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Abstract. This paper proposes a new method of level set estimation through
search space warping using Bayesian optimisation. Instead of a single solution,
a level set offers a range of solutions each meeting the goal and thus provides
useful knowledge in tolerance for industrial product design. The proposed warp-
ing scheme increases performance of existing level set estimation algorithms -
in particular the ambiguity acquisition function. This is done by constructing a
complex covariance function to warp the Gaussian Process. The covariance func-
tion is designed to expand regions deemed to have a high potential for being at
the desired level whilst contracting others. Subsequently, Bayesian optimisation
using this covariance function ensures that the level set is sampled more thor-
oughly. Experimental results demonstrate increased efficiency of level set dis-
covery using the warping scheme. Theoretical analysis concerning warping the
covariance function, maximum information gain and bounds on the cumulative
regret are provided.

Keywords: Level set estimation + Gaussian processes * Bayesian optimisation
1 Introduction

Level set estimation is a common problem in industrial design where, instead of a single
best design, it is useful to find a set of designs that meet a target. This can then be
used for robust manufacturing or to further screen on subsidiary objectives. Consider
designing the structure of a vehicle to achieve target crash-safety performance. Vehicle
regulations require that the Head Injury Criterion (HIC) not exceed 700 under standard
test conditions [6], with lower values indicating better protection against brain injury.
The design process often involves first generating a set of designs that meet the criteria
via a crash simulator [9] and then filtering for cost before selecting one for actual ground
testing. Generating the set of designs (or a representative set, in the case of continuous
variables) can be posed as a level set estimation problem. Coupled with the fact that
such simulators are computationally expensive, it is important that level sets are found
in the minimum number of trials. Similarly, in alloy design, it is useful to find the set of
elemental composition that produce alloys with similar mechanical properties. Such a
set can then be used for robust specification of the alloy composition. Similar examples
are abound in other domains [7]. Hence, level set estimation is an important problem.
Bayesian optimisation (BO) is a method for global optimisation of expensive black-
box functions [3]. It has been adapted to seek a level set instead of the optimum [5-8].
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It works by building a probabilistic model of the function (normally using a Gaussian
process (GP) prior) and then using the posterior to seek the next sample point such that
more samples are obtained from the level set. The search for the next point is guided by
the optimisation of a surrogate model, known as an acquisition function. There are two
major limitations in the current work on BO for level set estimation: 1) they considered
only discrete sets to demonstrate convergence of the algorithm, and 2) they end up being
more explorative i.e. samples are more scattered as they do not use the fact that most
of the level sets for a continuous function tend to be contiguous. The first limitation
restricts its application and the second provides an avenue to further improve the sample
efficiency, particularly under a budget constraint. Hence, scope for a level set estimation
algorithm for expensive black-box functions that works with continuous variables and
exploits the continuity of the functions for improved efficiency is still open.

We present a framework of BO for level set estimation using a warped GP to exploit
the continuity of the function and then analyse its convergence both for continuous and
discrete cases. We implement the warped GP through a non-stationary covariance func-
tion such that regions with high potential to be on the level are expanded, whilst others
are contracted. The potential is computed by a monotonic function of the difference of
the mean prediction from the intended level, scaled by the predicted variance (both the
predictions are obtained from an intermediate GP with stationary kernel). The differ-
ence from mean term encourages areas close by to existing samples from the level set
to have high potential (using continuity of the GP), whilst the variance scaling guards
against any undue optimism. When compared against the usual stationary kernel, it
tends to operate in a more exploitative manner. Under a budget constraint, exploitative
sampling is more beneficial as once one point at the level is discovered, sampling close
by is likely to reveal more points on that level. In contrast an explorative algorithm may
find little or no points on the level before the budget expires. Theoretical analysis of our
proposed warped kernel based approach shows the proposed algorithm is able to retain
the sublinear growth rate of the cumulative regret and extensive experiments with both
synthetic and real-world functions (including on alloy and car design) demonstrate a
significant increase in sample efficiency.

