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Abstract

We present Language-binding Object Graph Net-
work, the first neural reasoning method with dy-
namic relational structures across both visual and
textual domains with applications in visual ques-
tion answering. Relaxing the common assumption
made by current models that the object predicates
pre-exist and stay static, passive to the reasoning
process, we propose that these dynamic predicates
expand across the domain borders to include pair-
wise visual-linguistic object binding. In our method,
these contextualized object links are actively found
within each recurrent reasoning step without rely-
ing on external predicative priors. These dynamic
structures reflect the conditional dual-domain object
dependency given the evolving context of the reason-
ing through co-attention. Such discovered dynamic
graphs facilitate multi-step knowledge combination
and refinements that iteratively deduce the compact
representation of the final answer. The effectiveness
of this model is demonstrated on image question
answering demonstrating favorable performance on
major VQA datasets. Our method outperforms other
methods in sophisticated question-answering tasks
wherein multiple object relations are involved. The
graph structure effectively assists the progress of
training, and therefore the network learns efficiently
compared to other reasoning models.

1 Introduction

Reasoning is crucial for intelligent agents wherein relevant
clues from a knowledge source are retrieved and combined to

solve a query, such as answering questions about an image.

Human visual reasoning involves analyzing linguistic aspects
of the query and continuously inter-linking them with visual
objects through a series of information aggregation steps [Lake
et al., 2017]. Artificial reasoning engines mimic this ability
by using structured representations (e.g. scene graphs) [Shi et
al., 2019] to discover categorical and relational information
about visual objects.

In this work, we address two key abstractions: How can
we extend this structure seamlessly across both visual-lingual
borders? And, unlike prior work, how can we extend these
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Figure 1: We aim to dynamically construct visual graphs (red edges)
and linguistic-visual bindings (cyan edges (most prominent words
shown)) adaptively to reasoning steps for each image-question pair.

structures to be dynamic and responsive to the reasoning pro-
cess? We explore the dynamic relational structures of visual
scenes that are proactively discovered within reasoning con-
text and their adaptive connections to the components of a
linguistic query to effectively answer visual questions.

Recent history observes the success of compositional rea-
soning which iteratively pays attention to a subset of clues
in the query and simultaneously looks up a corresponding
subset of facts from a static unstructured knowledge source to
construct a representation related to the answer [Hudson and
Manning, 2018]. Concurrently, findings in visual relational
modeling show that the information in visual scenes is signif-
icantly distributed at the interconnections between semantic
factors of visual objects and linguistic objects from both the
image and query [Baradel et al., 2018]. These observations
suggest that relational structures can improve compositional
reasoning [Xu ef al., 2020]. However, direct application of
attention mechanisms on a static structuralized knowledge
source [Veli¢kovié et al., 2018] would miss the full advantage
of compositionality. Moreover, object relations are naturally
rich and multifaceted [Kim et al., 2018], therefore an a pri-
ori defined set of semantic predicates such as visual scene
graphs [Hudson and Manning, 2019a] and language grounding
[Huang et al., 2019] are either incomplete [Xu et al., 2017], or
too complicated and irrelevant to use without further pruning.

We approach this dilemma by dynamically constructing rel-
evant object connections on-demand according to the evolving
reasoning states. There are two types of connections: links
that relate visual objects and links that bind visual objects in
the image to linguistic counterparts in the query (See Fig. 1).
Conceptually, this dynamic structure constitutes a relational
working memory that temporarily links and refines concepts
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Figure 2: Overall Architecture of LOGNet. (i) Linguistic and visual representations (ii) Information refinement with LOG modules (iii)

Multimodal fusion and answer prediction.

both within and across modalities. These relations are compact
and readily support structural inference.

Our model, called Language-binding Object Graph Net-
works (LOGNet) for visual question answering (VQA), in-
cludes an iterative operation of LOG unit that uses a contextu-
alized co-attention to identify pairs of visual objects that are
temporally related. Another co-attention head is concurrently
used to provide cross-domain binding between visual concepts
and linguistic clues. A progressive chain of dynamic graphs is
inferred by our model (see Fig. 1). These dynamic structures
enable representation refinement with residual graph convo-
lution iterations. The refined information will be added to an
internal working memory progressing toward predicting the
answer. The modules are interconnected through co-attention
signals making the model end-to-end differentiable.

