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Grzegorz Siudema,1 , Barbara Żogała-Siudemb , Anna Cenac , and Marek Gagolewskib,c,d

aFaculty of Physics, Warsaw University of Technology, 00-662 Warsaw, Poland; bSystems Research Institute, Polish Academy of Sciences, 01-447 Warsaw,
Poland; cFaculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland; and dSchool of Information
Technology, Deakin University, Geelong, VIC 3220, Australia

Edited by Anthony Van Raan, Leiden University, Leiden, The Netherlands, and accepted by Editorial Board Member Adrian E. Raftery May 11, 2020
(received for review January 18, 2020)

The growing popularity of bibliometric indexes (whose most
famous example is the h index by J. E. Hirsch [J. E. Hirsch, Proc.
Natl. Acad. Sci. U.S.A. 102, 16569–16572 (2005)]) is opposed by
those claiming that one’s scientific impact cannot be reduced to
a single number. Some even believe that our complex reality fails
to submit to any quantitative description. We argue that neither
of the two controversial extremes is true. By assuming that some
citations are distributed according to the rich get richer rule (suc-
cess breeds success, preferential attachment) while some others
are assigned totally at random (all in all, a paper needs a bibli-
ography), we have crafted a model that accurately summarizes
citation records with merely three easily interpretable parame-
ters: productivity, total impact, and how lucky an author has
been so far.
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Ever since Garfield’s (1) impact factor for journals and
Hirsch’s (2) h index for individual researchers, the popularity

of bibliometric impact measures has been growing rapidly. The
fact that they summarize one’s scientific performance with just
a single number is appealing to many. However, some argue (3)
that the nature of scientific activities is too multidimensional for
such a simple description to be possible and a few quantitative
metrics will never be sufficient to capture this complex reality in
its entirety.

In this paper we address this issue from the perspective of the
increasingly popular science of science (Sci-Sci) (4, 5) approach,
which can be dated back to the classical book by de Solla Price,
Little Science, Big Science (6). The modern Sci-Sci utilizes com-
plex systems methodology and can be considered a fusion of
agent-based modeling and big data analysis.

We have developed a model of an author’s research activ-
ity that is based on two simple assumptions: 1) In each time
step one new paper is added into the simulation. 2) Each newly
added paper cites the existing publications according to a com-
bination of a) the preferential attachment rule—highly cited
papers are more likely to attract even more citations [compare
the rich get richer mechanism (7), the success breeds success
phenomenon (8), and the effect of a scientist’s reputation (9)]—
and b) sheer chance—papers might be discovered by the citing
authors by accident or be included in the bibliography completely
at random.

While the importance of the rich get richer rule (7) in
bibliometrics is unquestionable [first part of Merton’s (10)
Matthew effect, referred to as the cumulative advantage pro-
cess by de Solla Price (8) or success-breeds-success phe-
nomenon (6, 11), confirmed experimentally (12)], we argue
here that a purely preferential model is incapable of explain-
ing our reality well enough and the accidental component is
necessary (13, 14).

Furthermore, in our case we adopt different levels of analy-
sis [as known from social sciences (15)] (Fig. 1) for generated
bibliometric data. Agent-based models are formulated at the
microlevel—from the perspective of an individual paper. The
Sci-Sci perspective usually investigates the structure of the cita-
tion network in its entirety, for instance to describe general cita-

tion patterns across the whole scientific discipline (macrolevel).
Here we are mainly focusing on the rarely considered mesolevel
(Table 1), which is the perspective of a single scientist, i.e., a
small-sample one. As such, the above publication–citation pro-
cess can be thought of as an extension of the iterative procedure
known as the Ionescu–Chopard model (16, 17) (Materials and
Methods, Model Description).

