a new DFO-based detection
and isolation schemes to detect and isolate each FDIA. The
proposed scheme is derived based on some advanced devel-
opments of FOs, novel of Lyapunov stability for time-delay
systems and residual generators-based fault detection.

iv The proposed DFOs detector has the advantages of being
less order (small size) comparing to conventional state
observer-based detectors. It also handles the existence of
time delays, be insensitive to neighbouring FDIAs and the
excursion of REs. In addition, the detectors are made of
distributed structure, hence, prevented from malicious inci-
dents happened in facility of centralised architecture.

FIGURE 1 A block diagram of transfer functions of an ISG with EVs

v To synthesis the detector’s gains, we derive an effective pro-
cedure in tractable LMI, linear computations and an opti-
misation process, which can be easily solved by efficient
computational robust control tool in MATLAB with flexible
programming codes.

Finally, for demonstrating the effectiveness of our method,
simulations are conducted with a three-area ISGs comprising
reheated thermal plants, delayed EVs and REs. We also con-
sider the stability of time delay ISGs and discuss on EVs con-
tribution into frequency services under abnormal performance
caused by FDIAs.

The remaining of this paper is outlined as follows: Section 2
introduces a state space model of an ISG with FDIAs, EVs
and REs. The DFO-based detection and isolation method with
schematic of implementation and a procedure to obtain the
detector’s parameters are derived in Sections 3 and 4. The effec-
tiveness of our proposed methodology is validated in Section 5.
Finally, Section 6 concludes the paper.

2 SYSTEM DESCRIPTION
AND PROBLEM STATEMENT

Figure 1 represents a block diagram of transfer functions of
an ISG with reheated thermal plants, aggregation of EVs, REs
and communication time delays, hi , i = 1, … , N . Due to sud-
den changes in load demands, Pli (t ), and interruption of REs,
Pwi (t ), the system frequencies and interchange powers deviate
far from the desirable operating points. To tackle this issue, the
local control centre sends a power request command, Pci (t ), to
adjust the output power of thermal power plant. The descrip-
tion of reheated power plant at local power Area-ith depicted in
Figure 1 is [20]

Ṗgi (t ) = −
1

Tri
Pgi (t ) +

KtiKri

TtiTri
Xgi (t ) +

Tti − Kri

TtiTri
Pri (t ),

Ṗri (t ) = −
1
Tti

Pri (t ) +
Kti

Tti
Xgi (t ),

Ẋgi (t ) = −
1

Tgi
Xgi (t ) +

Kgi

Tgi
(Pci (t ) −

1
Rgi

fi (t )),

ḟi (t ) = −
Di

Mi
fi (t ) +

1
Mi

(Pgi (t ) + Pei (t ) − Ptie,i (t ))

−
1

Mi
(Pli (t ) + Pwi (t )).

(1)
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FIGURE 2 Block diagram of FDIAs at computation of local Area-ith

The operation of LFC requires the knowledge of area control
errors, ACEi (t ), i = 1, … , N , to ensure small steady-state values
of system frequency deviation, fi (t ), and interchange power
(power tie-line) deviation, Ptie,i (t ), when the system subjects to
power disturbances. These values are computed according to
fi (t ) and Ptie,i (t ) with a frequency bias constant, bi , as follows
[20]

ACEi (t ) = Ptie,i (t ) + bi fi (t ), i = 1, … , N . (2)

By using area control error, ACEi (t ), and its integral value,
𝜗i (t ) = ∫ ACEi (t )dt , the control facility of power Area-ith

computes the local power request command, Pci (t ), as follows
[12]

Pci (t ) = KPiACEi (t ) + KIi𝜗i (t ), i = 1, … , N, (3)

where KPi and KIi are the controller’s parameters.
The power request, Pci (t ), can be expressed in the following

static output feedback control structure [19]

Pci (t ) = Ki1 fi (t ) + Ki2Ptie,i (t ) + Ki3𝜗i (t ), (4)

where Ki1, Ki2, Ki3 are the controller’s parameters.
In this paper, we consider FDIAs at the local control facility.

Figure 2 shows how FDIAs are implanted into LFC of ISGs. As
mentioned previously, the area control error, ACEi (t ), is neces-
sary in the construction of power request command, Pci (t ), in
order to restore the stability of the closed loop system fluctu-
ated by disturbances. ACEi (t ) is computed based on informa-
tion of frequency, fi (t ), and interchange power, Ptie,i (t ), hence,
the hackers can degrade the LFC performance of the power grid
[14, 15]. Their main strategy is to inject incorrect information,
gi0(t ) during the process of computing ACEi (t ). As a result, the
counterfeit computed values of ACEa

i (t ) and its integral value
are generated

ACEa
i (t ) = Ptie, i (t ) + bi fi (t ) + gi0(t ) = ACEi (t ) + gi0(t ),

𝜗a
i (t ) = ∫ ACEa

i (t )dt = 𝜗i (t ) + gi1(t ), gi1(t ) = ∫ gi0(t )dt .

(5)

By which the computed control signal Equation (4) becomes

Pci (t ) = Ki1 fi (t ) + Ki2Ptie,i (t ) + Ki3𝜗
a
i (t ). (6)

FIGURE 3 Block diagram of FDIAs at the local aggregator of EVs

In this paper, we consider the operation of aggregated EVs. We
assume that M of EVs are connected to power Area-ith to par-
ticipate into LFC without state of charge control (SOC) [17]. An
EV participates into LFC without SOC means that the output
power of the EV, Pemi (t ), is determined by a constant EV gain,
Kemi , as follows

Ṗemi (t ) = −
1

Temi
Ṗemi (t ) +

Kemi

Temi
𝜀emi (t ) (7)

where 𝜀emi (t ) = 𝜀ei (t )∕M , 𝜀ei (t ) = −𝜌ei fi (t − hi ). Kemi and Temi

are gain and time constants of the mth EV. Here we consider
that all EVs have similar time constant, Temi = Tei .

The integration of an aggregated EVs requires a networked
communication infrastructure with an aggregator (see Figure 3).
This aggregator plays the role of a master to obtain the infor-
mation of all individual EVs and allocate the individual power
request command to them. Due to the existence of hacker
actions, the request power signal for an individual EV, 𝜀emi (t ),
is changed by the injection of an incorrect information, gemi (t ).
Hence, a counterfeit command, 𝜀a

emi
(t ) = 𝜀emi (t ) + gemi (t ), is

used for the EV instead of the true information, 𝜀emi (t ). There-
fore, the description of the EV taking FDIAs into account is
presented as follows

𝜀a
emi (t ) = −

1
M

𝜌ei (t − hi ) + gemi (t ),

Ṗa
emi (t ) = −

1
Temi

Ṗa
emi (t ) +

Kemi

Temi
𝜀a

emi (t )

= −
1

Temi
Ṗa

emi (t ) +
Kemi

Temi

( 1
M

𝜀ei (t ) + gemi (t )
)

.

(8)

As a result, the output power of aggregated EVs, Pa
ei (t ) =∑M

m=1 Pa
emi (t ) becomes

Ṗa
ei (t ) = −

M∑
m=1

Ṗa
emi (t )

Tei
+

M∑
m=1

Kemi

MTei
𝜀ei (t ) +

M∑
m=1

Kemi

Tei
gemi (t )

= −
1

Tei
Ṗa

ei (t ) −
Kei

Tei
𝜌ei fi (t − hi ) +

Kei

Tei
gi2(t ).

(9)
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where Kei =
∑M

m=1 Kemi∕M is the aggregated EVs gain. gi2(t ) =∑M

m=1(Kemi gemi (t ))∕Kei is considered as FDIAs on the aggre-
gated EVs.

Accordingly, the equation of fi (t ) in Equation (1) becomes

ḟi (t ) = −
Di

Mi
fi (t ) +

1
Mi

(Pgi (t ) + Pa
ei (t ) − Ptie,i (t ))

−
1

Mi
(Pli (t ) + Pwi (t )). (10)

In order to investigate the abnormal LFC operation of
ISGs subject to multiple FDIAs, we develop the fol-
lowing state-space model of the studied system which
encompasses the interactions of multiple communica-
tion delays, disturbances and FDIAs. First, we denote
local state vector, xi (t ) ∈ ℝni , control input vector,
ui (t ) ∈ ℝ, disturbance vector, di (t ) ∈ ℝ and output vec-
tor, yi (t ) ∈ ℝpi of the local power Area-i as follows xi (t ) =

[ fi (t ) Xgi (t ) Pri (t ) Pgi (t ) Pa
ei (t ) Ptie,i (t ) 𝜗i (t )]T , ui (t ) = Pci (t ),

di (t ) = Pli (t ) + Pwi (t ), yi (t ) = [ fi (t ) Pa
ei

(t ) Ptie,i (t ) 𝜗a
i
(t )]T .

A state-space representation of the local power Area-ith is

ẋi (t ) = Aiixi (t ) + Aiihxi (t − hi ) +

N∑
j=1, j≠i

Ai j x j (t )

+ Γi di (t ) + Biui (t ) + Si gi (t ), (11)

yi (t ) = Cixi (t ) + Figi (t ),

where gi (t ) = [gi1(t ) gi2(t )]T ∈ ℝ2, Si = [Si1 Si2], Fi = [Fi1 Fi2].
System matrices Aii , Aiih ∈ ℝni×ni , Ai j ∈ ℝni×n j , Bi , Γi , Si1,
Si2∈ ℝni×1, Ci ∈ ℝpi×ni , Fi1, Fi2 ∈ ℝpi×1 are given in the
Appendix A.

