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Abstract

To achieve responsible consumption and production under UN Sustainable Development
Goal (SDG) 12, national agri-food consumption and production need to be assessed against
environmental limits. We downscaled the land-system change planetary boundary and
allocated national-scale cropland environmental limits for agri-food consumption via fair-
share allocation based on population, and for agri-food production via biophysical allocation
based on available arable land. We assessed country-level utilisation of the land-system
change planetary boundary via quantifying national cropland footprints (including
imports/exports) using an environmentally extended multi-regional input-output model.
Consumption-based footprints were assessed against fair-share cropland limits and
production-based footprints were assessed against biophysical cropland limits. Most
countries’ agri-food consumption footprints exceeded their fair-share cropland limit while
production utilisation of biophysical limits was less pronounced. Conversely, China and
India’s cropland consumption footprints were safely within their fair-share environmental
limits (utilisation percentages of 80% and 74%, respectively), while their cropland production
footprints exceeded biophysical limits (utilisation percentages of 132% and 165%,
respectively). Assessing country-level utilisation of the environmental limit for cropland can
provide a basis for countries to act as individual entities, or collectively, to develop policies
that mitigate their global cropland demand and minimise the risks associated with the
exceedance of the land-system change planetary boundary.

Keywords: Planetary boundaries, downscaling, multi-regional input-output (MRIO),
cropland footprint, land-system change, environmental limits.

1 Introduction

Large-scale conversion of land for agri-food production is adversely affecting land systems
and consequently stressing the Earth’s sustainable environmental limits (Godfray et al., 2010;
Gopalakrishnan et al., 2011; Newbold et al., 2016; Ramankutty et al., 2018; Schneider et al.,
2011; Zhao et al., 2014). The planetary boundaries framework identifies critical


mailto:mashai@deakin.edu.au

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74

environmental limits for nine Earth-system processes which delineate the safe operating
space for humanity at a global level (Rockstrom et al., 2009; Steffen et al., 2015). These nine
Earth-system processes include land-system change, climate change, freshwater use, ocean
acidification, biochemical flows, stratospheric ozone depletion, biosphere integrity,
atmospheric aerosol loading, and novel entities. Exceeding planetary boundaries could
destabilize the Earth system and increase the likelihood of irreversible and catastrophic
consequences (Steffen et al., 2018). Of these nine globally defined boundaries, the land-
system change planetary boundary focuses on bio-geophysical processes that regulate the
land surface and atmosphere (Steffen et al., 2015). As a widely used indicator (or control
variable) of the land-system change planetary boundary, total cropland area (hereafter,
cropland) must remain within safe environmental limits to achieve responsible consumption
and production targets mandated under the United Nations Sustainable Development Goal
(SDG) 12 (UN, 2015). To support UN member countries in achieving this goal, national-level
information is required on the impact of consumption-based and production-based cropland
footprints on environmental limits for the land-system change planetary boundary.

Consumption-based and production-based footprint perspectives are widely used to analyse
the environmental pressures of the global food system (Peters, 2008). Global displacement of
land embodied in trade connects the cropland footprints of countries of agri-food production
to countries of consumption. These trade-facilitated flows (i.e., imports/exports) are often
referred to as direct/indirect, virtual flows, and teleconnections (Liu et al., 2015).
Consumption-based cropland footprint analysis allocates agri-food impacts across the entire
product life-cycle to the country where final consumption occurs, irrespective of the country
of origin (i.e., production) (Kastner et al., 2014b; Rodrigues et al., 2018; Tramberend et al.,
2019). Conversely, the actual on-ground biophysical pressures on domestic cropland
resources in the form of cropland intensification, deforestation, biodiversity impacts, and
losses in ecosystem services are reported by analysing the production-based cropland
footprint (Yu et al., 2013). Thereby, production-based cropland footprint analysis assigns
agri-food impacts to the country of production, rather than where final consumption occurred
(Wiedmann et al., 2011a). Analysing national utilisation of the land-system change planetary
boundary from both the consumption-based and production-based perspectives is crucial to
comprehensively assess the human-induced environmental pressures of nations.