Model Derivation
Assume X1,X2, . . . ,XN is a descending sequence of citation
counts for each of the N papers of an author. In other words, X1

denotes the number of bibliographic references to the author’s
most cited paper, X2 is the second most cited, . . ., and XN is
the least cited one. Famous approaches (18) to the problem of
approximating observed citation records X1, . . . ,XN with sim-
ple mathematical models X̂1(· · · ), . . . , X̂N (· · · ) that depend on a
small number of parameters were mostly based on the power law
(19) or other functions (20). Unfortunately, they do not provide a
good fit at the mesolevel—they are usually applied for describing
papers sampled from the whole citation network (21, 22).

Our model, on the other hand, not only has a clear interpreta-
tion (recall the two simple assumptions above), but also provides
high-accuracy approximations of citation records of individuals.
Due to this, we are able to describe this complex reality with
merely three self-explanatory parameters: the number of papers
N ; the total number of citations C =X1 +X2 + · · ·+XN ; and
the ratio of citations distributed according to the preferential
attachment rule ρ, where ρ' 0 means that all papers receive cita-
tions completely at random and ρ' 1 that all of them follow the
rich get richer rule.

Significance

What are the mechanisms behind one’s research success as
measured by one’s papers’ citability? By acknowledging the
perceived esteem might be a consequence not only of how
valuable one’s works are but also of pure luck, we arrived at a
model that can accurately recreate a citation record based on
just three parameters: the number of publications, the total
number of citations, and the degree of randomness in the cita-
tion patterns. As a by-product, we show that a single index
will never be able to embrace the complex reality of the sci-
entific impact. However, three of them can already provide us
with a reliable summary.
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A.C., and M.G. wrote the paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission. A.V.R. is a guest editor invited by the Editorial
Board.y

Published under the PNAS license.y

Data deposition: The raw citation sequences, estimated parameters, and source code
used to perform the data analysis can be accessed at the GitHub repository: https://
github.com/gagolews/three dimensions of scientific impact.y
1 To whom correspondence may be addressed. Email: grzegorz.siudem@pw.edu.pl.y

First published June 8, 2020.

13896–13900 | PNAS | June 23, 2020 | vol. 117 | no. 25 www.pnas.org/cgi/doi/10.1073/pnas.2001064117

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Ju
ly

 1
3,

 2
02

1 

http://orcid.org/0000-0002-9391-6477
http://orcid.org/0000-0002-2869-7300
http://orcid.org/0000-0001-8697-5383
http://orcid.org/0000-0003-0637-6028
https://www.pnas.org/site/aboutpnas/licenses.xhtml
https://github.com/gagolews/three_dimensions_of_scientific_impact
https://github.com/gagolews/three_dimensions_of_scientific_impact
mailto:grzegorz.siudem@pw.edu.pl
https://www.pnas.org/cgi/doi/10.1073/pnas.2001064117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2001064117&domain=pdf


A
PP

LI
ED

M
A

TH
EM

A
TI

CS
SO

CI
A

L
SC

IE
N

CE
S

Fig. 1. Different levels of analysis of bibliometric datasets. On the microlevel we describe the distribution of the number of citations of individual
papers, irrespective of who authored them as well as which articles actually referenced them. The rarely studied mesolevel, which is the perspective of
this contribution, accounts for the author-specific differences. The structure of the citation network in its entirety is studied at the macrolevel.

For the derivation of the model please refer to Materials
and Methods, Model Description. The citation process proposed
above, after all of the N papers have been published and all of
the citations have been distributed, yields the following analytic
formula for the estimated number of citations of the k th most
cited paper (Materials and Methods, Exact Solution of the Model):

X̂k (N ,C , ρ)=
1− ρ
ρ

C

N

(
N∏

i=k

i

i − ρ − 1

)
[1]

=
1− ρ
ρ

C

N

(
k

k − ρ ·
k +1

k +1− ρ · · ·
N

N − ρ − 1

)
.