Accordingly, a state-space model of N -area ISGs is
obtained

ẋ(t ) = Ax(t ) +

N∑
j=1, j≠i

Ahix(t − hi ) + Γd (t ) + Bu(t ) + Sg(t ),

y(t ) = Cx(t ) + Fg(t ), (12)

where x(t ) =
[
xT

1 (t ) ⋯ xT
N

(t )
]T

∈ ℝn, d (t ) =

[d1(t ) ⋯ dN (t )]T ∈ ℝN , u(t ) = [u1(t ) ⋯ uN (t )]T ∈ ℝN ,
y(t ) = [yT

1 (t ) ⋯ yT
N

(t )]T ∈ ℝp, g(t ) = [gT
1 (t ) ⋯ gT

N
(t )]T ∈

ℝ2N are global state, disturbance, control input, output
and FDIAs vectors. Matrices A, Ahi ∈ ℝn×n, B, Γ ∈ ℝn×N ,

S ∈ ℝn×2N , C ∈ ℝp×n, F ∈ ℝp×2N are A =

[
A11 ⋯ A1N

⋮ ⋱ ⋮
AN 1 ⋯ ANN

]
,

Ahi = Diag(0, … , Aiih, … , 0), B = Diag(B1, … , BN ), Γ =

Diag(Γ1, … , ΓN ), C = Diag(C1, … ,CN ), S = Diag(S1, … , SN ),
F = Diag(F1, … , FN ).

Remark 1. In this paper, FDIAs in LFC take various forms:
(i) counterfeit information of EVs power request, 𝜀ei (t ) and
(ii) injection of incorrect data into the process of computing
the area error control signal, ACEi (t ) and its integral value,

𝜗i (t ) = ∫ ACEi (t )dt . In the abnormal operation (ISGs subject
to FDIAs), instead of reliable signals, Pei (t ) and 𝜗i (t ), counter-
feit information of Pa

ei (t ) and 𝜗a
i (t ) are used for computing con-

trol input signals and other local monitoring functions. There-
fore, system Equation (11) encompasses behaviours and inter-
actions of a FDIA, gi1(t ), in the output vector yi (t ), and another
FDIA, gi2(t ), in dynamical equation of the system state vec-
tor, ẋi (t ), xi (t ). For the first time, a mathematical representation
of ISGs considering multiple FDIAs, RES and time delays are
derived in this paper. Hence, the state-space model Equation
(11) is different to those previous works [14–16, 26]. In [14, 15],
state space models of ISGs were not derived. In [16], the vari-
ations of REs and load demands were ignored. Furthermore,
time delays were not considered in all of the previous works
[14–16, 26].

When the FDIA, gi1(t ) and time delays are ignored, the state
space model Equation (11) is converted to the model considered
in [26]

ẋi (t ) = Āiixi (t ) +

N∑
j=1, j≠i

Ai j x j (t ) + Γi di (t ) + Biui (t )

+ Si2gi2(t ); yi (t ) = Cixi (t ), (13)

where Āii = Aii + Aiih.

The main objective of this paper is to derive an effective
detection method to detect and isolate FDIAs within ISGs.
Each local detector is installed at the local power area to
implement the tasks of detecting and isolating the local FDIAs
only.

3 DFO BASED DETECTION SCHEME
FOR FDIAs

In this section, we develop a FDIAs detection method for ISGs.
In this method, a local detector, i , is placed at local Area-ith to
detect the existence of local FDIAs, gi1(t ) and gi2(t ), injected
by hackers. At first, we propose a local residual generator, ri (t ),
which is used to construct the local detector at local power Area-
ith, i = 1, … , N ,

ri (t ) = Tizi (t ) + Eiyi (t ). (14)

In Equation (14), ri (t ) ∈ ℝ is a real function. Matrices Ti ∈

ℝ1×qi , Ei ∈ ℝ1×pi are residual generator matrices that will be
designed later. zi (t ) ∈ ℝqi is computed based on the following
DFO

żi (t ) = Nizi (t ) + Nihzi (t − hi ) + Ji yi (t )

+ Jihyi (t − hi ) + Hiui (t ) +

N∑
j=1, j≠i

Ji j ȳ j (t ), (15)

where Ni, Nih ∈ ℝqi×qi , Ji , Jih ∈ ℝqi×pi , Ji j ∈ ℝqi×pi j , Hi ∈

ℝqi×1 are the observer gains and be determined such that zi (t )
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asymptotically converges to a linear function of the local state
vector, ẑi = Lixi (t ) when there are no FDIAs within the power
grid, gi (t ) = 0. In Equation (15), ȳ j (t ) = Ci j x j (t ) + F̄i j g j (t ) is
a vector of the augmented outputs from neighbouring power
areas, where Ci j ∈ ℝpi j ×n j , F̄i j ∈ ℝpi j ×2.

For FDIAs detection purpose, Ti , Ei , Li and DFO matri-
ces should achieve the following detection requirements: (i)
(safe case) limt→∞ ri (t ) = 0 if gi (t ) = 0; (ii) (unsave case)
limt→∞ ri (t ) ≠ 0 if gi (t ) ≠ 0. We define 𝜃i (t ) = zi (t ) − Lixi (t )
as the error between zi (t ) and ẑi (t ).

Theorem 1. For any given control signal, ui (t ), disturbance, di (t ) and

with no FDIAs, zi (t ) will asymptotically converge to ẑi = Lixi (t ) if there

exist matrices Ni , Nih, Ji , Jih, Ji j , Hi , Li with appropriate dimensions

satisfying

𝜃̇i (t ) = Ni𝜃i (t ) + Nih𝜃i (t − hi ) is asymptotically stable, (16)[
Ωi1 Ωi2 Ωi3 Ωi4 Ωi5 Ωi6

]
= 0, (17)

where

Ωi1 = − LiΓi , Ωi2 = NiLi + JiCi − LiAii , Ωi6 = [Ω j

i6], j ≠ i,

Ωi3 = NihLi + JihCi − LiAiih, Ωi4 = Hi − LiBi ,

Ωi5 = [Ω j

i5], j ≠ i, Ω
j

i5 = Ji jCi j − LiAi j , Ω
j

i6 = Ji j F̄i j .

Proof of Theorem 1. Let we define Υi , Υi1, Υi2 and
Ωi which will be used later as Υi = TiLi + EiCi , Υi1 =

JiFi − LiSi , Υi2 = JihFi , Υi3 = EiFi , Ωi = (JiFi − LiSi )gi (t ) +

JihFi gi (t − hi )= Υi1gi (t ) + Υi2gi (t − hi ).
Taking the derivative of 𝜃i (t ), we obtain

𝜃̇i (t ) = Ni𝜃i (t ) + Nih𝜃i (t − hi ) − LiΓi di (t )

+ (NiLi + JiCi − LiAii )xi (t ) + (Hi − LiBi )ui (t )

+ (NihLi + JihCi − LiAiih )xi (t − hi )

+ (JiFi − LiSi )gi (t ) + JihFi gi (t − hi )

+

N∑
j=1, j≠i

(Ji jCi j − LiAi j )x j (t ) +

N∑
j=1, j≠i

Ji j F̄i j g j (t ).(18)

𝜃̇i (t ) = Ni𝜃i (t ) + Nih𝜃i (t − hi ) + Ωi1di (t ) + Ωi2xi (t )

+ Ωi3xi (t − hi ) + Ωi4ui (t ) + Ωi

+

N∑
j=1, j≠i

Ω
j

i5x j (t ) +

N∑
j=1, j≠i

Ω
j

i6g j (t ). (19)

For Ni , Nih, Ji , Jih, Ji j satisfying the conditions Equations (16)
and (17) and with no FDIAs, gi (t ) = 0, Ωi = 0, we have

𝜃̇i (t ) = Ni𝜃i (t ) + Nih𝜃i (t − hi ). (20)

FIGURE 4 Schematic implementation of the proposed detector

As can be seen that Equation (20) is a time-delay system and
𝜃i (t ) will asymptotically converge to zero, (𝜃i (t ) → 0), if the sta-
bility of Equation (20) is guaranteed (i.e. the condition Equa-
tions (16) and (17) are satisfied). This completes the proof of
Theorem 1. □

It is noted that 𝜃i (t ) = zi (t ) − Lixi (t ). From Equation (14),
the local residual generator, ri (t ), can be rewritten in the follow-
ing form

ri (t ) = Ti (𝜃i (t ) + Lixi (t )) + Ei (Cixi (t ) + Figi (t ))

= Ti𝜃i (t ) + (TiLi + EiCi )xi (t ) + EiFigi (t )

= Ti𝜃i (t ) + Υixi (t ) + Υi3gi (t ), (21)

When Υi = 0, Equation (21) becomes

ri (t ) = Ti𝜃i (t ) + Υi3gi (t ). (22)

In the following part, according to Theorem 1, Equations (19)
and (22) we propose a method using ri (t ) to detect local FDIAs.

i When no FDIA exist within the systems (Ωi = 0 and
Υi3gi (t ) = 0) and Theorem 1 is satisfied, residual generator,
ri (t ) → 0 as t → ∞.

ii In contrast, when FDIAs exist in the system, Ωi ≠ 0 or
Υi3gi (t ) ≠ 0, and Theorem 1 is satisfied, ri (t ) will not assym-
totically converge to 0, (ri (t ) ↛ 0).

Therefore, residual generator, ri (t ), can be used as an indica-
tor for FDIAs detection purpose. The schematic implementa-
tion of DFO based FDIAs detection method is shown on Fig-
ure 4. In this scheme, a detector (a residual generator based
observer) is located at the local power Area-ith to detect its
FDIAs. The residual value is computed according to matrices
Ti , Ei together with a DFO.

In the following, we develop corollary 1 such that ri (t ) reacts
to FDIAs (ri (t ) ↛ 0).

