
Contributed Paper

Measuring impacts on species with models and metrics
of varying ecological and computational complexity
Christopher D. Hallam ,1 Brendan A. Wintle ,1 Heini Kujala ,1 Amy L. Whitehead ,2

and Emily Nicholson 3

1School of Bioscience, University of Melbourne, Building 122, Melbourne, VIC 3010, Australia
2National Institute of Water and Atmospheric Research, 10 Kyle Street, Riccarton, Christchurch 8011, New Zealand
3School of Life and Environmental Sciences, Centre for Integrative Ecology (Burwood Campus), Deakin University, 221 Burwood
Highway, Burwood, VIC 3125, Australia

Abstract: Approaches to assess the impacts of landscape disturbance scenarios on species range from metrics
based on patterns of occurrence or habitat to comprehensive models that explicitly include ecological processes.
The choice of metrics and models affects how impacts are interpreted and conservation decisions. We explored
the impacts of 3 realistic disturbance scenarios on 4 species with different ecological and taxonomic traits. We
used progressively more complex models and metrics to evaluate relative impact and rank of scenarios on the
species. Models ranged from species distribution models that relied on implicit assumptions about environmental
factors and species presence to highly parameterized spatially explicit population models that explicitly included
ecological processes and stochasticity. Metrics performed consistently in ranking different scenarios in order of
severity primarily when variation in impact was driven by habitat amount. However, they differed in rank for
cases where dispersal dynamics were critical in influencing metapopulation persistence. Impacts of scenarios on
species with low dispersal ability were better characterized using models that explicitly captured these processes.
Metapopulation capacity provided rank orders that most consistently correlated with those from highly param-
eterized and data-rich models and incorporated information about dispersal with little additional computational
and data cost. Our results highlight the importance of explicitly considering species’ ecology, spatial configuration
of habitat, and disturbance when choosing indicators of species persistence. We suggest using hybrid approaches
that are a mixture of simple and complex models to improve multispecies assessments.
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Medición de los Impactos sobre las Especies con Modelos y Medidas de Complejidad Ecológica y Computacional
Variante

Resumen: Las estrategias para evaluar el impacto de los escenarios de perturbación de paisaje sobre la distribu-
ción de las especies van desde las medidas basadas en patrones de presencia o hábitat hasta los modelos integrales
que incluyen explícitamente a los procesos ecológicos. La elección de medidas y modelos afecta la interpretación
de los impactos y las decisiones de conservación. Exploramos los impactos de tres escenarios realistas de pertur-
bación sobre cuatro especies con características ecológicas y taxonómicas diferentes. Usamos progresivamente
modelos y medidas más complejas para evaluar el impacto relativo y la clasificación de los escenarios sobre
las especies. Los modelos variaron desde aquellos de distribución de especies que dependen de las suposiciones
implícitas acerca de los factores ambientales y la presencia de la especie hasta aquellos modelos poblacionales
explícitos con una alta parametrización espacial que incluyen los procesos ecológicos y la estocasticidad. Las
medidas tuvieron un desempeño uniforme en la clasificación de los diferentes escenarios de acuerdo a la gravedad,
principalmente cuando la variación en el impacto fue causada por la cantidad de hábitat presente. Sin embargo, las
medidas difirieron en la clasificación para los casos en los que las dinámicas de dispersión fueron significativas en la
influencia de la persistencia metapoblacional. Los impactos de los escenarios sobre las especies con una habilidad
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reducida de dispersión estuvieron mejor caracterizados con el uso de modelos que capturaron explícitamente
estos procesos. La capacidad metapoblacional proporcionó categorías de clasificación con la correlación más
consistente a aquellas provenientes de los modelos ricos en datos y con una alta parametrización e incorporó
información sobre la dispersión con un reducido costo adicional de cómputo y de datos. Nuestros resultados
resaltan la importancia de la consideración explícita de la ecología de las especies, la configuración espacial del
hábitat y la perturbación cuando se eligen los indicadores de la persistencia de una especie. Sugerimos que se
usen estrategias híbridas que mezclen modelos simples y complejos para mejorar las evaluaciones realizadas a
múltiples especies.