Dataset Description
To demonstrate the usefulness of the model, we study the DBLP
Computer Science Bibliography (47) dataset of computer sci-
ence papers; see Materials and Methods, Data Availability for
description. We consider citation records of all 123,621 schol-
ars whose h index is at least 5. To determine the three model
parameters characterizing each author, we omit the papers with
no citations (as overfitting to a tail composed of zeros can-
not lead to a good overall description). Then we compute the
author’s N (number of papers that were cited at least once) and
C (the total number of citations) and then estimate ρ using the
least-squares fit with respect to the Cauchy loss

∑N
k=1 log(1+

(X̂k (N ,C , ρ)−Xk )
2) to weaken the influence of any potential

outliers.
Once we obtain an author’s N , C , and ρ, we can repro-

duce the author’s citation record quite accurately (Fig. 2). The
high variance of ρ for each fixed N and C (Fig. 3) indi-
cates that this parameter is necessary for a precise descrip-
tion of data. This suggests that indeed the modeled reality
might be three-dimensional (3D), which roughly agrees with the
estimates in ref. 48.

Results and Discussion
It turns out that ca. 30% of the authors have their corresponding
ρ≈ 0, which means that, under our model, their citations appear
to be distributed in an almost purely accidental manner. These

authors publish on average half as many papers as those with
ρ> 0, which might indicate that they are at the beginning of their
careers or their best papers are still yet to come. We observe
a positive correlation between ρ and N as well as C (Fig. 3).
In other words, more productive and/or influential authors tend
to have more papers distributed according to the rich get richer
rule. This observation is consistent with the well-known fact (5)
that one’s highest-impact paper can occur at any time during the
course of one’s career; thus, authors with more papers are more
likely to have published their best work already. However, as
there is a considerable variability in ρ at all levels, even some
outstanding careers might still be a result of more luck than
reason (13, 49).

By indicating that the citation record space is 3D, we have
proved that any single citation measure, including the h index
and the author’s ranking it generates, necessarily yields an over-
simplified projection of a more complex space (3). In other
words, whenever one chooses a single citation index, some infor-
mation must inherently be lost; we will never be able to see the
whole picture through the lenses of any single measure.

The proposed model emphasizes the use of multiple indexes in
the evaluation of scientific work. We have indicated that merely
three parameters are sufficient to provide an accurate descrip-
tion of our reality. In the near future, we plan to perform a broad
study of bibliometric indexes to come up with an intuitive and
insightful classification for which of the three dimensions each
index focuses on the most. This will allow policy makers to make
better-informed decisions when choosing particular evaluation
tools. The questions of how to best combine N , C , and ρ to cause
the least information loss and how well popular citation indexes
perform with regard to the quality of data approximation will also
be explored.

Materials and Methods
Model Description. Let us introduce the proposed model in a formal manner.
For the description of the citation dynamics we use the following parame-
ters: the total number of papers N, the total number citations C that will
be distributed among all papers, and ratio of the number of preferential
citations to the total number of citations ρ∈ (0, 1).

Due to the assumed boundary conditions in Eq. 3, we disallow both ρ= 0
and ρ= 1.

Table 1. Overview of the related literature on the modeling of the distribution of citations

Microlevel Mesolevel Macrolevel

Purely preferential Distribution of the number of Lotkaian informetrics (19), Barábasi–Albert model and
citations (21–30) Ionescu–Chopard model (16, 17) its modifications (31)

Preferential and/or Microscopic model (14) implies This paper Empirical data (33, 34), models
accidental Tsalis–Pareto distribution (32) studied in refs. 35–46

By assuming that citations might be assigned completely at random as well as follow the rich get richer rule, we revealed the underlying dimensionality
of the mesolevel, leading to an accurate description of the output of an individual author.

Siudem et al. PNAS | June 23, 2020 | vol. 117 | no. 25 | 13897
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Fig. 2. Normalized average number of citations Xk/C as a function of the
normalized paper rank k/N on a double-logarithmic scale. Each plotting
character corresponds to citation sequences of different lengths: “+,” all
of the 2,624 authors with 48 to 52 papers in total; “•,” 1,113 authors with
95 to 105 papers; “H,” 131 authors with 238 to 262 papers; and “�,” 18
authors with 475 to 525 papers. The curves represent the corresponding
predictions X̂k/C as generated by our model with ρ equal to the averages
over the individual authors’ fitted rich get richer ratios. A particularly good
fit is observed in the case of highly and moderately influential papers.