Corollary 1. Local residual generator, r (t ) ↛ 0 as t → ∞ for any

local FDIAs, gi1(t ), gi2(t ), if the following conditions are satisfied

Υi = 0, Diag (Υ1
i1, Υ1

i2, Υ1
i3) ≠ 0,

Diag (Υ2
i1, Υ2

i2, Υ2
i3) ≠ 0,

(23)
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where Υi1 = [Υ1
i1 Υ2

i1], Υ1
i1 = JiFi1 − LiSi1, Υ2

i1 = JiFi2 − LiSi2,

Υi2 = [Υ1
i2 Υ2

i2], Υ1
i2 = JihFi1, Υ2

i2 = JihFi2, Υi3 = [Υ1
i3 Υ2

i3],
Υ1

i3 = EiFi1, Υ2
i3 = EiFi2.

Proof of Corollary 1. Let us consider Υi , Υ1
i1, Υ1

i2, Υ1
i3, Υ2

i1, Υ2
i2,

Υ2
i3 satisfying Corollary 1. We assume that only gi1(t ) exists at

the local power Area-ith such gi1(t ) ≠ 0, gi2(t ) = 0. According
to Corollary 1, we have one of the terms Υ1

i1gi1(t ), Υ1
i2gi1(t ) and

Υ1
i3gi1(t ) is not zero. Therefore Ωi ≠ 0 or Υi3gi (t ) ≠ 0 leading

to ri (t ) ↛ 0 as t → ∞. The proof can be applied to gi2(t ). This
completes the proof of Corollary 1. □

Remark 2. We consider model Equation (11) where gi1(t ) = 0,
hi = 0. By using a similar structure of DFO and residual gener-
ator form in Equations (14)-(15), a detector for Equation (11)
can be developed.

żi (t ) =Nizi (t ) + Ji yi (t ) + Hiui (t ) +

N∑
j=1, j≠i

Ji j ȳ j (t ). (24)

The derivative of 𝜃i (t ) is 𝜃̇i (t ) = Ni𝜃i (t ) − LiSi2gi2(t ). The local
residual generator is ri (t ) = Ti𝜃i (t ) + Υixi (t ). Therefore, ri (t )
reacts to gi2(t ), if the Theorem 1 holds, Υi = 0 and the following
condition is satisfied LiSi2 ≠ 0. This completes Remark 2.

Remark 3. Along with FDIAs detection, isolation of FDIAs is
also very important in monitoring system. The information of
FDIAs isolation can be used to improve the monitoring func-
tion of ISGs to determine further action to handle the FDIAs.
Here, together with Theorem 1, we consider conditions such
that local residual generator, ri (t ), be insensitive to a local FDIA.
“Insensitive” refers to a situation that if an FDIA happens, the
detector does not react to that attack.

Corollary 2. When Theorem 1 holds and Υi = 0, ri (t ) is insensitive

to a local FDIA, gik(t ), if there exist matrices Υk
i1, Υk

i2, Υk
i3 such that

the following conditions are satisfied

Diag
(
Υk

i1, Υk
i2, Υk

i13

)
= 0. (25)

where Υk
i1, Υk

i2 and Υk
i13 are given in Corollary 1.

Proof of Corollary 2. The proof can be obtained by using similar
lines as in the proof of Corollary 1. Hence, we omit it here.

By using Corollary 2, we can build extra detectors-ik, k =

1, 2, where ik includes a residual generator, rik(t ), k = 1, 2,
which is insensitive to the FIDA of gik(t ) while it is sensitive to
the remaining local FDIA. By using the extra detectors together
with the main detector i (residual ri (t )), FDIAs can be iso-
lated.

This completes Remark 2. □

Remark 4. In this Remark, we develop a CFO based FDIAs
detection method for ISGs. In this design, a centralised global
detector, , will detect the happening of all FDIAs. A global

residual generator, r (t ) ∈ ℝ, which is used to form the global
detector.

r (t ) = Tz (t ) + Ey(t ). (26)

In Equation (26), T ∈ ℝ1×q , E ∈ ℝ1×p are residual genera-
tor’s matrix gains. z (t ) ∈ ℝq is computed based on structure of
CFO

ż (t ) = N̄ z (t ) +

N∑
i=1

Nhiz (t − hi ) +

N∑
i=1

Jhi y(t − hi )

+ Jy(t ) + Hu(t ), (27)

where N̄ , Nhi ∈ ℝq×q , J, Jhi ∈ ℝq×p, H ∈ ℝq×m are the CFO
gains and be determined such that z (t ) asymptotically converges
to a linear functional of the local state vector, ẑ = Lx(t ) when
there are no FDIAs within the ISG, g(t ) = 0.

For the detection purpose, T , E , L and CFO matrices should
achieve the following detection requirements: (i) (safe case)
limt→∞ r (t ) = 0 if g(t ) = 0; (ii) (unsave case) limt→∞ r (t ) ≠
0 if g(t ) ≠ 0. 𝜃(t ) = z (t ) − Lx(t ) as the error between z (t )
and ẑ (t ).

Corollary 3. For any given control signal, u(t ), disturbance, d (t )
and with no FDIAs, z (t ) asymptotically converges to ẑ (t ) = Lx(t )
if there exist matrices N̄ , Nhi , J , Jhi , L with appropriate dimensions

satisfying

𝜃̇(t ) = N̄𝜃(t ) +

N∑
i=1

Nhi𝜃(t − hi ) is asymptotically stable,

[Ω1 Ω2 Ω3 Ω4] = 0,

(28)

where Ω1 = −LΓ, Ω2 = N̄ L + JC − LA, Ω3 = [Ω3i ], Ω3i =

NhiL + JhiC − LAhi , Ω4 = H − LB.

Proof of Corollary 3. We define Υ = TL + EC , Υ1 = JF − LS ,

Υ2i = JhiF , Υ3 = EF , Ω = Υ1g(t ) +
∑N

i=1 Υ2i g(t − hi ).

We have 𝜃̇(t ) = N̄𝜃(t ) +
∑N

i=1 Nhi𝜃(t − hi )+
∑N

i=1 Ωi
3x(t −

hi ) + Ω1d (t ) + Ω2x(t ) + Ω4u(t ) + Ω.
For N̄ , Nhi , J , Jhi satisfying Equation (28) and with

no FDIAs, g(t ) = 0, Ω = 0, we obtain 𝜃̇(t ) = N̄𝜃(t ) +∑N

i=1 Nhi𝜃(t − hi ). This is a linear system with multiple time
delays and 𝜃(t ) will asymptotically converge to zero, (𝜃(t ) →

0), if the stability is guaranteed. This completes the proof of
Corollary 3. □

The residual generator is r (t ) = T 𝜃(t ) + Υx(t ) + Υ3g(t ).
When Υ = 0, r (t ) becomes r (t ) = T 𝜃(t ) + Υ3g(t ). Now,
according to Corollary 3, we propose a method using r (t ) to
detect FDIAs. When no FDIAs exist within the systems (Ω = 0
and Υ3g(t ) = 0) and Corollary 3 is satisfied, residual generator,
r (t ) → 0 as t → ∞. In contrast, when FDIAs exist in the sys-
tem, Ω ≠ 0 or Υ3g(t ) ≠ 0, and Corollary 3 is satisfied, r (t ) will
not assymtotically converge to 0, (r (t ) ↛ 0).



PHAM ET AL. 769

Corollary 4. Residual generator, r (t ) ↛ 0 as t → ∞ for any FDIAs,

if the following conditions are satisfied

Υ = 0, Diag
(
Υk

1 , Υk
2 , Υk

3

) ≠ 0, k = 1, .., 2N, (29)

where Υ1 = [Υ1
1 … Υ2N

1 ], Υk
1 = JF k − LS k, Υ2 = [Υ2i ], Υ2i =

[Υ1
2i

… Υ2N
2i

], Υk
2i

= JhiF
k, Υ3 = [Υ1

3 … Υ2N
3 ], Υk

3 = EF k. S k,

F k is kth columns of S and F .

Proof of Corollary 4. The proof for this Corollary can be obtained
by using a similar technique in Corollary 1, hence we omit here.
This completes Corollary 4 and Remark 4. □

4 DFO BASED DETECTOR SYNTHESIS

We now in the step to develop a procedure to synthesis the
unknown parameters of detector-i , Ti , Li , Ei , Ni , Nih, Ji , Jih,
Ji j and Hi in Equations (14)-(15). Let we introduce following
Lemmas 1 and 2 which are necessary for the synthesis proce-
dure of i .

Lemma 1 ([34]). We consider a linear equation X Ω1 = Ω2, X ∈

ℝn×p, Ω1 ∈ ℝp×m, Ω2 ∈ ℝn×m. There exists a solution X if and

only if

rank

([
Ω2
Ω1

])
= rank(Ω1), (30)

and X can be obtained as X = Ω2Ω
+
1 + Z (Ip − Ω1Ω

+
1 ) where

Ω+
1 is the Moore-Penrose inverse of Ω1, Z ∈ ℝn×p is an arbitrary

matrix.

Lemma 2 ([33]). We consider the homogenous linear equation

ΥΩ = 0, (31)

where Υ ∈ ℝn×m is an unknown matrix, Ω ∈ ℝm×p is a

known matrix.

The Equation (31) has nontrivial solutions if v < m, where

rank(Ω) = v and Υ can be taken from any rows of the following matrix

Ῡ =  (Ω), where  (Ω) is the matrix of row basis vectors for the row

nullspace of Ω such  (Ω)Ω = 0.

In this position of paper, we derive a stability condition for linear time

delay system Equation (20) which presents the DFO error, 𝜃̇i (t ) =

Ni𝜃i (t ) + Nih𝜃i (t − hi ). The stability condition is established by using

Lyaponov stability for time-delay system, Refine Jensen matrix inequality

[35] and free-weighting matrix technique.