We apply our model on major VQA datasets. Both qual-
itative and quantitative results indicate that LOGNet has ad-
vantages over state-of-the-art methods in answering long and
complex questions. Our results show superior performance
even when trained on just 10% of data. These questions re-
quire complex high-order reasoning which necessitates our
model’s ability to dynamically couple entities to build a predi-
cate, and then chain these predicates in the correct order. The
structured representation provides guidance to the reasoning
process, improving the fitness of the learning particularly with
limited training data.

2 Related Work

Recent compositional reasoning research aims at either struc-
tured symbolic program execution using custom built mod-
ules [Hu et al., 2017] or working through recurrent implicit
reasoning steps on an unstructured representation [Perez et
al., 2018]. Relational structures have been demonstrated to
be crucial for reasoning [Xu et al., 2020]. End-to-end rela-
tional modeling considers pair-wise predicates of CNN fea-
tures [Santoro er al., 2017]. With reliable object detection,
visual reasoning can use semantic objects as cleaner repre-
sentations [Anderson et al., 2018; Desta et al., 2018]. When
semantic or geometrical predicate labels are available, either
as provided [Hudson and Manning, 2019b] or by learning
[Xu et al., 2017] to form semantic scene graphs, such struc-
tures can be leveraged for visual reasoning [Shi ez al., 2019;
Li et al., 2019]. In contrast to these methods, our relational
graphs are not limited by the predefined predicates but liber-
ally form them according to the reasoning context. Our model
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is also different from previous question-conditioned graph con-
struction [Norcliffe-Brown er al., 2018] in the dynamic nature
of the multiform graphs where only relations that are relevant
emerge. Dynamic graph modeling has been considered by
recurrent modeling [Palm er al., 2018], and although their
states transform, the graph structures stay fixed. A related idea
uses language conditioned message passing to extract context-
aware features [Hu et al., 2019]. In contrast, LOGNet does
not treat linguistic cues as a single conditioning vector, but
allows them to live as a set of active objects that interact with
visual objects through binding and individually contribute to
the joint representation. The language binding also differenti-
ates LOGNet from MUREL [Cadene et al., 2019] where the
contributions of linguistic cues to visual objects are the same
though an expensive bilinear operator.

3 Language-binding Object Graph Network

The goal of a VQA task is to deduce an answer a from an
image I in response to a natural question q. Let the answer
space be A, VQA is formulated as:

i = I 1
a argrggg%(alq, ) (1)

where, 6 is the learnable parameters of P.

We envision VQA as a process of relational reasoning over
a scene of multiple visual objects conditioned on a set of lin-
guistic cueing objects. Crucially, a pair of co-appearing visual
objects may induce multiple relations, whose nature may be
unknown a priori, and hence must be inferred dynamically in
adaptive interaction with the linguistic cues.

We present a new neural model P called LOGNet (See
Fig. 2) to realize this vision. At the high level, for each im-
age and query pair, LOGNet first normalizes them into two
individual sets of linguistic and visual objects. Then, it per-
forms iterative multi-step reasoning by iteratively summoning
Language-binding Object Graph (LOG) units to achieve a
compact multi-modal representation in a recurrent manner.
This representation is finally combined with the query repre-
sentation to reach the answers. We detail these steps.

3.1 Linguistic and Visual Objects

We embed words in the length-S query into 300-D vectors,
which are subsequently passed through a biLSTM. The hid-
den states of LSTM representing the context-dependent word
embeddings e, are collected into a chain of contextual em-

beddings L = {es}f:1 € R?*S and used as linguistic objects
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Figure 3: Language-binding Object Graph (LOG) Unit. L: linguistic objects, V: visual objects, red edges: visual graph, cyan edges:
language-visual binding. The following elements are dynamic at pass ¢: g; — query semantic ; {c;,, } — language-based controlling signals; m; -

working memory state.

in reasoning. We also retain the overall query semantic as
q = [&1; €4] which joins the final states of forward and back-
ward LSTM passes. Unless otherwise specified, we use |.; .]
to denote the concatenation operator of two tensors.