To assess the environmental pressure of national agri-food consumption and production, the
global-scale land-system change planetary boundary for cropland must be downscaled to the
national level (Conijn et al., 2018; Heck et al., 2018; Li et al., 2019; O’Neill et al., 2018;
Springmann et al., 2018; Willett et al., 2019). Hayha et al. (2016) and O’Neill et al. (2018)
proposed a conceptual framework to downscale the planetary boundaries by using multi-stage
approaches that consider biophysical, socio-economic, and ethical dimensions. Fang et al.
(2015Db), Dao et al. (2018), and Nykuvist et al. (2013) downscaled the planetary boundaries
based on a per capita approach, and Meyer and Newman (2018) introduced a quota-based
approach to study planetary boundaries and human footprints. Chaudhary and Krishna (2019)
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quantitatively compared the changes required in consumption-based footprints to achieve
sustainable diets. These planetary boundary downscaling approaches have potential for the
assessment of consumption-based cropland footprints.

For production-based cropland footprints, the endowment of the arable land able to be
cropped without threatening environmental sustainability i.e., the biophysical limit, varies
widely between countries and depends on multiple factors such as total land area,
topography, soils, climate, population, level of technological development, and overall
production efficiency (Hoff et al., 2014). Hence, production-based cropland footprint
assessment should focus on whether the total land area used for agri-food production in each
country exceeds its biophysical limit. Therefore, to assess production-based cropland
footprints, there is a need to downscale the land-system change boundary for cropland based
on the available cropland of the country. This is essential to measure country-level pressure
on domestic cropland resources due to agri-food production.

In this study, we undertook a global assessment of the utilisation of national environmental
limits for cropland due to consumption and production of agri-food products from 1995 to
2011. We calculated national consumption-based and production-based cropland footprints
by incorporating direct (i.e., domestic) and indirect (i.e., international) effects of virtual flows
via global trade. We downscaled the global land-system change planetary boundary for
cropland and assigned environmental limits using two methods: fair-share allocation and
biophysical allocation. We assessed national consumption-based cropland footprints against
fair-share cropland limits and assessed production-based footprints against biophysical limits
to present a comprehensive national-level assessment of cropland utilisation of environmental
limits via consumption and production of agri-food products. We discuss the complex global
virtual flows of cropland via agri-food trade and assess the implications of national-level
pressure on the land-system change cropland boundary due to agri-food consumption and
production.

2 Methodology
2.1  Overview

We calculated annual cropland footprints using Environmentally Extended Multi-Regional
Input-Output (EE-MRIO) analysis for 44 countries and five Rest of the World (RoW)
regions, and assessed these against nationally-downscaled cropland environmental limits
(Figure 1). This involved quantifying the utilisation percentage of fair-share cropland limits
by national agri-food consumption footprints (i.e., domestic production plus imports minus
exports) and quantifying the utilisation percentage of biophysical cropland environmental
limits by national agri-food production footprints. We tracked inter-country virtual cropland
flows in terms of imports and exports of agri-food products to identify annual country-to-
country (cropland) trade and cropland limit exceedance from 1995 to 2011.



112

113
114

115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138

Human environmental footprint analysis Planetary boundary (PB) framework
| Life-cycle assessment ‘ ’ Global land-system change PB ‘
Exiobase 3.0 * i
- Direct requirement matrix — - -
- Final consumption ﬁ Multi-regional input-output analysis ‘ p!
- Environmental intensities

National-level downscaling of

1
Leontief's demand-pull model ) o
L environmental limits

v v
Direct/indirect Direct/indirect + +
Key: consumption footprint production footprint | Fair-share ‘ [ Biophysical ‘
Consumption-based \ /
Production-based Consumption-based (fair-share) Production-based (biophysical)
environmental limit exceedance environmental limit exceedance

Figure 1: Schematic diagram of the methods used to link environmental footprint analysis
with planetary boundaries.