Palabras Clave: capacidad metapoblacional, evaluación de impacto, medidas de la biodiversidad, modelos
metapoblacionales
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Introduction

When evaluating the potential impacts of land-use or cli-
mate change on biodiversity, conservation practitioners
look for cost-effective analytical approaches to support
robust decisions to sustain species (Possingham et al.
2001; Guisan et al. 2013). Because complete biological
and ecological complexity can never be fully captured
in analysis, surrogates for species’ persistence, such as
habitat availability (Andelman & Fagan 2000; Nicholson
& Possingham 2006; Guisan et al. 2013), and simple an-
alytical measures of persistence, such as metapopulation
capacity (Hanski & Ovaskainen 2000), are often used.
More detailed population models can incorporate greater
ecological complexity and spatial processes (Akcakaya
2000), but are data, time, and resource intensive to im-
plement, need experts to contribute data and knowl-
edge, and require a competent modeler to run them. This
leads to trade-offs between the time and expertise cost
of model development, model complexity, and capacity
to account for key ecological processes (Beissinger et al.
2009).

A range of model types have been used to measure
the impact of land-use and management options at vary-
ing spatial scales (Bekessy et al. 2009; Pereira et al.
2010; Sebastián-González et al. 2011). Species distribu-
tion models (SDM) implicitly include ecological pro-
cesses by correlating observed patterns of occurrence
with environmental variables (Phillips et al. 2006; Elith &
Leathwick 2009) and are commonly used at larger spatial
scales to characterize impact under different scenarios
(Visconti et al. 2016). Patch occupancy models offer a

more comprehensive representation of ecological pro-
cesses and are based on a metapopulation framework
(Etienne et al. 2004); these models view a population
as a network of discrete habitat patches of local popula-
tions within a nonhabitat matrix through which species
may disperse (Levins 1969; Hanski 1998). Mathemati-
cal shortcuts have been developed for metapopulation
models that make it analytically simpler to estimate met-
rics related to species persistence in a given landscape.
These include Frank and Wissel’s (2002) approximation
for the mean time to extinction, which approximates
a stochastic patch occupancy model and metapopula-
tion capacity, a deterministic measure of metapopulation
persistence (Hanski & Ovaskainen 2000). More complex
still are metapopulation models that attempt to account
for population processes including variation in individ-
ual mortality and fecundity, dispersal, and environmen-
tal and demographic stochasticity (Akcakaya et al. 2004;
Wintle et al. 2005a; Franz et al. 2013).

Different models, and the metrics derived from them,
fall on a spectrum of ecological complexity that affects
how comprehensively they characterize impact. For ex-
ample, population size can be estimated with an SDM,
based on a relationship between habitat quality and
abundance (Freckleton et al. 2006), or from a more com-
plex spatially explicit population model (McCarthy &
Thompson 2001). Although estimates from SDM implic-
itly assume abundance is directly related to habitat quan-
tity and quality, abundance metrics derived from a spa-
tially explicit population model will also explicitly in-
clude additional ecologically meaningful parameters and
processes while also including stochasticity. Depending
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scenario 1: development only scenario 2: development and average fire

scenario 3: development and high fire

Figure 1. Maps of study area showing extant native vegetation (black) and 3 impact scenarios (white):
development only (indicates habitat lost due to current and planned urban development and potential mining
areas), 422 km2; development and average fire, 594 km2; and development and high fire, 1717 km2 (scale
bar, 50 km).

on the pattern of disturbance (habitat loss, fragmenta-
tion, and scale of disturbance) and the relative impor-
tance of different ecological traits in mediating persis-
tence, abundance estimates from these 2 models may
characterize impact significantly differently and have po-
tential flow-on effects to conservation decisions.

A key question for the application of models in con-
servation decision making is how complex does a model
need to be to make a robust assessment of biodiversity
outcomes under different management scenarios for a
given species? It remains unclear whether more com-
plex population models and metrics provide a substan-
tial improvement over simpler models for characteriz-
ing species impacts and whether simpler metrics reliably
approximate the behavior and predictions of fully pa-
rameterized population models. As global assessments of
biodiversity become more formalized, integrated across
sectors, and important for informing global policy (e.g.,
the United Nations Sustainable Development Goals [UN
2015] and the Intergovernmental Science-Policy Platform
on Biodiversity and Ecosystem Services [IPBES 2016]), it
will become more critical to understand the impact the
choice of model and metric has on assessments of biodi-
versity change.