Theorem 2. For given scalars hi , 𝛿i , and matrices Ni , Nih ∈ ℝqi×qi ,

system Equation (20) is asymptotically stable if there exist positive definite

matrices Pi , Qi , Ri ∈ ℝqi×qi , and a matrix Xi ∈ ℝqi×qi satisfying the

following matrix inequality

Λi = Λi1 + Λi2 + Λi3 + Λi4 < 0, (32)

where Λi1 = eT
i1Pi ei2 + eT

i2Piei1, Λi2 = eT
i1Qiei1 − eT

i3Qiei3 + eT
i2

(h2
i Ri )ei2, Λi3 = −T

i ii , Λi4 = ii +  T
i T

i , i =

(eT
i1 + 𝛿i e

T
i2 ),i = −Xiei2 + XiNiei1 + XiNihei3, eil = [0qi×lqi

I

0qi×(4−l )qi
], 0 ≤ l ≤ 4, i =

[T
i1 T

i2 T
i3

]T
, i1 = ei1 − ei3,

i = Diag(Ri , 3Ri , 5Ri ) i2 = ei1 + ei3 − 2ei4, i3 = ei1 −

ei3 + 6ei4 − 6ei5.

Proof of Theorem 2. We denote some following notations

𝜒i (t ) =
[
𝜃T

i (t ) 𝜃̇T
i (t ) 𝜒T

i1 (t ) 𝜒T
i2 (t ) 𝜒T

i3 (t )
]T

,𝜒i1(t ) = 𝜃i (t −

hi ), 𝜒i2(t ) =
1

hi

∫ t

t−hi
𝜃i (s)ds, 𝜒i3(t ) = 2∕h2

i
∫ 0

−hi
∫ t

t+s
𝜃i (u)duds.

We construct the Lyapunov-Krasovskii functional candi-

date: Vi (𝜃i (t ), t ) = 𝜃T
i (t )Pi𝜃i (t ) + ∫ t

t−hi
𝜃T

i (s)Qi𝜃i (s)ds +hi ∫ 0

−hi

∫ t

t+s
𝜃̇i

T
(u)Ri 𝜃̇i (u)duds.

By taking the derivative of Vi (𝜃i (t ), t ), we obtain V̇i (𝜃i (t ),
t ) = 𝜒T

i (t )(Λi1 + Λi2)𝜒i (t ) − hi ∫ t

t−hi
𝜃̇T

i (s)Ri 𝜃̇i (s)ds. Now we
use the refined Jensen inequality [35] to derive the fol-
lowing estimation −hi ∫ t

t−hi
𝜃̇T

i (s)Ri 𝜃̇i (s)ds ≤ 𝜒T
i (t )Λi3𝜒i (t ).

We apply free-weighting matrix for system Equation (20)
to obtain 2(𝜃T

i (t ) + 𝛿i 𝜃̇
T
i (t ))Xi × [Ni𝜃i (t ) + Nih𝜃i (t − hi ) −

𝜃̇i (t )] = 0. Adding the left-hand side of above equation to
V̇i (𝜃i (t ), t ), we have

V̇i (𝜃i (t ), t ) ≤ 𝜒i
T (t )Λi𝜒i (t ). (33)

If condition in Equation (32) holds if Λi < 0 then V̇ (𝜃i (t ), t ) <

0. Therefore, system Equation (20) is asymptotically stable. This
completes proof of Theorem 2. □

Now we are in the main stage of this section. In this step,
we solve the condition presented in Theorem 1 and corollary 1
for the exits of proposed detector, i . By solving these con-
ditions, the detector’s parameters (Ni , Nih, Ji , Jih, Ji j , Ti , Hi and
Ei ) can be obtained. To solve these conditions, above Lemma 1,
Lemma 2 and Theorem 2 will be used. For the ease of presen-
tation, we present the process of solving Equations (16), (17)
and (32) in a procedure of four main steps which can be imple-
mented by using various of computation tools.

Detector synthesis procedure:

Step 1: Solve Ωi1 = 0, Ωi4 = 0, Ωi5 = 0 in Theorem 1 to
obtain Li , Ji j , j = 1, … , N , j ≠ i, then Hi . Let we denote Ξi =[

Ξia 0
−Ξib Γi

]
, where Ξia = Diag(Ci1, … ,Ci (i−1),Ci (i+1) … ,CiN ),

Ci j ∈ ℝpi j ×ni , Ξib = [Ai1 … Ai (i−1) Ai (i+1) … AiN ], Ξic =

[Ji1 … Ji (i−1) Ji (i+1) … JiN ], Ψi = [Ξic Li ], p̄i =
∑N

j=1, j≠i
pi j .

From Ωi1 = 0 and Ω
j

i5 = 0, j ≠ i in Equations (16)-(17), we
obtain the following equality

ΨiΞi = 0, (34)

Equation (34) has solution if Ψi , if Ξi satisfies Lemma 2. To do
that, we use Matlab software with “rank” command to check
rank(Ξi ) < ( p̄i + ni ), then Ψi can be obtained by taking some
rows of Ψ̂i =  (Ξi ). Here the DFO parametter, Ji j and matrix
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Li can be obtained from Ψi . Finally, Hi is obtained from Ωi4 =

0 in Equations (16) and (17), Hi = LiBi .
Step 2: To solve conditions of Ωi2 and Ωi3 in Theorem 1 for

the existence of Ni , Nih, Ji , Jih. We denote Φi2 =
[
LiAii LiAiih

]
and Φi1 = diag(Ξ̄i , Ξ̄i ), where Ξ̄i =

[
LT

i C T
i

]T
. From Ωi2 = 0

and Ωi3 = 0 in Equations (16)-(17), we obtain the following
results

[Ni Ji Nih Jih]Φi1 = Φi2. (35)

According to Lemma 1, Equation (35) has solution if it satis-

fies the following condition of matrix rank. rank
[
ΦT

i2 ΦT
i1

]T
=

rank(Φi1). If this condition of rank Φi2, Φi1 are satisfied, detec-
tor’s matrices Ni , Nih Ji , Jih can be rewritten in the following
structure

= Φi2Φ
+
i1 + Zi (I2(pi+qi ) − Φi1Φ

+
i1), (36)

where Ni = Ni1 + ZiNi2, Nih = Nih1 + ZiNih2, Ji = Ji01 +

ZiJi02, Jih = Jih1 + ZiJih2, Φ+
i1 is the Moore–Penrose pseudoin-

verse of Φi1. Zi will be obtained later and Ni1, Ni2, Nih1, Nih2,
Ji1, Ji2, Jih1, Jih2 are

Ni1 = Φi2Φ
+
i1𝜆i1, Ni2 = (I2pi+2qi

− Φi1Φ
+
i1)𝜆i1,

Ji01 = Φi2Φ
+
i1𝜆i2, Ji02 = (I2pi+2qi

− Φi1Φ
+
i1)𝜆i2,

Nih1 = Φi2Φ
+
i1𝜆i3, Nih2 = (I2pi+2qi

− Φi1Φ
+
i1)𝜆i3,

Jih1 = Φi2Φ
+
i1𝜆i4, Jih2 = (I2pi+2qi

− Φi1Φ
+
i1)𝜆i4,

𝜆i1 = [Iqi
0qi×(qi+2pi )]

T , 𝜆i2 = [0pi×qi
Ipi

0pi×(qi+pi )]
T ,

𝜆i3 = [0qi×(qi+pi ) Iqi
0qi×pi

]T , 𝜆i4 = [0pi×(2qi+pi ) Ipi
]T .

As can be seen that, after some calculations, we have presented
Ni , Nih by some matrices where Ni1, N2i , Nih1, Nih2 are known
and Zi need be calculated. Then, the equation for DFO error,
𝜃i (t ) in Equation (20) becomes the following construction

𝜃̇i (t ) = (Ni1 + ZiNi2)𝜃i (t ) + (Nih1 + ZiNih2)𝜃i (t − hi ). (37)

Step 3: we derive Zi such Equation (37) is asymptotically stable,
then we obtain Ni , Nih, Ji , Jih from Equation (37). To do that,
we develop the following Corollary 5 for synthesising Zi . The
corollary 5 is derived according to Theorem 2. Roughly speak-
ing, corollary 5 is a presentation of Theorem 2 in a tractable
LMI form, therefore, which can be solved automatically by LMI
solver in MATLAB.

Corollary 5. For given positive scalars hi and 𝛿i , system Equation (37)

is asymptotically stable if there exist positive definite matrices Pi , Qi , Ri

∈ ℝqi×qi and matrices Xi , Yi with appropriate dimension satisfying the

following LMI

Λ̄i = Λi1 + Λi2 + Λi3 + Λ̄i4 < 0, (38)

FIGURE 5 Detector synthesis procedure

where Λ̄i4 = i̄i + ̄ T
i T

i , ̄i = −Xiei2 + XiNi1ei1 +

YiNi2ei1 + XiNih1ei3 + YiNih2ei3. eil , Λi1, Λi2, Λi3, i are from

the Theorem 2.

Proof of Corollary 5. Let we define Yi = XiZi , the apply Ni =

Ni1 + ZiNi2, Nih = Nih1 + ZiNih2, we can obtain Equation
(32). It shows that LMI Equation (32) hold if LMI Equation
(38) holds. This completes proof of Corollary 5. □

By using robust control toolbox in Malab to solve the LMI
Equation (38), Zi and detector gains Ni , Nih, Ji , Jih can be
obtained as

Zi =X −1
i Yi , Ni = Ni1 + ZiNi2, Nih = Nih1 + ZiNih2,

Ji =Ji01 + ZiJi02, Jih = Jih1 + ZiJih2.
(39)

This completes Step 3 of the procedure.
Step 4: We solve condition of Υi = 0 in Corollary 1 to obtain

residual generator gains Ti and Ei . Let we denote Σi =
[
Ti Ei

]
.