2.2 Environmental footprint analysis

EE-MRIO modelling is the state-of-the-art method for calculating country-level, consumption
and production-based footprints (Wiedmann and Lenzen, 2018). Multi-Regional Input-Output
(MRIO) models use economic input-output tables for capturing global trade flows and the
interdependencies between economic sectors of countries. The environmental satellite
accounts in EE-MRIO databases translate trade flows into environmental units which enables
the quantification of the direct/indirect environmental impacts for consumption and
production (Kissinger and Rees, 2010; Weinzettel et al., 2013). We used an EE-MRIO model
to calculate the direct and indirect displacement of cropland impacts embodied in global trade
(Acquaye et al., 2011; Hoekstra and Wiedmann, 2014; Liu et al., 2015; Suh and Huppes,
2005; Wiedmann et al., 2011b). Global economic trade interdependencies were captured
using the Exiobase 3.0 database from 1995 to 2011 (see Supporting Information for further
details on MRIO and country aggregations) (Behrens et al., 2017; Wood et al., 2018). The
RoW regions aggregate data from individual countries whose national input-output tables are
not included in the database. A detailed explanation of the construction of the Exiobase
database is provided by Stadler et al. (2018). We carried out EE-MRIO analysis to determine
national dependencies on domestic (direct) and international (indirect) cropland resources to
satisfy their domestic agri-food requirements. We used this methodology to calculate the
virtual cropland embodied in the consumption and production of agri-food products (Kastner
et al., 2014a; Tramberend et al., 2019).

Our MRIO model follows the standard framework (Leontief, 1970). The technical coefficient
matrix AP? calculated as af}'= z{;" /x]!, represents the inter-sectoral monetary flow from
sector i in country p to sector j in country q required to fulfil the intermediate sector demand
(2), and xﬁ represents the total output of sector j in country Q:
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The Leontief inverse matrix L is calculated by:

L= (-4 )
Where | is the identity matrix, and the total output of each sector (x) is calculated by:
x=LY 4)

To calculate the cropland impacts G associated with the final demand of each country, we
used the following equation:

G=ex=e(I-A)1Y (5)

Where e is the direct intensity vector representing the cropland pressures associated with the
unit dollar value of economic transaction of the corresponding economic sector in each
country.

2.3 Defining the land-system change planetary boundary for cropland

The environmental limits of the land-system change planetary boundary are widely debated
(Usubiaga-Liafio et al., 2019). Rockstrom et al. (2009) originally proposed a land-system
change planetary boundary as the total cropland area of no more than 15% of the global ice-
free land surface. While Steffen et al. (2015) proposed area of forest remaining as a control
variable on the premise that forests are the major driver of land-surface/climate dynamics
compared to other biomes (Heck et al., 2018; West et al., 2010), cropland remains the most
commonly reported and well-established land-system change planetary boundary in food
system studies (Chaudhary and Krishna, 2019). A wide range of estimates for the cropland
planetary boundary have been reported, with several refinements since originally introduced
by Rockstrom et al. (2009). We reviewed published estimates of the land-system change
planetary boundary for cropland as a basis for downscaling national-level environmental
limits.

With the world’s ice-free land area estimated at 132 Mkm? (UNCCD, 2017), the original 15%
cropland area planetary boundary suggested by Rockstrom et al. (2009)equates to 19.8
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Mkm?. This estimate is close to the19.5 Mkm? estimate of Nykvist et al. (2013) and the 20.1
Mkm? estimate of Henry et al. (2018). Even before the revision of the land-system change
boundary (Steffen et al., 2015), UNEP (2014) proposed a tighter estimate of 16.4 Mkm? for
the cropland boundary based on the precautionary principle (Van Vuuren and Faber, 2009).
Recent modelling takes into account conservation levels for each forest biome to preserve
ecosystem integrity, producing an estimate of 12.6 Mkm? (with a range 10.6-14.6 Mkm?)
(Springmann et al., 2018). In accordance with the precautionary principle, we therefore
adopted the conservative estimates of 10.6 Mkm? and 12.6 Mkm? as the low and best
estimate of the boundary based on the revised definition of the land-system change planetary
boundary. To encompass the range of uncertainty in cropland limits due to conversion of
conversion of pasture into cropland (Springmann et al., 2018), we used the 16.4 Mkm? value
from UNEP (2014) as our high estimate because the control variable of land-system change
boundary. We used these low, best, and high estimates of the cropland limits and used them
to define land-system change planetary boundary utilisation zones (Table 1).

Table 1: Planetary boundary utilisation zones of cropland limits. Utilisation percentage
define national planetary boundary zones and is calculated as the ratio of cropland footprint
and the best estimate of the planetary boundary (12.6 Mkm?).