We explored and compared the ranking of the
impact for plausible landscape disturbance scenarios, as

characterized by commonly used metrics of species per-
sistence derived from increasingly complex underlying
models. We explored the behavior of 5 species-specific
metrics for 4 species with different ecological traits and
vulnerabilities to extinction. We used a case study in a
35,000-km2 landscape in southeastern Australia under
3 scenarios involving different levels of fire disturbance
and urban and infrastructure development.

Methods

Study Area and Development Scenarios

The Greater Hunter region in eastern New South Wales,
Australia, supports a variety of land uses, including open-
cut coal mining, urban infrastructure, residential ar-
eas, manufacturing industries, and agriculture, as well
as species and ecosystems of national environmental
importance. Over 65% of the area is native vegeta-
tion (Fig. 1). Increasing urbanization is placing pres-
sure on the region’s natural environment, therefore as-
sessing the impacts of these developments on biodiver-
sity will be important for effective urban and regional
planning.

We created 3 development scenarios representing
plausible future landscape changes and compared these
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Table 1. Four key traits potentially influencing vulnerabilities
a
of greater glider, green and golden bell frog, tiger quoll, and yellow-bellied glider to

extinction.

Habitat
specificity

b
Home range size

c
Dispersal ability

d
Reproductive

potential
e

Greater glider specific (tall moist
sclerophyll
forest with
hollows)

small
approximately 2
ha

low (2 km) low (1
offspring/year,
sexually mature
at 2 years)

Possingham et al.
1994; Nicholson
et al. 2006;
Maloney 2007

Green and golden
bell frog

highly specific
(reedy wetlands
<100m asl)

very small (0.25
ha)

very low (0.25
km)

high (5000
average eggs,
sexual
reproduction
approximately 2
years for
females)

DEC 2005; Pickett
2012; Pickett
et al. 2013

Tiger quoll broad (from
forested areas to
more arid
landscapes)

large (276 ha) high (5 km) medium
(approximately
3–5
offspring/year,
sexually mature
at 1 year)

Belcher & Darrant
2004;
Meyer-Gleaves
2008

Yellow-bellied
glider

broad (tall
eucalypt forest)

large (64 ha) low (2 km) low (1
offspring/year,
sexually mature
at 2 years)

Goldingay &
Kavanagh 1991,
1993; Citroen
2006

aReferences: Johst et al. 2002; Akcakaya 2005; Kallimanis et al. 2005; Reinhardt et al. 2005.
bNarrow habitat preference generally has a higher vulnerability to extinction.
cSpecies with larger home range size are more vulnerable to extinction because they occur in lower densities and have higher individual
energetic requirement and naturally lower population density. Lower density populations will be more susceptible generally to demographic
and environmental stochasticity.
dLow dispersal ability is generally associated with increased vulnerability to extinction. This vulnerability may be mediated by high reproductive
potential. Ability to disperse long distances generally reduces vulnerability to extinction because it increases potential couplings between patches.
However, this advantage can be mediated by low population growth rates.
eSpecies with high reproductive potential and short generations have greater ability to recover from disturbances (but see dispersal ability).

with a baseline scenario with no habitat loss for each
species, where current habitat distribution remained
static. The scenarios were designed to provide a gradi-
ent of impact from low to high and realistic variation be-
tween overall area of habitat and degree of fragmentation
and connectivity of habitat in the landscape (Supporting
Information & Fig. 1).

Study Species and Key Ecological Traits

We selected 4 study species based on data availability and
to represent a variety of ecological traits, threat status,
and vulnerability to habitat disturbance: greater glider
(Petauroides volans), tiger quoll (Dasyurus maculatus
maculatus), yellow-bellied glider (Petaurus australis),
and green and golden bell frog (Litoria aurea). The
tiger quoll is listed as endangered and the greater glider,
green and golden bell frog, and yellow-bellied glider
are listed as vulnerable under the Australian Environ-
ment Protection and Biodiversity Conservation Act 1999
(Australian Government 1999). Although our species do
not represent an exhaustive representation of ecologi-
cal traits, they contain variation in key traits that likely
affects their vulnerability to the different habitat and
fragmentation patterns of disturbance outlined in the
scenarios above.