1.1 Related Work

Previous work into level-set estimation problems have been performed by the LSE algo-
rithm [8] and the Truncated Variance Reduction (TruVar) algorithm [2]. In LSE, the
ambiguity acquisition function is adapted from the Straddle heuristic [4], providing a
balance between exploration and exploitation. This algorithm is an online method that
utilises confidence intervals to classify points as being either above or below the level.
Similar in nature to LSE in its classification, the TruVar algorithm provides functional-
ity for both Level set estimation and BO applications, utilising the common GP based
approach to unite the methods. For Level set estimation applications, the algorithm uses
lookahead to select the next sample point as one which provides the greatest reduction
in the sum of truncated variances within a set of unclassified points. This method fur-
ther incorporates point-wise costs and heteroscedastic noise into its selection. In the
application of this method in both [8] and [2], the authors have utilised a monotonically
decreasing set for unclassified points, based on the bounds of the GP. This method of
classification however is suited when sampling is done on a discrete domain.
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For super-level set estimation, [16] proposes Maximum Improvement for Level-
Set Estimation (MILE), a one-step lookahead algorithm, to locate points that exceed a
threshold with a specified high probability. Aiming to find the largest region that exists
above a certain level, it operates by sampling points which provide the greatest expected
improvement in the set of points classified as being above the threshold. Convergence
guarantees were provided even for misspecified prior distribution, however, only for
discrete domains.

Level set estimation lends itself to estimating system probability of failure. Work by
[1] develops a Bayesian framework for such tasks. They propose a one step-look ahead
sequential sampling strategy called stepwise uncertainty reduction (SUR). In [5] this
method is adapted from sequential to batch sampling, allowing for parallel sampling of
the function. Convergence analysis was not provided.

1.2 Problem Definition

We assume a function f : x — y, where x € X C R” is a compact subset from a
D-dimensional real vector space and y € R is from the real line. We wish to find the
level set of a function i.e.

Dy ={x: f(x) = h} ey
where h is the desired level. A small tolerance 7 is permitted. For some problems it
may be useful to find a super-level seti.e. H = {x : f(x) > h} or a sub-level set i.e.
L = {x: f(x) < h}. We assume that the function f(.) is expensive, and only noisy
evaluations i.e. y = f(x) + €, where € ~ AN(0,02) are available. Hence, we need to
find the level set in an sample-efficient way.

1.3 Background

Bayesian optimisation has been adapted for level set estimation of an expensive func-
tion, because of its high sample efficiency. Usually a Gaussian process is used to serve
the probabilistic model of the function, which is then utilised to select the next sample
point using a surrogate function. In the following we outline the Gaussian process and
the acquisition function specific to level set estimation.

Gaussian Processes. Gaussian process is a commonly used prior over the space
of smooth functions [13]. It is fully defined by a mean and covariance function.
Without loss of generality we can assume the mean to be a zero function, then a
GP is fully defined by the co-variance function alone, i.e. f ~ GP(0,k(x,x’)).
Given a set of observations ({x;,y;}{_;), the posterior is also a GP whose predic-
tive mean and covariance can be computed as, ¢ (x) = k¢(x)? (K; + 02I)~y,, and
ki(x,X') = k(x,x') — ke(x)T(K; + 02I) "k (x'), with variance 02(x) = k;(x,x),
k;(x) = [k(x;,x)];_; and, K; = [k(x¢,X,)], ; is the kernel Gram matrix.

A popular kernel used for the covariance function is the squared exponential of the
form (assuming stationarity):

D
1 i
k(x;,x;) = afcexp —= Z (74 zd] ) (2)

where o; is the signal variance, and [; is a constant length scale for the d-th dimension.



830 M. Senadeera et al.

Level Set Estimation Algorithm. We use the algorithm proposed by [8]. Based on
the GP model, they used the ambiguity acquisition function a;(x) to sample the next
point. The authors [8] worked on the task of classifying discrete points into super-
level and sub-level sets, and the name ‘ambiguity’ reflects the uncertainty during the
classification process. This acquisition function, described in Eq. (3), aims to minimises
the distance between the mean and desired threshold h (exploitation) whilst maximising
the uncertainty (exploration).

ar(x) = = | pr—1(x) = b [ ++/Bror-1(x) 3)
where [3; trades between exploitation and exploration. The next point is determined as:

X; = argmax a;(X) 4)

The sequence of 3; can be set in a specific way [15] to achieve an efficient sub-linear
convergence rate for cumulative regret (£ S°'_, | f(x;) — h)).

The algorithm can be run either until the iteration budget expires (continuous case)
or all the points have been classified between level-set and the rest (discrete case).