Global cropland Utilisation

Zone Colour limits (Mkm?) (%) Description

Safe <10.6 0to 83 Below lower environmental limit

Potentially unsafe (lower) 10.6 t0 12.6 84 to 100 Between lower and best estimate environmental limit
Potentially unsafe (higher) 12.6t0 16.4 101 to 129 Between best estimate and higher environmental limit
Unsafe e - 164 130 + Above higher environmental limit

2.4 Downscaling the land-system change planetary boundary

We downscaled the global land-system change planetary boundary for cropland to the
national level based on a per capita fair-share for assessment of the consumption-based
cropland footprints and based on biophysical limits for assessment of production-based
cropland footprints.

2.4.1 Fair-share allocation

A country’s consumption-based cropland footprint is directly related to the total food demand
of its people. Allocating a share of the global cropland planetary boundary to individual
countries based on a per capita equivalent normalises the inequality in arable land
endowment between countries and harmonises the comparative advantage of countries with
abundant cropland over countries with limited cropland (Dao et al., 2018; Fang et al., 2015a).
This downscaling technique considers that every human has an equal right to global land
resources and allocates environmental limits to countries based on their proportion of the
global population. To calculate the annual (y) fair-share environmental limit for cropland
(PB’$) of each country (c), we multiplied the global cropland limit (PBg) with the national
population proportion (Pop) obtained from UN (2017):

P
PB[ = PBy » —2<

, forc=1,2,...,49 and y = 1995,1996, ... ,2011 (6)

Obgy
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2.4.2 Biophysical allocation

The biophysical downscaling perspective allocated environmental limits to countries based
on their potentially available cropland while maintaining sustainable amounts of forest,
biodiversity, and other natural resources. Eitelberg et al. (2015) calculated spatially resolved
high, medium, and low cropland estimates using model-based approaches by considering
several land-cover classes. We summed the potentially available cropland for nations based
on the “low” estimate of Eitelberg et al. (2015) by overlaying a national border shape-file in a
Geographic Information System. We chose the low estimate because the medium and high
potential cropland estimates included savannahs, shrublands, grasslands, forests, protected
areas, and a range of other natural land-cover classes currently dedicated for biodiversity
conservation and other ecosystem services (Eitelberg et al., 2015; Lambin et al., 2013).

Unlike the fair-share limits which vary over time with changes in population, biophysical
limits are time-invariant because global arable land-use has remained constant overtime
(Ritchie and Roser, 2013). To maintain coherency between fair-share and biophysical
environmental limits, biophysical environmental limit of production (PB?%°) for each country
(c) was calculated by multiplying the global cropland limit (PBg) (explained in section 2.3)
with the national proportion of the potentially available cropland (PAC) (explained in last
paragraph):

PAC

¢ forc=1,2,..,49 (7)
ACC

PB'® = PBy* 53 i

2.5 Country-level utilisation percentage calculations

To evaluate the utilisation of national fair-share and biophysical environmental limits for
consumption and production, we developed a utilisation percentage (U) indicator which was
calculated by dividing the cropland footprint (FP) of a country (c) in year (y), by the best
estimate (PB*) of the country’s cropland environmental limit for that same year.

= ?;_y %100 ,forc = 1,2,...,49 and y = 1995,1996, ... ,2011 (8)

¢y

UC.J’

2.6 Analysis and visualisation

We analysed the results by plotting the consumption-based cropland footprints including
direct (i.e., consumption of domestically produced agri-food products) and indirect (i.e.,
consumption of imported agri-food products) components against fair-share environmental
limits; and production-based cropland footprints including direct and indirect (i.e., exported
agri-food products) components against biophysical environmental limits. Direct and indirect
cropland flows were assessed for national consumption and production footprints and
visualised using chord diagrams. The full database of cropland footprints and virtual flows
from 1995 to 2011 is presented in the Supporting Data. National-level utilisation of
consumption and production-based environmental limits were compared over the time series.
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3 Results

3.1 Consumption-based footprints and fair-share limits

Fair-share cropland environmental limits have changed over time relative to the change in
their individual proportion of the global population (Figure 2). China and India had the
highest fair-share environmental limit for consumption due to their high population. These
limits varied over time because of variation in population proportions. For example, China’s
fair-share environmental limit decreased from 2.73 to 2.46 million km? and India’s fair-share
environmental limit increased from 2.10 to 2.24 million km?. Similarly, from 1995 to 2011,
the fair-share environmental limit for RoW Asia and RoW Africa increased, while it
decreased for Japan, Korea, and other European countries.