From Ξ̄i derived in Step 2 of this procedure and the condition
of Υi = 0 in Equation (23), we obtain the following result

ΣiΞ̄i = 0. (40)

From Lemma 2, we use MATLAB software test rank(Ξ̄i ) <

qi + pi . Thus Ti , Ei are taken from rows of Σ̂i =  (Ξ̄i ).
Finally, we test the conditions Diag (Υ1

i1, Υ1
i2, Υ1

i3) ≠ 0,
Diag (Υ2

i1, Υ2
i2, Υ2

i3) ≠ 0 in Equation (23). If all two condi-
tions are not satisfied, the residual generator is insensitive to
both FDIAs whereas if one of them is satisfied, the residual
generator is sensitive to one FDIA and insensitive to other, go
back to choose another value of Li in Step 1. Otherwise, this
completes the detector synthesis procedure. The procedure is
demonstrated in Figure 5.
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FIGURE 6 Architecture of three-are ISGs with DFO detectors

FIGURE 7 Intermittent of RES powers and demand: (a) d1(t ), (b) d2(t )

5 RESULTS AND DISCUSSION

5.1 Stability of LFC for ISGs

5.1.1 LFC of time delay ISGs

In this section, a three-area ISG with reheated thermal power
plants, delayed EVs and RES are used for demonstrating
our detection method. The intermittent of RES and demand
changes are formulated as following time-varying functions
di (t ) = d0i + d1i sin(𝜙1i t ) + d2i cos(𝜙2i t ) puMW, where d0i , d1i ,
d2i , 𝜙1i , 𝜙2i , i = 1, 2, 3 are the magnitudes of load demand,
RES and the frequencies of the functions as follows d01 = 0.08,

d11 = 0.01, d21 = 0.01, 𝜙11 =
√

0.002, 𝜙21 =
√

0.007, d02 =

0.05, d12 = 0.005, d22 = 0.01, 𝜙12 =
√

0.003, 𝜙22 =
√

0.006,
d03 = 0.13, d13 = 0.01, d23 = 0.005, 𝜙13 =

√
0.005, 𝜙23 =√

0.004. The demonstration of d1(t ) and d2(t ) are provided in
Figure 6. Other parameters of studied systems can be gath-
ered from Appendix. The system control input signals, ui (t ),
i = 1, 2, 3 can be obtained by following computation ui (t ) =

Ki1 fi (t ) + Ki2Ptie,i (t ) + Ki3𝜗i (t ), where Ki2 = 0.1, Ki1 = biKi2 =

0.0425, Ki3 = −0.1 are LFC controller gains. Time delays, hi =

h = 0.1s.
We undertook Scenario I to show that above controller is ade-

quate to achieve the main objectives of LFC in normal oper-
ation of the ISG (without FDIAs, g(t ) = 0). Figures 8 and 9
illustrate the responses of frequency deviations, fi (t ), and inter-
change power deviations, Ptie,i (t ), i = 1, 2, 3 of closed-loop sys-
tems for the duration of 180 seconds (from the second of 140
to 320) of simulation. These simulation results indicate that fi (t )
and Ptie,i (t ) are brought back in very small bounds of desirable
value, f1(t ) ∈ [−0.0062, 0.0039] Hz, f2(t ) ∈ [−0.0077, 0.0055]

FIGURE 8 The responses of fi (t ) (Scenario I): (a) f1(t ), (b) f2(t ), (c) f3(t )

FIGURE 9 The responses of Ptie,i (t ) (Scenario I): (a) Ptie,1(t ), (B) Ptie,2(t ),
(C) Ptie,3(t )

Hz, f3(t ) ∈ [−0.006, 0.0029] Hz, Ptie,i (t ), i = 1, 2, 3 belongs to a
range of [−0.01, 0.01] puMW which is corresponding to 10% of
fluctuations on RES and demand.

5.1.2 Stability and stabilisation for
time-delay ISGs

We consider the stability of time-delay ISGs embedded LFC in
this subsection. Firstly, the global control input signal, u(t ) can
be rewritten in the form of u(t ) = KCx(t ) and the state space
model of ISGs without FDIAs is

ẋ(t ) = Āx(t ) + Āhx(t − h) + Γd (t ). (41)

In system Equation (41), Āh =
∑N

i=1 Ahi , Ā = A + BKC where
A, Ahi , B, Γ are defined in Equation (12). For ease of presen-
tation, we consider hi = h for all local SGs. We denote z̃ (t ) =

Ẽx(t ), z̃ (t ) ∈ ℝv , Ẽ ∈ ℝv×n is the observation vector. This
vector is for the evaluation of system robust performance, 𝛾,
presented in the relationship between the observation vector,
z̃ (t ) and d (t ) (the reader can refer to [20], [17] for the theory of
robust stabilisation). For a given controller gain K , the following
Theorem 3 presents a sufficient condition under which system
Equation (41) is asymptotically stable with a pre-selected robust
performance index (RPI), 𝛾.

Theorem 3. For given positive scalars h, 𝛾, and 𝜆̃, system Equation

(41) is asymptotically stable with a given RPI, 𝛾, if there exist symmetric

positive definite matrices P̃ , Q̃, R̃ ∈ ℝn×n, and X̃ ∈ ℝn×n satisfying the

following matrix inequality

Λ̃ =

⎡⎢⎢⎣
Λ̃11 Λ̃12 Λ̃13

Λ̃22 0
∗ Λ̃33

⎤⎥⎥⎦ < 0, (42)
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where Λ̃11 =
∑3

j=0 Θ j , Λ̃12 =  Γ, Λ̃13 = ẽT
0 ẼT , Ř = h2R̃,

Θ0 = ẽT
0 P̃ ẽ1 + ẽT

1 P̃ ẽ0, ̃ = diag(R̃, R̃, R̃), Λ̃22 = −𝛾2Ir ,

Θ1 = ẽT
0 Q̃ẽ0 − ẽT

2 Q̃ẽ2 + ẽT
1 Řẽ1, Θ2 = −F̃ T ̃F̃ , Λ̃33 = −Iv,

Θ3 =  + T  T ,  = (ẽT
0 + 𝜆̃ẽT

1 )X̃ T , 𝜒̄(t ) =[
xT (t ) ẋT (t ) xT (t − h) 𝜒̄T

1 (t ) 𝜒̄T
2 (t )

]T
,  = −ẽ1 + Āẽ0 +

Āhẽ2, 𝜒̄1(t ) =
1

h
∫ t

t−h
x(s)ds, ẽl = [0(n)×l (n) I 0(n)×(4−l )(n)], 0 ≤

l ≤ 4, F̃ =

⎡⎢⎢⎣
ẽ0 − ẽ2

ẽ0 + ẽ2 − 2ẽ3
ẽ0 − ẽ2 + 6ẽ3 − 6ẽ4

⎤⎥⎥⎦, 𝜒̄2(t ) =
2

h2
∫ t

t−h
∫ t

s
x(u)duds.

Proof of Theorem 3. Let P̃ , Q̃, R̃ satisfy Equation (42). We con-
struct the following Lyapunov–Krasovskii functional candi-
date Ṽ (x(t ), t ) = Ṽ1(t ) + Ṽ2(t ) + Ṽ3(t ), Ṽ1(t ) = xT (t )P̃x(t ),

Ṽ2(t )= ∫ t

t−h
xT (s)Q̃x(s)ds, Ṽ3(t ) = h ∫ 0

−h
∫ t

t+s
ẋT (u)R̃ẋ(u)duds.

Then, we obtain ̇̃V (x(t ), t ) = 𝜒̄T (t )(Θ0 + Θ1)𝜒̄(t ) + J ,
where J = −h ∫ t

t−h
ẋT (s)R̃ẋ(s)ds. By using refined Jensen

inequality, J ≤ 𝜒̄T (t )Θ2𝜒̄(t ). We use free-weighting matrix
technique as follows 𝜒T (t )Θ3𝜒(t )T + 𝜒̄T (t ) Γd (t ) +

d (t )T ΓT  T 𝜒̄(t ) = 0.
Adding the left-hand side of the above equation to ̇̃V (t ), we

have ̇̃V (x(t ), t ) + z̃T (t )z̃ (t ) − 𝛾2d T (t )d (t ) ≤ 𝜒̃T
0 (t )Λ̃0𝜒̃(t ),

where Λ̃0 = {
[

Λ̃11 Λ̃12
Λ̃22

]
+ ̃T ̃ }, 𝜒̃(t ) = [𝜒̄T (t ) d T (t )]T

and ̃ = [Ẽ 0]. By using Schur complement, the condition
Equation (42) holds if and only if Π < 0. This leads to

̇̃V (x(t ), t ) + z̃T (t )z̃ (t ) − 𝛾2d T (t )d (t ) ≤ 0. (43)

Now, we are in the stage to prove that system Equa-
tion (41) is asymptotically stable with a RPI 𝛾. For d (t ) =

0, Equation (43) implies that ̇̃V (t ) is negative definite,
and thus system Equation (41) is asymptotically stable.
For d (t ) ≠ 0, integrating both sides of Equation (43) from
zero to t f > 0, we obtain Ṽ (t f ) − Ṽ (0) + ∫ t f

0
z̃T (t )z̃ (t )dt ≤

𝛾2 ∫ t f

0
d T (t )d (t )dt ≤ 𝛾2 ∫ ∞

0
d T (t )d (t )dt = 𝛾2‖d‖2. Therefore,

if Equation (42) holds, the linear time-delay system with distur-
bance in Equation (41) will be asymptotically stable with a given
RPI, 𝛾. The proof of Theorem 3 is completed. □

As can be seen that, by using the above condition Equation
(42), the stability of a closed-loop ISGs Equation (41) with pre-
determined controller can be considered. This stability condi-
tion Equation (42) can be extended to cater for the design of a
robust controller to stabilize ISGs asymptotically with a given
RPI, 𝛾.