2 Problem Setup and Proposed Algorithm

As mentioned, we aim to find the level set of an expensive function with a minimum
number of samples. We will make the current process [8] faster by exploiting the con-
tiguous nature of level sets. This is by defining a warping kernel function that expands
regions where the level has a higher chance of existing, while contracting regions where
the chance is low. This is done by first computing a GP without warping, also referred
to as the original GP (G P°), and using its predictive mean, y1;(x) and variance o7 (x) to
construct the warped kernel used to compute the warped GP (GP"). GP" is then used
for computing the warped acquisition function. G P" ensures regions around an obser-
vation already at the level is endowed with smaller length-scales than other regions,
resulting in higher acquisition function values, thus translating to a higher chance of
selecting the next sample from that region. We describe the warping kernel and then
analyse its properties. We then provide the warped acquisition function, followed by
convergence analysis. We note it is useful to build a better understanding of the level
set rather than outputting a small set of sampled points that exist at the level. For such
situations we output a GP model based on the samples. As most samples tend to come
from near the level, we believe that the level set produced by this GP would be more
accurate than when samples come from other means e.g. existing level set estimation
methods. This performance can be tested by classifying other points in the region (that
are not on the level) into a super-level and sub-level set.

2.1 Input Warping

Snoek et al. [14] warped the input space of non-stationary functions to convert them
to stationary functions. We utilise this concept to construct a complex covariance func-
tion via a non-homogenous length scale. Because the complex covariance function is
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unknown, adapting the length scale instead alleviates the need to pre-define the covari-
ance function. For this, the following form of the kernel [11] is used:

S+ %

1 1 _1
B(xi%j) = o | 2 3] 25 3] == 172 g(xi,x)) (5)

where
T+ 2!
g(Xivxj):eXP[—(Xi—Xj)T<2 j) (Xi—Xj)]

where Y;, known as the kernel matrix, is the covariance matrix of the Gaussian kernel at
x; [11]. In the isotropic case, this matrix has the form 11.2 x Ip [12]. This can be extended
to an anisotropic case of the form X; = diag(I(x;)?) where I(x;) is a vector of length
scales for each dimension at x;, ensuring k(x;, X;) remains positive semi-definite.

With the balancing act of the acquisition function being to encourage selection of
points which minimise the distance between i and the mean whilst maximising uncer-
tainty, this same objective was incorporated into the length scale warping metric. For
problems involving level set estimation an argument can be made for there to be a
stronger emphasis on exploitation compared to a BO problem. The reason for this is that
unlike BO, once a single point at the desired level is found, it can be safely assumed,
for a continuous function, that points close by will also be at that level. Shown in (6) is
the metric by which, for a given point, a new length scale value is determined.

Vo) )

The length scale for a point through (6) can be added into the X' matrix in (5).

By (6), areas with small length scales encourage sampling, as the standard deviation
and mean return to prior values of oy and O faster, behaving like an expanded space.
Areas with larger length scales discourage sampling as the mean and standard deviation
will remain similar to neighbouring points, mimicking regions with a contraction in
size.

A small term, ¢, in the denominator acts to prevent undefined values, should the
uncertainty term reach O (as the case for a sampled point without noise). € in the numer-
ator allows uncertainty to still influence warping for points where the mean is equal to
the threshold h. Additionally, a 1 is added within the log term to ensure /(x) remains a
positive function, and both [y and /; are to be positive.

It is necessary that the form of the length scale warping metric be different to that of
the acquisition function, whilst still valuing a similar exploration-exploitation balance.
This avoids both metrics always preferring the same point (avoiding a doubling up).

It is possible to apply multiple warpings where after the original GP is warped,
the resulting GP is again warped multiple times. After this, the acquisition function
is applied to the final warped GP to select the next best point. Warping causes the
acquisition function to behave more exploitatively, as shown in Fig. 1. Initially the
point selected by the acquisition function (indicated by the red square) is more explo-
rative but, after multiple warpings, the point is more exploitative. More exploitation
is not necessarily good as samples from the level set would start to look very similar.

I(x) = lplog (1 + ( ©6)
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The balance lies somewhere in the middle where exploitation is high enough to use the
contiguous nature of the level set, but low enough to give variability in the samples. In
our experience one level of warping tends to give sufficient exploitation behaviour.