In 2011, China had the highest consumption-based cropland footprint, followed by RoW
Africa, India, USA, and RoW Asia. From 1995 to 2011, footprints increased in China (from
1.27 to 1.97 Mkm?), Turkey (from 0.30 to 0.36 Mkm?), the UK (from 0.21 to 0.23 Mkm?),
Mexico (from 0.28 to 0.34 Mkm?), and RoW Africa (from 1.58 to 1.90 Mkm?), but decreased
in the USA (from 1.67 to 1.38 Mkm?), Australia (from 0.27 to 0.19 Mkm?), Russia (from
1.26 to 0.83 Mkm?), Japan (from 0.49 to 0.39 Mkm?), Korea (from 0.19 to 0.18 Mkm?),
Brazil (from 0.56 to 0.47 Mkm?), and most of European countries. India, however,
maintained a fairly constant cropland footprint.

Disaggregating the total consumption-based cropland footprints into direct (i.e., consumption
of domestic agri-food production) and indirect (i.e., consumption of imported agri-food
production) revealed cropland teleconnections associated with consumption. Major agri-food
producers like India, Australia, Brazil, Mexico, United States, RoW Asia, and RoW Africa
had lower indirect cropland footprints than smaller producers like Japan, South Korea,
European countries, and the UK. Many countries have become increasingly dependent on
imports in order to satisfy agri-food demand. For example, indirect cropland footprints
increased in Australia (from 0.03 to 0.06 Mkm?), Brazil (from 0.07 to 0.09 Mkm?), China
(from 0.12 Mkm? in 1995 to 0.91 Mkm? in 2011), India (from 0.05 to 0.18 Mkm?), Mexico
(from 0.06 to 0.13 Mkm?), and the USA (0.52 to 0.59 Mkm?). Global agri-food imports
caused complex virtual cropland flows between countries (Supplementary Data). For
example, in 2011, consumption of imported agri-food products resulted in major virtual
cropland flows in Asia (Others), Europe (Others), China, and the USA (Figure 3,
Supplementary Data).
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Figure 2: Comparison of selected countries’ consumption-based cropland footprints against
their fair-share environmental limit. Background colours show the zones of downscaled
environmental limit (Table 1). Vertical bars represent the domestic (direct) and imported
(indirect) cropland footprint by countries over time. Note that the scale of y-axis is unique for
each country due to the difference in environmental limits and cropland footprints. See
Figure S3.1 in Supporting Information (SI) for the results of all countries and world regions.

Agri-food consumption in Asia (Others) was largely dependent on cropland flows from the
USA (0.27 Mkm?), America (Others) (0.22 Mkm?), and Africa (Others) (0.19 Mkm?).
Imports in Europe (Others) relied on cropland flows from Asia (Others) (0.37 Mkm?), and
Africa (Others) (0.36 Mkm?). China’s imports embodied significant cropland resources from
the USA (0.25 Mkm?) and Brazil (0.17 Mkm?), while agri-food imports in the USA were
associated with cropland flows from America (Others) (0.16 Mkm?) and Asia (Others) (0.12
Mkm?).
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Figure 3: Consumption-based domestic (direct) and imported (indirect) cropland flows
(Mkm?). For clarity of visualisation, prominent countries are classified separately (see Table
S2.1 for country classification in Supporting Information).

3.2 Production-based footprints and biophysical limits

The biophysical environmental limits for RoW Africa (2.02 million km?), RoW Asia (1.41
million km?), India (1.03 million km?), Russia (0.96 million km?), China (0.95 million km?),
and USA (0.86 million km?) were highest due to their large endowments of arable land
(Figure 4).

In 2011, the highest production-based cropland footprints were RoW Africa (2.39 Mkm?),
followed by India (1.70 Mkm?), the USA (1.63 Mkm?), RoW Asia (1.50 Mkm?), and China
(1.25 Mkm?). From 1995 to 2011, production-based footprints increased in Australia (from
0.40 to 0.48 Mkm?), Brazil (from 0.66 to 0.79 Mkm?), Mexico (from 0.27 to 0.28 Mkm?), and
RoW Africa (from 1.99 to 2.39 Mkm?), but decreased in China (from 1.32 to 1.25 Mkm?),
Turkey (from 0.27 to 0.24 Mkm?), and the USA (from 1.84 to 1.62 Mkm?). India’s
production-based cropland footprint remained constant.