The input image [ is first processed into a set of appear-

ance/spatial features O = {(ay, pi)}f\il of N regions ex-
tracted by an off-the-shelf object detection such as Faster
R-CNN [Ren et al., 2015]. The appearance component
a; € R*™8 are ROI pooling features and the spatial p; are
normalized coordinates of the region box [Yu et al., 2017].
These features are further combined and projected by train-
able linear embeddings to produce a set of visual objects
V = {v;}}¥, € RN, The pair (L, V) are readily used as
input for a chain of LOG reasoning operations.

3.2 Language-binding Object Graph Unit

LOG is essentially a recurrent unit whose state is kept in
a compact working memory m; and a controlling signal c;.
Input of each LOG operation includes the visual and linguistic
objects (V, L), and the overall query semantic q.

Each LOG consists of three submodules: (i) a visual graph
constructor to build a context-aware weighted adjacency ma-
trix of visual graph G;, (ii) a language binding constructor to
compute the adaptive linkage between linguistic and visual
objects and form a multi-modal graph G (iii) representation
refinement module to update object representation using the
graphs. (See Fig. 3).

Visual Graph Constructor

At each LOG operation, we construct an undirected graph
G = (V4, A) from N visual objects V = {v;}¥ | by finding
adaptive features V; and constructing the weighted adjacency
matrix A4;. Different from the widely used static semantic
graphs [Xu et al., 2017], our graph G; is dynamically con-
structed at each reasoning step t** and is modulated by the
recurrent controlling signal c; and overall linguistic cue q.
This reflects the dynamic relations of objects triggered by
both the question and reasoning context. In fact, this design
is consistent with how human reasons. For example, look-
ing at an image, to answer different questions, we connect
different pairs of objects although their geometrical and ap-
pearance similarities were unchanged. Moreover, even at one

820

question, our mind traverses through multiple types of object
relationships in different steps of reasoning, especially when
a query contains multiple or nested relations. Let W, denote
sub-networks’ weights at step t*", we first augment the nodes’
features as

Vi=W¢ [Vime_1 © V] +0b". 2)

The controlling signals {c; x } is derived from its previous
state and a step-specific query semantic ¢; through a set of
K attention heads {a j }7-_, on the linguistic objects L =

{es}s

s:lz

¢ =q, q = Wiq+b{ )
K K
g =l (rxc—ip), > wr=1 @)
k=1 k=1
gt = softmax, (W (es © a)) )
s
Cok = Oark*es, ¢ ={cei (6)
s=1

where, y; 1, is the weights of the past controlling signals being
added to the current query semantic ¢;.

While single attention can be used to guide the multi-step
reasoning process [Hudson and Manning, 2018], we noticed
that it tends to focus on one object attribute at a time neglecting
inter-aspect relations because of the softmax operation. In
VQA, multiple object attributes are usually necessary - e.g. to
answer “what is the color of the small shiny object having the
same shape with the cyan sphere?”, the object aspects “color”
and “shape” both need to be attended to. Our development of
using multi-head attention enables such a goal. The controlling
signals are then used to build the context modulated node
description matrix of r rows, V; € Rr*N .

)

where, norm is a normalization function for numerical stabi-
lization which is softmax in our implementation.

K

V, = norm <VV,§j Z(V O ¢t k)

k=1

)
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Finally, we estimate the symmetric adjacency matrix A4;€
RN >N by relating node features in V,. Ay is arank r symmet-
ric matrix representing the first-order proximity in appearance
and spatial features of the nodes:

A= V]V, ®)

The motivation behind the estimation of A; is similar to
recent works [Santoro et al., 2017; Cadene et al., 2019] on
modeling implicit relations of visual objects, in which they do

not reflect any semantic or spatial relations but indicate the
probabilities of object-pair co-occurrences given a query.