0.8

h

0.6
== = = mean
uncertainty

W pext sample
point

— evel

GP after warping one time GP after warping three times

Fig. 1. Impact to selection of next point by acquisition function due to multiple length scale warp-
ings. Increased warping layers result in the acquisition function behaving more exploitatively.
(Color figure online)

Figure 2 illustrates the exploitative behaviour of warping compared to the unwarped
kernel approach. Without warping, both « and 2’ have the same acquisition value and
are equally likely to be selected. With warping, these points are differentiated as = will
have a lower length scale than z’, giving it a higher chance of being selected.

X x' X X

(a) Without warping (b) With warping

Fig. 2. (a) Ambiguity acquisition function value equal for both x and x" - equally likely to be
selected as next best point. (b) Differentiation of acquisition value for x and x” following warping

2.2 LSE with Input Warping

The LSE Algorithm with input warping is described in Algorithm 1. Though the acqui-
sition function itself is unchanged, the search space for selecting the next sample point
is warped. As such the form of the acquisition function used is shown in (7).

ar(x) = = | frw,_, (X) = b | +1/Biow,_, (%) (7
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where p,, and o,, are the mean and variance from a warped GP with the complex
covariance function using length scale given by (6). The GP used to classify the test
points remains un-warped as it is based on a true model selection approach making it
the most accurate model of the function. Classification of points into the super-level
H, sub-level L and unclassified U sets follow the same approach as [8], however these
sets are no longer monotonic in size and allow for re-classification. Furthermore in [8]
sampling for the LSE algorithm was limited to points from the unclassified U set. In
Algorithm 1, to allow extension to continuous domain, this constraint was removed.

Algorithm 1. LSE with input warping

Input: Initial data set Do

Parameter: Desired threshold h. Tolerance 7 around h.
Output: Dy, and GPyp

1: Dh — (Z)

2: fort=1,2,...,T do

3:  Estimate length scale of unwarped space [ and, warping length scale parameters Iy and /4
using Dy

4: Compute p¢—1 and o4—1 with D;_; and [

5:  Compute warped length I(x) using (6) and Iy and I;

6:  Re-fit D;—1 to GP; according to (5) using I(x) and derive pw, , (X) and oy, , (X)

7:  Choose

Xt = argmax*| /’Lwt—l(x) —h | + v ﬂt—lawt—l(x)

8:  Sample function y; = f(x;) and update data D; = D1 U (X¢, yt)
9: Construct GP¢ from data D, using [
10:  ifh —n <y: < h+nthen

11: Dy =Dp Uz,
12: end if
13: end for

2.3 Theoretical Guarantees

We provide theoretical guarantees for the proposed method. In Theorem 1 bounds on
the length scale for the complex covariance function are provided. Next, we analyse
the convergence of the acquisition function, detailed in Theorem 2, with the true length
scale by providing a bound on cumulative regret. This bound is described by the maxi-
mum information gain. In Theorem 3 we prove that this maximum information gain is
bounded even under the heterogeneous length scale range described in Theorem 1. The
theorems demonstrate that the convergence rate remains unaffected even with warping.
In our empirical analysis, the warped acquisition function performs more efficiently.
Theorem 1 defines bounds on the warped length scale.

Theorem 1. For any h € R, let 6 € (0,1) and B; = 2 || f |2 +300: log(t/d)?,
then with probability > 1 — ¢, the length scale will be bounded between l; < l(x) <

2
log(l + (1 + @) ) + 1y, where Afpae =max| f(x) —h |.
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Proof. Proof of Theorem 1 is provided in supplementary materials.

Gotovos et al. [8] provided theoretical convergence bounds for the acquisition func-
tion in discrete domain problems by bounding the number of samples required for a
specified confidence. Theorem 2 provides a cumulative regret bound for the acquisition
function in a continuous domain, where regret is the same as that defined in [15].

Theorem 2. Let § € (0,1), B; = 2 || f ||7 +3007In>(t/d), " be maximum infor-
mation gain for the warped squared exponential kernel after t iterations, o> be vari-
ance of the measurement noise and h be the desired threshold. Then with probability of
> 1 — 20, the cumulative regret of the ambiguity acquisition function of (3) follows the

sublinear rate Ry < \/%4‘ T|f(x*)=hl|

Proof. Proof of Theorem 2 is provided in supplementary material.