The stages of the model’s simulation are strictly connected to the scien-
tific activity of the considered author. Each of the N steps corresponds to
the publication of one of the author’s papers. At the tth step, the t arti-
cles already in existence are to receive na + np = C

N citations in total, where
np = ρ C

N citations are distributed according to the preferential attachment
rule, and na = (1− ρ) C

N citations are uniformly distributed between the t
papers

Note that both np and na do not need to be integers—we consider them
as averages.

The rate equation for the number of citations of the kth mostly cited
paper at the tth stage of the simulation, X(t)

k , takes the form

X(t)
k = X(t−1)

k︸ ︷︷ ︸
previous value

+
na

t︸︷︷︸
accidental income

+ np
X(t−1)

k + na
t

na +
t−1∑
l=1

X(t−1)
l︸ ︷︷ ︸

preferential income

, [2]

for k = 1, . . . , t. As each paper has initially no citations, we introduce the
following boundary conditions:

X(k−1)
k = 0, for k = 1, 2, . . . [3]

Note that in the rightmost term in Eq. 2, i.e., the preferential part, we
assume that accidental citations are distributed first to avoid singularities
with the very natural boundary conditions of the form given by Eq. 3. This
explains the occurrence of na there. The structure of the preferential part is
the expected value of the Bernoulli distribution with the number of trials np

and the probability resulting from the assumed rich get richer mechanism—
the number of citations thus obtained is proportional to the actual number
of citations (i.e., X(t−1)

k + na/t).

Exact Solution of the Model. Below we derive the exact formula for X(t)
k . Note

that Eq. 2 can be simplified as

X(t)
k =

[
X(t−1)

k +
na

t

]1 +
np

na +
t−1∑
l=1

X(t−1)
l

.

Moreover, the second term can be further simplified due the fact that in
each of the (t− 1) steps, the papers receive na + np citations; i.e.,

t−1∑
l=1

X(t−1)
l = (na + np)(t− 1).

Therefore,

1 +
np

na +
t−1∑
l=1

X(t−1)
l

= 1 +
np

na + (na + np)(t− 1)

=
(na + np)t

(na + np)t− np
=

t

t− np
na+np

.

Furthermore, since ρ= np/(na + np), the following holds:

X(t)
k = X(t−1)

k

t

t− ρ
+

na

t− ρ
. [4]

Moreover,

X(t)
k =

[
X(t−2)

k

t− 1

t− 1− ρ
+

na

t− 1− ρ

]
t

t− ρ
+

na

t− ρ

=

[
X(t−3)

k

t− 2

t− 2− ρ
+

na

t− 2− ρ

]
t(t− 1)

(t− ρ)(t− 1− ρ)

+
nat

(t− ρ)(t− 1− ρ)
+

na

t− ρ

= X(t−3)
k

t(t− 1)(t− 2)

(t− ρ)(t− 1− ρ)(t− 2− ρ)

+
nat(t− 1)

(t− ρ)(t− 1− ρ)(t− 2− ρ)

+
nat

(t− ρ)(t− 1− ρ)
+

na

t− ρ
. [5]

Keeping in mind that the Euler gamma function Γ (e.g., ref. 50, chap. 5),
defined as

Γ(z) =

∫ ∞
0

xz−1e−x dx,

satisfies the factorial-like relation (equation 5.5.1 in ref. 50)

Γ(z + 1) = zΓ(z), [6]

for every number z, we can transform Eq. 5 as

X(t)
k = X(t−3)

k

Γ(t− 2− ρ)Γ(t + 1)

Γ(t + 1− ρ)Γ(t− 2)
+ na

Γ(t− 2− ρ)Γ(t + 1)

Γ(t + 1− ρ)Γ(t− 1)