Language Binding Constructor

The visual graph explored by the visual graph constructor is
powerful in representing dynamic object relation albeit still
lacking the two-way complementary object-level relation be-
tween visual and textual data. In one direction, visual features
provide grounding to ambiguous linguistic words so that ob-
jects of the same category can be differentiated [Nagaraja et
al., 2016]. Imagine the question “what is the color of the
cat eating the cake” in a scene with many cats visible, then
appearance and spatial features will clarify the selection of
the cat of interest. In the opposite direction, linguistic cues
provide more precise information than visual features of seg-
mented regions. In the previous example, the “eat” relation
between “cat” and “cake” is clear from the query words and is
useful to connect these two visual objects in the image. These
predicative advantages are even more important in the case of
higher order relationships.

Drawing inspiration from that observation, we build a multi-
modal graph G; = (X, A;) from the constructed graph
G, = (Vi, Ay). Each node z;,; € X, of G, is a binding
of the corresponding visual node vy ; of G; with its linguistic
supplement given by the context-aware function f;(.):

T = [ve4; fer(er, ..., eslvei)]. 9)

Designing f;(.) is key to make this representation mean-

ingful. In particular, we design this function as the weighted
composition of contextual words {e,}5_;:

S
filer, seslvig) =Y Bris % es. (10)
s=1

Here combination weights f3; ; ; represent the cross-modality
partnership between a visual object v; ; and a linguistic word
es, essentially forming the contextualized pair-wise bipartite
relations between the V' and L.

To calculate 3 ; s, we first preprocess them by modulating
V with the previous memory state V; = W7 [V;m;_1 © V] +
b? and soft classifying each word s into multiple lexical types
as a weight vector z, similar to [Yang er al., 2019], 2, =
a(W=L(W=%e, + b*Y) + b*!). Subsequently, the normalized
cross-modality relation weights are calculated as:

Bt is =2s * softmaxS(Wf(tanh(Wt%t’i + Wies))). (A1)

By doing this, we allow per-object communication between
the two modalities, differentiating our method from prior
works where linguistic cue is reduced to a single vector for
conditioning or combined with visual signal in a late fusion.
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Representation Refinement

At the last step of LOG operation, we rely on the newly built
multi-modal graph G, = (X}, A;) as the structure to refine the
representation of objects by employing a graph convolutional
network (GCN) [Kipf and Welling, 2017] of H hidden layers.
Generally, vanilla GCNs have a difficulty of stacking deep
layers due to the common vanishing gradient and numerical
instability. We solve this problem by borrowing the residual
skip-connection trick from ResNet [He er al., 2016] to cre-
ate more direct gradient flow. Concretely, the refined node
representation is given by:

R, = Xy, (12)
Fh (Rh—l) = W;?_lp (W}i_th—l»At + bh—l) ) (13)
Ry =p(Rp—1+ F, (Ry-1)), (14)

where, h = 1,2.., H, and p is an activation function which is
an ELU operation in our later experiments. The parameters
(Wﬁ_l, W,f_l) can be optionally tied across H layers.

As we obtain the refined representation R; gy = {ry; g }¥
after the H refinement layers, we compute the overall final
representation by smashing the graph into one single vector:

N
Fp =Y Opi*Teim, (15)
=0

where, 0; ; = softmaxi(Wt‘srt,i, 1 ). Finally, we update LOG’s
working memory state:

my = W™ [my_1; 3] + 0™ (16)

3.3 Answer Prediction

After T passes of LOG iterations, LOGNet combines the final
memory state mr with the sequential expression ¢ of the
question by concatenation followed by a linear layer to get the
final representation J = W [mp;q] + b, J € RY.

For answer prediction, we adopt a 2-layer multi-layer per-
ceptron (MLP) and a batch normalization layer in between as
a classifier. The network is trained using cross-entropy loss or
binary cross-entropy loss according to types of questions.

4 Experiments

4.1 Datasets

We evaluate our model on multiple datasets including:

CLEVR [Johnson et al., 2017al: presents several reasoning
tasks such as transitive relations and attribute comparison. We
intentionally design experiments to evaluate the generalization
capability of our model on various subsets of CLEVR, where
most existing works fail, sampled by the number of questions.