Exported production-based cropland footprint (i.e., indirect cropland footprint) increased for
almost all countries. From 1995 to 2011, increased exports from prominent agri-food
producers resulted in increased virtual cropland flows. Of the total cropland use of Australia,

10
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0.17 Mkm? was exported to other countries in 1995, which increased to 0.36 Mkm? in 2011.
Likewise, considerable increases in the indirect production-based cropland footprints were
found in Brazil (from 0.17 Mkm? to 0.41 Mkm?), China (from 0.16 Mkm? to 0.20 Mkm?),
India (from 0.09 Mkm? to 0.21 Mkm?), Mexico (from 0.05 Mkm? to 0.07 Mkm?), Russia
(from 0.26 Mkm? to 0.56 Mkm?), the USA (from 0.69 Mkm? to 0.79 Mkm?), RoW America
(from 0.33 Mkm? to 0.54 Mkm?), and ROW Africa (from 0.53 Mkm? to 0.84 Mkm?). In
2011, major virtual cropland flows due to agri-food exports were from Asia (Others), Africa
(Others), America (Others), USA, Brazil, and Australia (Figure 5, Supplementary Data).
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Figure 4: Comparison of selected countries’ production-based cropland footprints against
their biophysical environmental limit. Background colours show the zones of downscaled
environmental limit (Table 1). Vertical bars represent the domestic (direct) and exported
(indirect) use of cropland by countries over time. Note that the scale of y-axis is unique for
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each country due to the difference in environmental limits and cropland footprints. See
Figure S3.2 in Supporting Information for the results of all countries and world regions.

The largest virtual cropland flows (i.e., exports) from Asia (Others) were to Europe (Others)
(0.37 Mkm?), Africa (Others) (0.16 Mkm?), and China (0.15 Mkm?). From Africa (Others),
cropland flows were typically to Europe (Others) (0.36 Mkm?) and Asia (0.19 Mkm?), while
from America (Others) they were mostly to Asia (Others) (0.22 Mkm?) and the USA (0.16
Mkm?). From the USA, cropland flows were primarily to Asia (Others) (0.27 Mkm?) and
China (0.25 Mkm?), and from Brazil, they were mostly to China (0.17 Mkm?) and the USA
(0.03 Mkm?).

Turkey
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America
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United States

Europe (Others)

Figure 5: Production-based domestic (direct) and exported (indirect) cropland flows (Mkm?).
For clarity of visualisation, prominent countries are classified separately (see Table S2.1 in
Supporting Information for country classification).

3.3 Consumption and production-based utilisation of environmental limits

Cropland consumption was within fair-share environmental limits for only a few countries (as
evidenced by utilisation percentages much greater than 100% in Figure 6). However, while
the cropland production footprints also exceeded biophysical limits for many countries,
overall utilisation percentages were lower, and several countries were safely within their

12
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biophysical cropland limits. For a few countries (e.g., China, India, RoW Asia, Indonesia),
cropland consumption footprints were within their fair-share limits, but their cropland
production footprints exceeded their biophysical limits. Many developed countries exceeded
their environmental limits for both consumption and production. For example, Australia’s
cropland consumption greatly exceeded its fair-share limit (utilisation percentage = 461%)
and its cropland production also exceeded its biophysical limit (utilisation percentage =
152%). Similarly, the USA exceeded its fair-share environmental limit (utilisation percentage
= 247%) and its biophysical environmental limit (utilisation percentage= 188%).
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Figure 6: Utilisation percentages of countries’ downscaled cropland boundary including
consumption-based utilisation of fair-share limits (left) and production-based utilisation of
biophysical limits (right). See Table 1 for legend.
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4 Discussion

We have downscaled the land-system change planetary boundary for cropland and allocated
national cropland limits for consumption and production using fair-share and biophysical
allocation, respectively. We quantified direct and indirect cropland footprints of agri-food
consumption and production and assessed these footprints against the fair-share cropland
limit for consumption and biophysical cropland limit for production, given the complex
global virtual flows of cropland via agri-food trade. We have shown how countries utilised
their downscaled cropland environmental limit for consumption and production of agri-food.