+ na
Γ(t− 1− ρ)Γ(t + 1)

Γ(t + 1− ρ)Γ(t)
+ na

Γ(t− ρ)Γ(t + 1)

Γ(t + 1− ρ)Γ(t + 1)
. [7]

By continuing evaluation of Eq. 4 of the form given by Eq. 7, we obtain

X(t)
k = X(k−1)

k︸ ︷︷ ︸
= 0

Γ(t + 1)

Γ(t + 1− ρ)

Γ(k− ρ)

Γ(k)
[8]

+ na
Γ(t + 1)

Γ(t + 1− ρ)

t−k∑
r=0

Γ(t− r− ρ)

Γ(t− r + 1)
.

Fig. 3. The more productive and/or influential an author is, the more likely
the author’s papers are cited according to the rich get richer rule.

13898 | www.pnas.org/cgi/doi/10.1073/pnas.2001064117 Siudem et al.
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In Eq. 8 we can stop the nesting procedure by using the boundary conditions
given by Eq. 3. The final formula for X(t)

k with the change of the summation
variable `= t− r takes the form

X(t)
k = na

Γ(t + 1)

Γ(t + 1− ρ)

t∑
`=k

Γ(`− ρ)

Γ(`+ 1)
.

This can be simplified further, because the sum of the ratios of gamma
functions satisfies the identity

t∑
`=k

Γ(`− ρ)

Γ(`+ 1)
=

1

ρ

[
Γ(k− ρ)

Γ(k)
−

Γ(t + 1− ρ)

Γ(t + 1)

]
, [9]

which leads to

X(t)
k =

na

ρ

[
Γ(k− ρ)

Γ(k)

Γ(t + 1)

Γ(t + 1− ρ)
− 1
]
. [10]

Finally, we put t = N, which leads to the situation where each paper
has been published and every citation has been distributed. This yields
X̂k : = X(N)

k such that

X̂k(N, C, ρ) =
1− ρ
ρ

C

N

[
Γ(k− ρ)

Γ(k)

Γ(N + 1)

Γ(N + 1− ρ)
− 1
]
. [11]

Gamma functions, although very elegant, are not computationally well
behaving. This is the reason why we should be interested in deriving the
following equivalent of Eq. 11. Due to Eq. 6, we can substitute the gamma
functions with the following product:

X̂k(N, C, ρ) =
1− ρ
ρ

C

N

(
N∏

`=k

`

`− ρ
− 1

)
. [12]

The Pochhammer symbol (section 5.2 in ref. 50) is defined as

(k)m =
Γ(k + m)

Γ(k)
= k(k + 1) . . . (k + m− 1). [13]

Employing it in Eq. 11 yields

X̂k(N, C, ρ) =
1− ρ
ρ

C

N

(k)N−k+1− (k− ρ)N−k+1

(k− ρ)N−k+1
. [14]

Note that the Pochhammer symbol is implemented in many numerical
software packages, thus enabling fast and accurate computations.

Data Availability. Empirical data analysis conveyed in this paper is based
on the DBLP V10 bibliography database (47) (https://aminer.org/citation),
consisting of 3,079,007 papers and 25,16,994 citation relationships. DBLP
includes most of the journals related to computer science. It also tracks
numerous conference proceedings papers from the field.

We have extracted citation records of 1,762,044 authors. Most of them
have published a small number of papers or have received very few cita-
tions. Therefore, we restricted the analysis to the subset of researchers
characterized by the h index not less than 5. This gave 123,621 citation
records. Moreover, papers with 0 citations have been omitted from the anal-
ysis, as they are problematic when performing computations on the log
scale. Note that most impact indexes, including the h index, ignore zeros
anyway.

The raw citation sequences, estimated parameters, and source code used
to perform the data analysis can be accessed at the GitHub repository:
https://github.com/gagolews/three dimensions of scientific impact (51).

ACKNOWLEDGMENTS. We thank Maciej J. Mrowiński, Tessa
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