5.1.3 Stability of ISGs subjects to FDIAs

In this part, we will consider the stability of ISGs with FDIAs.
Let we reform the state space model of IGSs from Equations
(11) and (41) with the use of a static out feedback controller,

FIGURE 10 FDIAs on ACE: (a) g11(t ), (b) g21(t ), (c) g31(t )

FIGURE 11 FDIAs on EVs: (a) g12(t ), (b) g22(t ), (c) g32(t )

u(t ) = Ky(t ).

ẋ(t ) = Ax(t ) +

N∑
j=1, j≠i

Ahix(t − hi ) + Sg(t ) + Γd (t )

+ BK (Cx(t ) + Fg(t )) (44)

= Āx(t ) + Āhx(t − h) + Γgdg(t ),

where Γg = [Γ BKF + S ], dg = [d T gT ]. Note that d (t ) includes
REs fluctuation and g(t ) is FDIAs vector. Ā, Āh is defined in
Equation (41) for case hi = h.

It can be observed that, for a given controller matrix gain K ,
matrices Ag, Γg are known, system Equation (44) is presented in
the form of a time-delay system with disturbance, which is sim-
ilar to system Equation (41). Therefore, by applying the Theo-
rem 3 for the system Equation (44) with known system matrices
Ā, Āh and Γg, a stability of systems Equation (44) can be tested
with a given RPI, 𝛾̄. It is noted that 𝛾̄ represents the relationship
between the observation vector, z̃ (t ) and dg(t ) which combines
d (t ) and g(t ).

5.2 Influences of FDIAs on LFC
performance of ISGs

We take Scenario II of simulation to show the unfavourable
impacts of FDIAs, gi1(t ), gi2(t ), i = 1, 2, 3, on the performance
of closed-loop ISG. For demonstrative goal, FDIAs are con-
sidered as time-varying functions of gi j (t ) = ai j | sin(

√
𝛿i j t )|+

âi j |(cos
√

𝛿̂i j t )|, where ai j , âi j ,
√

𝛿i j ,
√

𝛿̂i j are magnitudes and fre-
quencies of sin and cos components. The FDIAs and their
parameters are shown in Figures 10 and 11 and be tabulated
in Table 1.

In this Scenario II, FDIAs happen in durations of 100 sec-
onds for the six cases (Scenario II1 to Scenario II6). The results
of analysis are obtained by using MATAB software version
2019b with the E15 Thinkpad Lenovo computer. The model
of three-area ISGs is built by MALAB programming in m-file
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TABLE 1 FDIAs parameters in six case studies of Scenario II

Scenario II1 II2 II3 II4 II5 II6

g11(t ) g12(t ) g21(t ) g22(t ) g31(t ) g32(t )

Start (s) 150 160 170 180 190 200

End (s) 250 260 270 280 290 300

ai j 0.2 0.06 0.4 0.03 0.3 0.04

âi j 0.6 0.04 0.1 0.05 0.3 0.04

𝛿i j 0.07 0.031 0.21 0.017 0.09 0.005

𝛿̂i j 0.13 0.003 0.3 0.002 0.11 0.033

FDIAs function: gi j (t ) = |ai j sin(
√

𝛿i j t )| + |âi j (cos
√

𝛿̂i j t )|

FIGURE 12 Abnormal responses of f1(t ) to gi1(t ): (a) Scenario II1, (b)
Scenario II3, (c) Scenario II5

which is convenient to observe the simulated signals for class of
linear time-delay systems. The simulation step time is 0.01 s.

Figure 12 illustrates the responses of f1(t ) in abnormal opera-
tion of the ISG, where each FDIAs, gi1(t ), i = 1, 2, 3 (FDIAs on
computation of ACEs) are considered. It can be concluded that
an individual FDIA, gi1(t ) at a local power Area ith can degrade
not only the performance of local grid but also the neighbour-
ing power areas. All three FDIAs, gi1(t ), i = 1, 2, 3 on computa-
tion of ACEi (t ) (Scenarios II1, II3 and II5) lead to unfavourable
oscillations of f1(t ) during these times. Furthermore, after the
FDIAs have left, f1(t ), was still oscillated from some seconds.
By g11(t ), the frequency deviation, f1(t ) ∈ [−0.058, 0.043] Hz,
the deviation has increased ten to fourteen times compared
to Scenario I where f1(t ) ∈ [−0.0062, 0.0039] Hz . For neigh-
bouring power areas, the FDIAs of g21(t ), g31(t ) lead to the
magnitude of fluctuation in frequency rises three time, f1(t ) ∈

[−0.011, 0.011] Hz, to six times, f1(t ) ∈ [−0.015, 0.08] Hz, than
f1(t ) obtained in Scenario I (normal operation of the ISG).

Regarding to EVs, Figure 13 shows LFC performance of the
closed-loop ISG in abnormal operations where each FDIAs,
gi2(t ), i = 1, 2, 3 (the FDIAs on aggregators of EVs) are con-
sidered. It can be seen from (Scenarios II2, II4 and II6) that
each FDIAs has made adverse impacts and leads to the low-
quality in performance of f1(t ). For example, in Scenario II2,
the injection of g12(t ) FDIAs leads to f1(t ) fluctuates six times
more than Scenario I. After the FDIA finished, the frequency is

FIGURE 13 Abnormal responses of f1(t ) to gi2(t ): (a) Scenario II2, (b)
Scenario II4, (c) Scenario II6

still oscillated. For FDIAs from neighbouring areas, the occur-
rence of g22(t ), g23(t ) FDIAs lead to the magnitudes of f1(t )
changes four to seven times than the result obtained in Sce-
nario I. According to these simulations results, it is clear that
the adverse impacts of FDIAs happened on both ACEs and
aggregators of EVs are important and need to be considered for
the efficient LFC operation of ISGs. In the next section of this
paper, we will synthesize our proposed DFO based detectors
to identify, isolate FDIAs. The co-operation of DFO detectors
and isolators not only differentiate the FDIAs for between sub-
systems but also differentiate FDIAs of ACE computations and
EVs aggregators within a local SG.

5.3 FDIAs detector synthesis

In this subsection, we are in the stage of synthesising the DFO
detector gains, N1, Nih, Ji , Ji j , Hi , Ti , Ei proposed in Sec-
tions 2–4. To do that, three local DOF detectors are designed
and located at three local SGs to implement the task of detect-
ing local FDIAs and triggering the alarm (or LED). The simu-
lation data, time delays, RES fluctuations, and FDIAs are from
Scenarios I-II.

We take Scenario III with the main focus on the design of
local power Area-1st, 1.The main task of the detector, 1, is
to detect the local FDIAs, g11(t ) and g12(t ). The ultimate detec-
tive goals of 1, are explained as follows: (i) if the alarm/LED
is ON, there is at least one FDIAs, g11(t ) or g12(t ), happened;
(ii) if the alarm/LED is OFF, there is no FDIAs of g11(t ) or
g12(t ) happened at the power Area-1st. On the contrary, regard-
ing to the existence of attacks: (iii) if any attacks of g11(t ) and
g12(t ) happened, the LED is ON; iv) if no attack of g11(t ) and
g12(t ) happened, the LED is OFF. System matrices A11, A11h,
A12, A13, B1, C1, C12, C13, Γ1, F11, F12, S11, S12 are given in
the Appendix. Time delay h1 = 0.1 s. There are six informa-
tion comprising four local measurements and two remote sig-
nals required from remote power Areas 2st and 3rd are required
for obtaining the gains of 1. By employing the synthesis pro-
cedure (Section 4), we obtained L1, J12, J13 in Step 1 and N11,
N12, N1h1, N1h2, J101, J102, J1h1, J1h2 in Step 3 of the algorithm.
All of these steps can be easily implemented by using Matlab
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software with basic algebra. In Step 3, we solve Equation (38)
to obtain Z1, here (LMI) tool in Matlab robust control toolbox
with an optimisation process containing searching parameter of
𝛿 = 0.6 are used. Accordingly, 1-detector’s matrix gains, N1,
N1h, J1, J1h, J12, J13 can be obtained as

N1 =

⎡⎢⎢⎣
−1.113275 0 0

0 −1.113275 0
0 0 −1.113275

⎤⎥⎥⎦ ,

N1h =

⎡⎢⎢⎣
−0.117131 0 0

0 −0.117131 0
0 0 −0.117131

⎤⎥⎥⎦ , H1 =

⎡⎢⎢⎣
0
0
0

⎤⎥⎥⎦ ,

J1 =

⎡⎢⎢⎢⎣
0 0.113275 0 0

0.4905 0 1.113275 0
0.4250 0 1 1.113275

0

⎤⎥⎥⎥⎦ ,

J1h =

⎡⎢⎢⎣
−0.833333 0.117131 0 0

0 0 0.117131 0
0 0 0 0.117131

⎤⎥⎥⎦ ,

J12 =

⎡⎢⎢⎣
0

−0.2725
0

⎤⎥⎥⎦ , J13 =

⎡⎢⎢⎣
0

−0.2180
0

⎤⎥⎥⎦ .