CLEVR-Human [Johnson et al., 2017b]: composes natu-
ral language question-answer pairs on images from CLEVR.
Due to diverse linguistic variations, this dataset requires
stronger visual reasoning ability than CLEVR.

GQA [Hudson and Manning, 2019b]: the current largest
visual relational reasoning dataset providing semantic scene
graphs coupled with images. Because LOGNet does not need
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Figure 4: VQA performance on CLEVR subsets.

Method Val. Acc. (%)
FiLM [Perez erf al., 2018] 56.6
MACNet(R) [Hudson and Manning, 2018] 57.4
LCGN [Hu et al., 2019] 46.3
BAN [Shrestha et al., 2019] 60.2
RAMEN [Shrestha et al., 2019] 57.9
LOGNet 62.5

Table 1: Performance on CLEVR-Human.

prior predicates, we ignore these static graphs using only the
image and textual query as input.

VQA v2 [Goyal et al., 2017]: As a large portion of ques-
tions is short and can be answered by looking for facts in
images, we design experiments with a split of only long ques-
tions (>7 words). The split, hence, assesses the ability to
model the relations between objects, e.g.: “What is the white
substance on the left side of the plate and on top of the cake?”.

4.2 Performance Against SOTAs

Our model is generally implemented with feature dimension
d = 512, reasoning depth 7" = 8, GCN depth H = 8 and
attention-width &' = 2. The number of regions is N = 14 for
CLEVR and CLEVR-Human, and 100 for GQA and 36 for
VQA v2 to match with other related methods. We also match
the word embeddings with others by using random vectors
of a uniform distribution for CLEVR/CLEVR-Human and
pretrained GloVe vectors for the other datasets.

We compare with state-of-the-art methods reporting perfor-
mance as in their papers or obtained with their public code.
For the better judgement of whether the improvement is from
the model designs or from the use of better visual embeddings,
we reimplement MACNet [Hudson and Manning, 2018] with
their feature choice of ResNet - MACNet(R), and additionally
try it out on our ROI pooling features - MACNet(O).

CLEVR and CLEVR-Human Dataset

Fig. 4 demonstrates the large improvement of LOGNet over
SOTAs including MACNet, FILM and LGCN particularly with
limited training data. With enough data, all models converge
in performance. With smaller training data, other methods
struggle to generalize, while LOGNet maintains stable perfor-
mance. With 10% of training data, FiILM quickly drops to
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Accuracy (%)

Training size Method
val test
CNN+LSTM | 49.2 46.6
Bottom-Up 522 49.7
Full MACNet(O) | 57.5 54.1
LCGN 63.9 56.1
LOGNet 632 552
LCGN 60.6 -
0% LOGNet 610 -
LCGN 53.2 -
20% LOGNet 538 -

Table 2: Performance on GQA and subsets.

Method Val. Acc. (%)
XNM 434
MACNet(R) 40.7
MACNEet(O) 45.5
LOGNet 46.8

Table 3: Experiments on VQA v2 subset of long questions.

51.9%, and only 48.9% in case of LGCN, which barely sur-
passes the linguistic bias performance of 42.1% reported by
[Johnson et al., 2017al. Behind LOGNet (91.2%), MACNet
is the runner up in generalization with around 85.8%.

Our model shows significant improvement over other works
on CLEVR-Human dataset (See Table 1) where language
vocab is richer than the original CLEVR. We only report
results without fine-tune on CLEVR for better judgment of the
generalization ability. This suggests that LOGNet can better
handle the linguistic variations by its advantage in modeling
cross-modality interactions.

GQA

LOGNet outperforms previous works including simple fusion
approaches CNN+LSTM and Bottom-Up [Anderson ef al.,
2018], and the recent advanced multi-step inference MAC-
Net. Although LOGNet achieves competitive performance as
compared with LCGN on the full set, it shows its advantage
in generalization and robustness against overfitting in limited
data experiments (20% and 50% splits) - see Table 2.

VQA v2 - Subset of Long Questions

LOGNet is finally applied to the most difficult questions of
VQA v2. Empirical results show that our model achieves
favorable performance over MACNet and XNM [Shi er al.,
2019] on this subset. Due to the rich language vocab of human
annotated datasets, the improvements are less noticeable as
compared with those on synthetic datasets such as CLEVR.