4.1 Global cropland consumption, production, flows, and boundary utilisation

Agri-food consumption in most countries exceeded their fair-share cropland limit. China,
India, Indonesia, and RoW Asia were the only countries that remained within their respective
fair-share cropland limit within the study period. The large populations of these countries
drove a high fair-share environmental limit, and the relatively low agri-food demand per
capita resulted in a low consumption-based footprint. However, upward trends of
consumption-based cropland footprints suggest that even these countries may have exceeded
their fair-share limit by the time of writing (2020). Although many countries had exceeded
production-based biophysical limits, utilisation percentages tended to be lower than
consumption-based fair-share utilisation percentages. Brazil and RoW America were among
the few countries whose agri-food production had not exceeded their biophysical cropland
limit within the study period. However, deforestation and cropland intensification to meet
growing domestic and export demands are increasingly putting pressure on biophysical limits
in these regions (Ramankutty et al., 2018).

Difference between consumption and production-based utilisation percentage was due to the
fundamental differences between the calculation of fair-share versus biophysical
environmental limits and the weak relationship between the population and available arable
land of nations. Consumption and production-based cropland footprints vary with countries’
population, wealth, urbanisation, culture and lifestyle, and geography (Willett et al., 2019).
Levels of agri-food imports and exports of countries are influenced by production efficiency,
environmental impacts, and socio-economic and cultural factors (Osei-Owusu et al., 2019).
These factors explain the fluctuations of consumption-based and production-based cropland
footprints and associated variation in imports and exports of agri-food products. Trends
towards increasing indirect consumption-based footprints provide evidence in support of
claims that global outsourcing of agri-food products is increasing (Simas et al., 2017; Yu et
al., 2013) and along with it the increasing indirect cropland impacts on biophysical cropland
limit of exporting countries.

Global trade in agri-food products illustrates how complex teleconnections result in the
exceedance of biophysical cropland limits of exporting countries (Green et al., 2019). For
example, China exports cotton, oilseeds, sugarcane, and other products to the USA, Japan,
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South Korea, and Asia (Yu et al., 2016). The USA exports corn, soybeans, and livestock (Sun
et al., 2019) and Australia exports wheat, fruits, vegetables, and other products to Asia and
Europe. Hence, agri-food exports of most countries contribute to the utilisation of nationally
downscaled production-based biophysical environmental limits for cropland.

4.2 Innovation and contribution

Environmental footprint studies have typically focused on the consumption-based perspective
in order to assess environmental sustainability (Cuypers et al., 2013; Davis et al., 2017;
Turner et al., 2007), arguing that this perspective best captures the appropriation of natural
capital, resource use, and the environmental impacts of human activities (Bruckner et al.,
2015; Tramberend et al., 2019; Tukker et al., 2016). While this accounting approach is useful
for evaluating the strong coupling between environmental pressures and affluence, we also
analysed the production-based perspective because of its relevance in quantifying the
environmental impacts of goods and services produced for human use (Croft et al., 2018).
However, considering both the consumption and production-based perspectives is essential
for sustainability assessment due to fundamental differences in natural resource availability,
cropland suitability, and other factors that determine country-to-country trade and drive
virtual cropland flows described above (Sun et al., 2019).

A major innovation of this study is in allocating biophysical cropland limits to countries to
assess production-based cropland footprints. Studies that have considered the consumption-
based footprints against the national environmental limits have mainly used the fair-share
(per capita) approach to assign environmental limits for consumption (Fang et al., 2015a;
Fang et al., 2015b; Li et al., 2019; O’Neill et al., 2018; Springmann et al., 2018; Willett et al.,
2019). The country-level resolution and time-series analysis of our study also goes well
beyond the scope of previous global cropland footprint assessments (Dao et al., 2018; Fang et
al., 2015b).

Assigning shares of the global safe operating space to countries and assessing their cropland
footprints against these environmental limits is used to quantify national environmental
pressures on shared global land resources. Currently, downscaling planetary boundaries based
on population is the most common downscaling approach (Dao et al., 2018). The framework
used in this study provides a novel way to allocate national environmental limit for
production based on biophysical limit of countries. This methodology can be replicated for
other planetary boundaries by using relevant control variables. Our study considered key
nuances in the land-system change planetary boundary by addressing ethical and biophysical
concerns that generally arise in allocating the safe operating space to countries (Hayha et al.,
2016; Newbold et al., 2016).