As can be seen that N1 is three rows with full rank, there-
fore the order of the design DFO detector is third orders,
which is smaller size than the order of FUO based detectors.
We will discuss the advantage later. Now, we consider build-
ing the residual generator, r1(t ) for detector 1. The form of
r1(t ) defined as r1(t ) = T1z1(t ) + E1y1(t ) from Equation (14),
where z1(t ) is from the designed DFOs and pair matrices
(T1, E1) can be obtained from Step 4 of the synthesis algo-
rithm in Section 4. Theoretically, r (t ) ≠ 0 is enough for the
FDIAs detection. In practical implementation a comparable
value, r∗

1 (t ) = |r1(t )| should be developed and compared to a
pre-determined values of system threshold r̄1(t ) to trigger the
alarm or turn on the LED. By employing Step 4 of the algo-
rithm, we have found that there exist two values of residual
generators, r1a (t ) and r1b(t ), satisfying our conditions with two
solution for pairs of (T1a, E1a ) and (T1b, E1b ). Therefore, two
residual values can be built as r1a (t ) = T1az1(t ) + E1ay1(t ) and
r1b(t ) = T1bz1(t ) + E1by1(t ).

However, by taking many tests, we recognised that the resid-
ual generators, r1a (t ) and r1b(t ), may clearly reacts to one
FDIAs but not strongly reacts to the other ones. In order to
tackle the gap between the theoretical calculations and prac-
tical observations, we have taken the following consideration.
To ensure the detector, 1, can detect all two FDIAs clearly,
we develop the comparable value, r∗

1 (t ) as follows r∗
1 (t ) =√

(r1a (t ))2 + (r1b(t ))2 and undertake the comparison between
r∗
1 (t ) and a threshold r̄1 = 10−l to trigger the alarm. The

schematic implementation of r∗(t ) is shown in Figure 14.
Figure 15 presents r∗

1 (t ) and the alarm status when no attacks
occurred to the local power Area 1st, g11(t ) = 0 and g12(t ) = 0,

FIGURE 14 Schematic implementation of r∗
1 (t )

FIGURE 15 Detector responses when no FDIAs in the system (Scenario
III1): (a) r∗

1 (t ), (b) Triggered alarm status

(Scenario III1). As can be observed from Figure 15, r∗
1 (t ) = 0

and the Alarm (LED) is “OFF” with status “0”. On the other
hand, Figures 16 and 17 illustrate r∗

1 (t ) and Alarm status when
each attack, g11(t ) and g12(t ), happened at the local power Area
1st (Scenarios III2 to III3). As can be seen from Figures 16 and
17, when r∗

1 (t ) is clearly larger than threshold, the proposed
detector can recognize g11(t ), g12(t ) clearly. Regarding to the
alarm status, the alarm is triggered to On (set to be 1) in Sce-
narios III2 to III3. For example, g11(t ) ≠ 0 in scenario III2, the
alarm/LED is zero before the attack happened and triggered
during 150 to 250 s period. These results also indicate that after
the FDIAs has left, the alarm status go back to zeros after some
seconds of settling time.

5.4 FDIAs isolation scheme

The isolation of each local FDIA positions in the local power
areas is also very important. The information of each local
FDIA position is used to improve monitoring activities of local
power girds (further action to handle the attacks). By using

FIGURE 16 DFO detector responses to g11(t ) (Scenario III2): (a) r∗
1 (t ),

(b) Triggered alarm status

FIGURE 17 DFO detector responses to g12(t ) (Scenario III3): (a) r∗
1 (t ),

(b) Triggered alarm status
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TABLE 2 Isolating each local FDIAs, gi1(t ) and gi2(t )

Local attacks Detector 1 Detector 11 Detector 12

No FDIA OFF OFF OFF

g12(t ) ON OFF ON

g11(t ) ON ON OFF

FIGURE 18 11 responses to FDIAs: (a) g11(t ), (b) g12(t )

distributed detection methods, each local detector can realise
the existence of local FDIA at local power areas and the FDIA
in other power Areas do not impact to the performance of
the local detector. It implies that the local FDIA is isolated
to others from neighbouring areas. In this part, we further to
isolate each local FDIAs at a local power area. This means
the isolators differentiates the existences of gi1(t ) and gi2(t ).
The main concept bases on the design the detector (residual
generator-based observer) that insensitively reacts to one FDIA
and sensitively reacts the remaining of FDIA. To do that,
we develop two more local detectors: (i) 11 is insensitive to
g12(t ) and sensitive to g11(t ); (ii) 12 is insensitive to g11(t ) and
sensitive to g12(t ). By using detectors, 1, 11 and 12, the
isolation of two local FDIAs is obtained (see Table 2).

In order to show the effectiveness of the proposed isola-
tion schemes, we undertook the Scenario IV. At first, by using
apply Remark 3 and detector design in Section 3, the two second
order DFO based detectors, 11, 12 are obtained to recognize
each local individual FID, g11(t ) and g12(t ). Figures 18 and 19
show the Alarm status of each detector to the existence of local
FDIAs, g11(t ), g12(t ). As can be seen that, the 11 is insensi-
tive to g11(t ) while it reacts to g12(t ) clearly. It is an important
objective of our paper.

5.5 Advantages of DFO scheme

As we have discussed in the introduction, the adverse impacts of
REs intermittent need to be eliminated in the design of detec-
tors. In Theorem 1 (see Equations (16) and (17)), the constraint
of Ωi1 = 0 has been added to ensure that the variation in high
frequency of REs will not impact the performance of detector.

FIGURE 19 12 responses to FDIAs: (a) g11(t ), (b) g12(t )

FIGURE 20 Schematic implementation of the CFO based detector

FIGURE 21 CFO Detector responses to g11(t ) (Scenario V): (a) r∗ (t ), (b)
triggered alarm status

Indeed, the above section of detector synthesis has shown that
advantage. By employing the constraint of Ωi5, Ωi6 to guarantee
that the neighbouring FDIAs does not convert into the resid-
ual of generator, therefore, it is clear that our DFO detector is
insensitive to those remote FDIAs. On the other hand, our pro-
posed DFOs detector scheme is a distributed architecture and
having advantage of minimum orders which are the main pre-
sentation in this subsection.

5.5.1 Distributed implemetation

The main characteristic of our proposed scheme is a distributed
structure. By this, a detector of low order is located at each area
of a SG to detect the local FDIAs only rather than to detect
all FIDAs within the global power grid based on a centralised
detector leading to the convenience of easy implementation. To
verify that, in this subsection, we consider CFO based detector
to recognise all FDIAs within SGs. According to the Remark 3
in Section 2 and a procedure which is similar to Section 4, a
sixth-order CFO detector can be obtained. The schematic of
implementation of CFOs detector are given in Figure 20.

Clearly, CFO detector requires the access of large number of
instant information of control signals and measurements con-
temporarily. In contrast, the proposed DFO detector needs less
information so that less cost of implementation. Furthermore,
CFO detector requires a large central facility which can be sen-
sitive to malicious incidents. Similar to the processing of build-
ing comparable value for DFO detector, to avoid some sensi-
tivities of practical calculation, the global centralised compara-
ble value of r∗ is computed based on six residual generators,

r∗ =
√∑6

j=1(r j (t ))2. Figures 21 and 22 (Scenario V) show the
performance of the CFO detector. As can be seen that, the CFO
detector can implement the task of detecting FDIAs, g11(t ) and
g12(t ). However, it is noted that, it has disadvantage as we have
discussed above.
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FIGURE 22 CFO detector responses to g11(t ) (Scenario V): (a) r∗ (t ), (b)
triggered alarm status

FIGURE 23 CFO Detector responses to g12(t ) in (J-incident): (a) r∗ (t ),
(b) triggered alarm status

In the following part, we conduct Scenario VI to consider
the situation that the centralised facility of CFO detector is
impacted by malicious incidents. For example, CFO detector’s
gains of N , J , are destroyed and considered as null matrix from
the seconds of 100 to 400. It is noted that the whole ISGs
now have only one detector. The performance of CFO detector
under malicious incidents of N and J are respectively shown in
Figures 23 and 24. From these results of Scenario VI, it is clear
that when the central facility of the CFOs detector operates
under the abnormal of malicious incidents, the performance of
detector is degraded or further destroyed leading to the incor-
rect activities in implementing the task of detecting g12(t ), i.e.
the alarm operates incorrectly.

5.5.2 Minimum-order detector

Another advantage of our detection scheme is that our detector
is reduced order (small size and weigh). The order of our DFO
detector is determined according to the number of independent
rows of Li , further, the rank of matrix Ni . Therefore, to mini-
mize the size of detector, number of rows of matrix Li should be
minimized. This purpose can be achieved by considering Step
1 of the procedure. In this step, Li is selected to satisfy the
condition Equation (34) as ΨiΞi = 0, where Ψi contains Li as
Ψi =

[
Ξic Li

]
, and Ξic are given in Step 1. In previous section,

by obtaining Ψi and further Li has three rows and third-order
DFO detector is designed. By minimizing the number of rows
of Ψi , a second-order DFO detector can be obtained. There-

FIGURE 24 CFO Detector responses to g12(t ) in (N-incident): (a) r∗ (t ),
(b) triggered alarm status

FIGURE 25 CFUO detector responses to g11(t ) (Scenario VII): (a) r∗ (t ),
(b) triggered alarm status

FIGURE 26 CFUO detector responses to g12(t ) (Scenario VII): (a) r∗ (t ),
(b) triggered alarm status

fore, our detection method can achieve a very small size of the
detector. This is the important motivation behind our research.