4.3 Ablation Studies

We conduct ablation studies with our model on CLEVR subset
of 10% training data (See Table 4). We observe consistent
improvements responding to the increase in the number of
reasoning steps as well as going deeper with the representation
refinement process. We have tried up to p = 16 LOG units
and H = 16 GCN layers in each time step, establishing a
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color same large

Question: Is the color of the big matte object the same as the large metal cube?

Prediction: yes Answer: yes

it the same shape same shape as

» £

same shape as object on same shape as object is

Question: There is a tiny purple rubber thing; does it have the same shape as the brown object that is on the left side of the
rubber sphere?
Prediction: no

Answer: no

Figure 5: Chains of visual object relation (in red) with language binding (in cyan) constructed for two image-question pairs. Visual relations
are found adaptively to the specific questions and reasoning stages. Language binding was sharp on key cross-modality relations at several
early steps, then flats out as memory converges. Only five words included for visualization purposes. Best viewed in color.

No. Model Val. Acc. (%)
1 Default config. (8 LOG units, 8 GCNs) 91.2
2 w/o bounding box features 86.5
3 Graph constructor w/o previous memory 86.5
4 Graph constructor w/o language 56.2
5 Single-head attn. controlling signal 86.3
6 Rep. refinement w/ 1 GCN layers 75.9
7 Rep. refinement w/ 4 GCN layers 89.4
8 Rep. refinement w/ 12 GCN layers 91.1
9  Rep. refinement w/ 16 GCN layers 89.5
10 Language binding w/o previous memory 90.8
11 w/o language binding 89.9
12 1 LOG unit 69.0
13 4 LOG units 76.3
14 12 LOG units 91.6
15 16 LOG units 91.1

Table 4: Ablation studies - CLEVR dataset: 10% subset.

very deep reasoning process over hundreds of layers. The
results strongly prove the ability to leverage recurrent cells
(row 12-14) and the significance of the deep refinement layers
(row 6-9). It is also clear that linguistic cue plays a crucial
role in all the components of LOGNet and language binding
contributes noticeably to performance (row 1 and 11).

4.4 Behavior Analysis

To understand the behavior of the dynamic graphs during
LOG iterations, we visualize them for complex questions from
CLEVR (see Fig. 5). As seen, the linguistic objects most se-
lected for binding are from objects of interest or their attributes
which give a hint to the model of what aspect of the visual cue
to look at. Question types (e.g. yes-no/wh-question, object

counting) and other function words (e.g. “the”, “is”, “on”) are
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also paid much attention to. Note that as linguistic objects are
outputs of LSTM passes, those of function words, such as arti-
cles and conjunctions connect nearby content words and holds
their aggregated information through the LSTM operations.
Progressing through the reasoning steps, LOGNet accu-
mulates multiple aspects of joint domain information in a
compositional manner. In earlier steps when most crucial rea-
sonings happen, it is apparent in Fig. 5 that language binding
concentrates on sharp linguistic-visual relations such as from
attribute and predicate words (e.g. “color”, “shape”, “same”)
to their related objects. They constitute the most principal
components of the working memory. Later in the reasoning
process, when the memory gets close to the convergence, the
binding weights flat out as not much critical information is
being added anymore. This agrees with the ablation study
result in the last four rows of Table 4 where the performance
raises sharply in the early steps and gradually converges.

5 Discussion

We have presented a new neural recurrent model for compo-
sitional and relational reasoning over a knowledge base with
implicit intra- and inter- modality connections. Distinct from
existing neural reasoning methods, our method computes dy-
namic dependencies on-demand as reasoning proceeds. Our
focus is on VQA tasks, where raw visual and linguistic fea-
tures are given but their relations are unknown. The experi-
mental results demonstrated superior performance on multiple
datasets even when trained on just 10% data.

The chaining of implicit relations and representation refine-
ments in this model suggests further study (a) on the adaptive
depth of refinement layers and the length of the reasoning,
e.g., by considering the complexity of the scene and of the
question; and (b) relationship with first-order logic inference.
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