The regret bound assures that the algorithm converges to the desired level, with
cumulative regret reflecting the rate of convergence. Theorem 2 demonstrates the aver-
age cumulative regret vanishes when f(x*) = h, or reaches | f(x*) — h | when the
specified level does not exist for the function, with x* being the set of points resulting
in f(x*) being the closest to /. In Theorem 2, cumulative regret is bounded as a function
of the maximum information gain ;. The existing results in Theorem 5 of [15] provide
an upper bound for , for a squared exponential kernel with homogeneous length scale.

In Theorem 3 we provide a bound on the maximum information gain in the pres-
ence of a heterogeneous length scale as bounded by Theorem 1. Even with a heteroge-
neous length scale for the GP, it can be shown that maximum information gain remains
bounded by the same order as that of a homogeneous length scale. This is described in
Theorem 3 and provides guarantees for Theorem 2 under a non-stationary GP.

Theorem 3. Let D C R? be compact and convex, d € N. Assume the kernel func-
tion satisfies k(x,x') < 1. Then for our proposed covariance function with vary-

ing length scale as described in (6), the maximum information gain at iteration T is
O((log T)4+1).

Proof. Proof of Theorem 3 is provided in supplementary material.

Note in Theorem 3, regret bounds are of order O(7") only when the function does
not have a level at h i.e. either A > finaz OF A < finin. When foin < h < fraz, then

this term will go to 0, leaving an order of O(\/T (logT)4+1).

2.4 Tuning Warping Hyper-parameters

Before warping, the hyper-parameters Iy and /; must be estimated. This can be done
by separating a set of observations into training and test set. [y and /; are optimised for
values which, when Algorithm 1 is applied using the training set, classification produces
highest F1 score for the test set, after a pre-defined number of iterations.
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3 Experimental Results

Comparison of the performance of the acquisition function with (our approach) and
without (existing approach [8]) input warping was examined against one synthetic
function and two real world problems. Our evaluation method uses a separate test
set to measure classification accuracy into the super-level and sub-level sets. F1
scores are reported with error bars indicating standard error. All experiments were
randomly initialised and run 50 times. Code for first experiment can be found at:
https://bit.ly/37gNhPZ.

3.1 Mishra’s Bird Function

In this experiment, we intend to find a super-level set of the Mishra’s Bird benchmark
function of the form f(z1,22) = sin(x1)e!=205@2)" 4 cos(zq)et=sin(@1)* 4 (4, —
x9)% at h = 10. At this level there are multiple disconnected regions. For the search, the
length scale was warped with values for Iy and /; being [0.02,0.38] and [1.32,0.002]
respectively. The value of € was 0.1 and \/; = \/VT; as defined in [3] where 7; =
2log(t¥/?*+272 /35) with § = 0.01 and v = 1.

LSE Difference
F1 Score

st ]
—F— LSE warped

25 3 35 4 45 5 0 20 40 60 80 100
Length Scale Iterations

(a) (b)

Fig. 3. a) Change in acquisition function vs length scale. Positive value indicates increase in
acquisition function value. Increased acquisition function values at shorter lengths vs longer
length scales. b) F1 vs iteration results for classification of Bird Function at threshold h = 10

Figure 3a) illustrates experimentally the impact of warping the length scale on the
acquisition function. Positive difference indicates that values in the warped scenario
are higher than in the no-warping scenario. Results show for smaller length scales, the
acquisition function is increased, while at larger length scales, the value is decreased.
Changing the acquisition function via warping increases (or decreases) the chance of a
point being selected as the next sample point.

Figure 3b) shows the comparative performance over 50 randomly initialised trials
with and without warping of the search space. The classification accuracy and rate are
improved notably with input warping accompanying the acquisition function.
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3.2 Car Crashworthiness Design

LS-DYNA, is a finite element modelling program which simulates complex scenarios
in the physical world [9]. Using a simplified car crash simulation, we demonstrate an
important application of level set estimation for the design of safe vehicles. The prob-
lem focuses on a vehicle moving at a constant velocity and crashing into a pole, result-
ing in the front of the car deforming. A car must be designed to maintain the safety
of passengers. In both experiments below, the input parameters represent the mass of
various car components. Altering these inputs alters the rigidity of the car. If too rigid,
the passengers will experience injury from the forces of impact (eg. whiplash). If not
rigid enough, the front of the car may crush and intrude into the passenger space. The
objective of such a problem is to maximise the “crashworthiness” of the vehicle.