In order to further highlight the advantages of FOs, we use
full-order state observer to design CFUO detector and compare
to the CFO detector. The structure of unknown input CFUO
has been extensively considered in [30] and the CFUO detector
can be designed from chapter 2 in [30] and our procedure in
Section 4. Here, the CFUO comparable signal is built as r∗(t ) =|y(t ) − C x̂(t )| where x̂(t ) is the estimation of the state vector
x(t ). For a three-area ISG, the order of CFUO based detector
is always equal to the number of the state variables which is 20.
This order is significantly higher than sixth-order of CFO detec-
tor (presented in Section 5.5.1) and third-order DFO detector
(presented in Section 5.3) and second-order DFO detector (in
above discussion). Figures 25 and 26 show the performance of
CFUO based detector subjects to FDIAs, g11(t ), g12(t ). As can
be seen that, the observer can implement the task of detecting
FDIAs, however, as we have presented, the order of this
observer is significant high leading to high cost of computation.

With regard to eigenvalue, let we consider ISGs without time-
delay and the DFOs detector for Area-1st is

r1(t ) = T1z1(t ) + E1y1(t ),

ż1(t ) = N1z1(t ) + J1y1(t ) + H1u1(t ) + J12 ȳ2(t ) + J13 ȳ3(t ),
(45)

where N1, J1, J12, J13, T1, E1 are detectors’ gains. It is noted
that N1h, J1h are not considered due to the invalid of time-delay.
By using similar technique in Section 3, a DFOs based detec-
tor without time-delay consideration can be obtained (we call
it as ̄1). Without FDIAs consideration, the observer error is
𝜃̇1(t ) = N1𝜃1(t ). Now we combine state space model of origi-
nal IGSs with DFOs as follows[

ẋ(t )
𝜃̇1(t )

]
=

[
Ã 0
0 N1

] [
x(t )
𝜃1(t )

]
+

[
Γ

0

]
d (t )

= AN xN (t ) + ΓN d (t ). (46)

where Ã = Ā + Āh. Ā and Āh are defined in Equation (44).
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FIGURE 27 Responses of f1(t ) under FIDAs for different 𝜌ei

As can be seen that the eigenvalues AN =
[

Ã 0
0 N1

]
combines

the eigenvalues of Ã and eigenvalues of N1. By using eig func-
tion in MATLAB, we obtain the similar results.

5.6 EVs frequency support analysis

In this part, we undertake an analysis on the contribution of
EVs to the frequency regulation. In this paper, EVs participate
into LFC via the operation of droop loop which mimics the
operation of power plant’s primary frequency regulation. The
contribution of EVs into the frequency service is presented
by EVs droop constant 𝜌ei . Throughout of all previous parts,
𝜌ei = 𝜌̂ei∕Rgi , where 𝜌̂ei = 2, hence EVs contribute

𝜌ei

(𝜌ei+1∕Rgi )
=

67% into the services. Under the impacts of FDIAs g11(t )
and g12(t ), the system frequency, f1(t ) belongs to the range of
[−0.058 Hz; 0.043 Hz] and [−0.061 Hz; 0.034 Hz] respectively.
By employing the stability condition presented in subsection
5.1, the maximum value of 𝜌ei while the system still be stable
is around 3∕Rgi , which presents 75% of frequency service.

To emphasis on the effect of EVs contribution in abnor-
mal operation of FDIAs, we observe the systems performance
under abnormal operations subjects to g11(t ) and g12(t ) when
𝜌̂ei changes. By adjusting the values of 𝜌̂ei from 0.1 to 1, the
contribution of EVs is from 9% to 50%. Figure 27 shows the
responses of f1(t ) in some abnormal operations. As can be seen
that, under the impacts of FIDAs, for 𝜌ei smaller than 3∕Rgi ,
better performance of f1(t ) can be achieved with more contri-
butions of EVs.

For the case of g11(t ) ≠ 0, (iii) (Scenario VIII1): f1(t ) ∈

[−0.068; 0.049] Hz EVs contributes 50% of the service, iv) (Sce-
nario VIII2: f1(t ) ∈ [−0.079; 0.064] Hz while EVs contributes
9%. On the other hand, for the case of g12(t ) ≠ 0, (i) (Scenario
VIII3): f1(t ) ∈ [−0.074; 0.043] Hz while EVs contributes 50%

of the service, (ii) (Scenario VIII4: f1(t ) ∈ [−0.088; 0.076] Hz
while EVs contributes 9%.

In summary, with extensive analysis and evaluation through
Section 5, we have demonstrated the capability of our proposed
DFO based detection scheme.

6 CONCLUSION

In this paper, the issue of FDIAs on LFC of ISGs has been
considered. A new mathematic representation of ISGs incor-
porated FDIAs, intermittent of RES, aggregated EVs with
communication delays has been proposed. With the goal of
detecting and isolating FDIAs within ISG, we have derived
a new DFO based detection and isolation schemes based on
some developments of FOs, stability of time-delay systems,
EVs integrations and residual generator-based fault detection.
We have proposed an effective procedure in tractable LMIs and
an optimisation process for synthesising the detector’s gains.
This procedure can be easily solved by robust control toolbox
in MATLAB with together with C Programming. Our DFOs
detectors have the advantages of insensitive to neighbouring
FDIAs and REs variation, malicious incident of centralised
architecture while being able to deal with time delays. Fur-
thermore, the detector has smaller size than the conventional
state observer-based detectors. The distributed architecture of
detector leads to the reduction in cost of computation and the
convenience for implementation monitoring tasks. We have also
discussed the stability of time-delay ISGs and the EVs contribu-
tions into frequency service under abnormal of FDIAs. Various
comprehensive simulations have been carried out with a three-
area ISG to validate the effectiveness of the proposed scheme.
The studied SGs can be enlarged to include various topologies
of ISGs. In the future work, the design method of this paper can
be extended to deal with wider classes of systems that include
non-linearities. On the other hand, the stabilisation and mitiga-
tion problem for ISGs should be further addressed. In this case,
the combination of DFOs and decentralised controller needs
further development.

NOMENCLATURE

EVs, LFC Electric vehicles, load frequency control.
ISG, REs Interconnected smart grid, renewable energies.

FDIA, FUO False data injection attack, full-order observer.
DFO, CFO Distributed and centralised functional observer.

LMI Linear matrix inequality.
LKF Lyapunov Krasovskii functionals.
i, hi Power Area-ith, time delay.

𝛿i , 𝛿̃ Optimisation searching variables in LMI.
ni The number of state variables of Area-ith.

Mi , Di Inertia constant, load damping coefficient.
fi , bi Frequency deviation, frequency bias constant.

Rgi , 𝜌ei Governor and EVs droop characteristic.
Kgi , Kti Governor and turbine gain constants.
Kei , Tei EVs gain and time constants.
Tgi , Tti Governor and turbine time constants.
Kri , Tri Reheater gain and time constants.

ACEi , bi Area control error, frequency bias constant.
Pli , Pwi

Load demand and wind power deviations.
Xgi , Pei Governor position and EVs power deviations.
Pgi , Pri Power and reheater output deviations.
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Pci Incremental change in power command.
gi1, gi2 FDIAs at power plants and aggregators.

gemi FDIA at aggregator related to the mth EV.
𝜗i Integral value of area error control.

ri (t ), r∗
i (t ) Residual generator and detector comparable

value.
Ni , Nih, Ji , Ji j , Hi , Jih, Li and Ti , Ei are detector’s
matrices.
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APPENDIX A

Simulation data of the ISG in Figure 1 is given [1, 3 17] as
follows:

Kti = 1, Tti = 0.3, Kgi = 1, Tgi = 0.08, Rgi = 2.4,

Kri = 5, Tri = 10, Mi = 0.1667, bi = 0.425, Di = 0.0083,

Tei = 1, Kei = 1, 𝜌ei = 2∕Rgi , 2𝜋T12 = 0.2725,

2𝜋T13 = 0.2180, 2𝜋T23 = 0.1635, Tji = Ti j , i = 1, 2, 3.
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Matrices Aii , Aiih ∈ ℝni×ni , Ai j ∈ ℝni×n j , Ci ∈ ℝpi×ni , Bi , Γi ,
Si1, Si2 ∈ ℝni×1, Fi1, Fi2 ∈ ℝpi×1, are

Aii =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Di

Mi

0 0
1

Mi

1

Mi

−1

Mi

0

−1

Rgi Tgi

−1

Tgi

0 0 0 0 0

0
Kti

Tti

−1

Tti

0 0 0 0

0
Kri Kti

Tti Tri

Tti−Kri

Tti Tri

−1

Tri

0 0 0

0 0 0 0
−1

Tei

0 0

𝛽i1 0 0 0 0 0 0

bi 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ai j =

⎡⎢⎢⎣
05×1 05×(n j −1)

−2𝜋Ti j 01×(n j −1)

0 01×(n j −1)

⎤⎥⎥⎦ , Aiih =

⎡⎢⎢⎢⎣
04×1 04×(ni−1)
−Kei𝜌ei

Tei

01×(ni−1)

02×1 02×(ni−1)

⎤⎥⎥⎥⎦ ,

Bi =

⎡⎢⎢⎢⎣
0

Kgi

Tgi

0(ni−2)×1

⎤⎥⎥⎥⎦ , Γi =

[
−1

Mi

0(ni−1)×1

]
, Si2 =

⎡⎢⎢⎢⎣
04×1

Kei

Tei

0(ni−5)×1

⎤⎥⎥⎥⎦ ,

Si1 = [0ni×1], Fi2 = [0pi×1], 𝛽i1 = 2𝜋

N∑
j=1, j≠i

Ti j .

Ci =

⎡⎢⎢⎢⎣
1 01×(ni−3) 0 0 0
0 01×(ni−3) 1 0 0
0 01×(ni−3) 0 1 0
0 01×(ni−3) 0 0 1

⎤⎥⎥⎥⎦ , Fi1 =

[
0(pi−1)×1

1

]
.

For the design of 1, Ci j = [1 01×(n j −1)], F̄i j = [01×2].
E1a = [0 1 0 0], E1b = [0 0 0 1], T1a = [−1 0 0],
T1b = [0 0 −1].
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