4.3 Policy implications and SDG 12 implementation

Environmental impacts caused by agri-food production are the shared responsibility of
consumers and producers (Lenzen et al., 2007). The principles of responsible consumption
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and production (SDG 12) require countries to monitor both their direct and indirect
footprints, as well as their respective impacts on environmental limits (Tukker et al., 2016).
Our results provide a national-level assessment of how cropland resources are utilised for
consumption and production. Countries can use these results to analyse resource utilisation
resulting from their local production, production efficiencies, and environmental impacts
caused by interdependencies among countries in the agri-food sector (Tramberend et al.,
2019). The results aim to assist in achieving national commitments towards conserving the
global biophysical cropland limits, necessary to achieve sustainable consumption and
production under SDG 12. Agri-food trade policies should take into account the direct
(domestic) and indirect (overseas) cropland impacts of domestic agri-food consumption.
Bilateral and multilateral trade agreements should consider national environmental limits, and
the potential consequences of imports and exports on the environmental limits of agri-food
producers. Measures towards reducing the consumption- and production-based impacts on
cropland resources are essential to reduce stress on the land-system change planetary
boundary.

4.4 Uncertainty, limitations, and future research

While we selected cropland to represent the global land-system change planetary boundary,
we acknowledge the limitations with this indicator and the existing debate about the amount
of available cropland globally and its reduction with time (Steffen et al., 2015; Usubiaga-
Liafio et al., 2019). To incorporate uncertainty in global environmental limits for cropland we
included lower, best, and upper estimates based on previous formulations of the cropland
boundary (Henry et al., 2018; Nykvist et al., 2013; Springmann et al., 2018; UNCCD, 2017;
UNEP, 2014). Our fair-share environmental limits varied over time with population, while
we assumed constant biophysical environmental limits of countries based on “low”
potentially available cropland estimated by Eitelberg et al. (2015). The use of time-invariant
national biophysical limits is a limitation of this study. Although global arable land use has
remained constant overtime (Ritchie and Roser, 2013), national cropland areas are dynamic
with expansion occurring in some areas via deforestation, while in other areas, the amount of
arable land is contracting due to factors such as land abandonment and climate change
(Doelman et al., 2018; Fritz et al., 2015). Likewise, the effects of worldwide economic
lockdown due to the COVID-19 may have long-lasting impacts on agri-food trade. We can
expect changes in consumption and production patterns of domestic and imported agri-food
products which will alter country-level utilisation of consumption-based and production-
based environmental limits for cropland in the future. Capturing these impacts dynamic
cropland changes within countries is a potential future research opportunity.

While the Exiobase 3.0 MRIO database provided a detailed cropland environmental
extension to capture cropland footprints, its geographical and temporal coverage is limited
(Stadler et al., 2018). Other MRIO databases have a higher geographical resolution (EORA
and GTAP databases) but they lack cropland extensions (Andrew and Peters, 2013; Lenzen et
al., 2013). Nevertheless, our current geographical and temporal resolution provided sufficient
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information to downscale the global land-system change boundary and calculate country-
level utilisation for cropland environmental limits. The framework developed in this study
can be used to identify the commaodities and products responsible for direct and indirect
environmental impacts. While in-depth commodity-level analysis of cropland flows is outside
the scope of this study, further research should focus on exploring the direct and indirect
impacts of commodities and their contributions to environmental limit exceedances of other
countries. Beyond cropland, further application of this framework can quantify the impacts
on freshwater and other environmental resources, and GHG emissions to identify the key
commaodities responsible for the exceedance across countries on different planetary
boundaries.

5 Conclusion

We developed a framework to allocate environmental limits for agri-food consumption and
production and contribute towards the operationalisation of the planetary boundary
framework in the context of global cropland footprints. We assessed the national-level
environmental impacts of consumption and production activities in the context of
environmental limits for cropland use. This can help countries effectively monitor their
SDG12 progress; analyse their cropland use in line with globally defined targets; self-assess
and monitor their domestic environmental impacts and that imposed on their international
trade partners; and modify their agri-food trade practices. Countries that are exceeding their
biophysical environmental limits must address their direct/indirect cropland use and negotiate
their trade relationships to minimise their cropland impacts. The results can be used as a basis
for countries to act as individual entities or together in groups, in order to develop policies
that mitigate their global cropland impacts and minimise the risks associated with the
exceedance of the land-system change planetary boundary.
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