Experiment 1. In the first crash experiment there are two design parameters: mass of
the front bumper bar thumper and, mass of the front, hood and underside of the bonnet
thood. Both range between 1 and 5, representing the thickness of the component. To
construct the dataset, each of the two input parameters were sampled within the entire
range in steps of 0.1, resulting in 1681 combinations. The output of the simulation is a
Head injury criterion (HIC) with the objective being to maintain HIC' < 250.

Experiment 2. In this scenario, the number of inputs is 6, representing thickness of

hood thood, grill tgrill, roof troof, bumper tbumper, front of rails trailf and back of rails

trailb. Inputs were sampled over a grid of 15,625 points. The output is frequency of car

torsional vibration. The objective is to maintain torsional mode frequency < 1.9 Hz.
Figure 4 shows the comparative results.

0.4 s 1
—%— LSE warped

o 50 100 150 200 o 50 100 150 200 250 300 350
Iterations Iterations.

(a) Experiment 1 results (b) Experiment 2 results

Fig. 4. (a) F1 score vs iteration for HIC < 250. LSE with warping outperforms standard LSE in
initial iterations. LSE slightly outperforms LSE warped in final stage. This is considered negligi-
ble. (b) F1 score vs iteration for torsional mode frequency < 1.9 Hz. LSE with warping outper-
forming LSE considerably in early stages.
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3.3 Ductile Alloy Design

Design of high entropy alloys (HEA) with exceptional physical properties is an active
research area in the material science community. To assist in the design of such alloys,
many practitioners use the High Entropy Alloy Database (TCHEA) on the Thermo-
Calc software. Thermo-Calc is a powerful tool in Computational Thermodynamics and
is popular for thermochemical calculations of heterogeneous phase equilibria and mul-
ticomponent phase analysis [10].

In this experiment we utilise the TCHEA database in Thermo-Calc for the design of
4 element alloy systems consisting of Iron (Fe), Nickle (Ni), Cobalt (Co) and Chromium
(Cr). The objective is to determine the set of alloy compositions that, when cast at room
temperature (27°), resulted in an Face-Centered Cubic (FCC) proportion of at least
80%. The input space was constrained such that the four element’s mass percentage
could range between 0—50%, and the sum of the elements must equal 100%. Figure 5a)
shows the target region.

Due to dependent nature of input variables (by constraint that sum is 100%), only 3
elements were used. Figure 5b) shows the comparative results for 50 trials.

For most experiments classification from warping is faster in early iterations before
converging, demonstrating the exploitative behaviour of the acquisition function from
warping. This justifies the use of warping for level set estimation, particularly when
function evaluations are expensive and budget limits the number of samples.

© FCC>08 * FCC<=08
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\ | \\ o7
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N o —F— LSE warped
s 0
o o o 0 20 40 60 80 100
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Fig.5. a) FCC vs elemental compositions. Regions where FCC > 80% indicated in blue. b)
Results for classification of alloy with threshold at 80% FCC. LSE with warping outperforms
standard LSE before converging to same rate in later iterations. (Color figure online)

3.4 Computational Time

Computational impact of warping comes from constructing the complex covariance
matrix in the non-stationary GP. The computational efficiency of being able to vectorise
the covariance matrix construction with a constant length scale is not possible in the
changing length scale scenario and for loops are needed. For example, run time for 50
iterations of Mishra’s Bird function without warping is on average 12 s, whilst with the
warping, time is around 5 min. However, it is assumed that function evaluation time for
the real world cases are well above the optimiser’s run time.
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4 Conclusion

This paper presented a novel means in which a complex covariance function can be
constructed by distorting the length scale of the GP from which the acquisition func-
tion samples from. By doing so, areas with a high potential for being at the level are
expanded, thereby increasing the chance of sampling in these regions. Conversely, areas
with lower potential are contracted. The warping metric valued the same characteristics
as the acquisition function, allowing the two to operate together. The warping metric
however results in the acquisition function behaving more exploitatively, which is ben-
eficial in level set estimation problems. Guarantees of convergence were presented as
well as bounds on the length scale range and maximum information gain.
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