Although spatial aspects of species traits are likely
more decisive in influencing a species vulnerability to
habitat fragmentation and loss (Curtis & Naujokaitis-
Lewis 2008), combinations of traits together can exacer-
bate or mediate effects of habitat loss and fragmentation
on a species’ vulnerability to extinction (Johst et al. 2002;
Reinhardt et al. 2005). Detailed descriptions of these
species’ biology and ecology are in Supporting Informa-
tion, and key ecological traits related to their vulnerabil-
ity to habitat loss and fragmentation are summarized in
Table 1.

Measuring Species-Specific Impact of Scenarios

We evaluated 5 species-specific metrics of impact from 3
broad model types: SDM, patch occupancy models, and
a spatially explicit population model. We broadly cate-
gorized metrics as pattern based—those metrics based
primarily on patterns of species occurrence that do not
explicitly include ecological processes, such as disper-
sal, population vital rates, and stochasticity—and pro-
cess based—those that include parameters accounting
explicitly for dispersal at a minimum, but often including
population parameters, including survival and fecundity
(Fig. 2).

Conservation Biology
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Figure 2. Illustration of increasing model complexity and explicit inclusion of ecological processes in impact
metrics (SDM, species distribution model; P-no. patches, number of patches of habitat; PCI, patch cohesion index
[eq. 3 Supporting Information]). Each metric explicitly includes varying degrees of modeled ecological processes
that approximate different ecological traits for a species and therefore explicitly include how these traits will
mediate or exacerbate the effect of changes in habitat configuration.

Species Metrics

All metrics were based on SDM. These models and
their resultant distribution of habitat were not in-
tended to be the best representations of distribution,
but rather the base from which to build the subse-
quent metrics. We created an SDM for each species
with methods best suited to the available data (Win-
tle et al. 2005b; Phillips et al. 2006). Detailed de-
scription of methods and outputs are in Supporting
Information.

For each species and scenario, we calculated a se-
ries of metrics to approximate persistence. We derived
2 metrics directly from the SDM: total area occu-
pied (TAO) and total estimated abundance (TEA). TAO
includes an indication of the area of habitat only,
whereas TEA incorporates heterogeneity in habitat
quality by relating species abundance to habitat suit-
ability as approximated by the SDM. Total estimated
abundance is also used in the population models de-
scribed below and in Supporting Information to cal-
culate initial patch abundance for spatially explicit
population models and metrics. Detailed descriptions
and equations for each metric are in Supporting
Information.

Creating Species-Specific Metapopulation Structure

The remaining metrics relied on defining a metapopula-
tion structure, with habitat patches within which a pop-
ulation exist, and unsuitable areas that must be traversed
during dispersal events. We defined our metapopulation
structure for each species with RAMAS GIS 5.0 (Akcakaya
2005). The program uses information on the distribution
of habitat, as defined by the SDM, and species-specific
parameters to identify clusters of cells that represent dis-
tinct habitat patches. The patch identification algorithm,
parameters used, and procedure are described in detail
in Supporting Information.

Structural Landscape Measures

From this metapopulation structure, we calculated 3
structural landscape measures commonly used to assess
and monitor landscape condition and inform manage-
ment decisions (Eyre et al. 2015). These measures are
also illustrative of the effect of the disturbances pattern
realized for each species under the development sce-
narios. Following Fahrig (2003), we examined habitat
area loss and fragmentation separately for each species.
We calculated the number of patches (P), percentage of
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habitat lost from baseline, and the patch cohesion index
(PCI), a measure of patch aggregation.

Process-Based Metrics

Again using the metapopulation structure, we calcu-
lated the metapopulation capacity (MPC) (Hanski 1998;
Schnell et al. 2013) and Frank and Wissel’s (2002) ap-
proximation of mean time to extinction for a metapop-
ulation (MTE) based on a stochastic patch occupancy
model. The MPC provides a deterministic measure of
how the spatial configuration of patches contributes
to long-term metapopulation persistence (Hanski &
Ovaskainen 2000), and MTE provides a stochastic ap-
proximation.

Using the metapopulation structure developed above
as a base, we used RAMAS GIS (Akcakaya 2005) to de-
velop stage-based population models that represented
vital rates at different life stages for our species and
evaluated persistence with population simulations. We
specified density-dependence functions, fecundity, and
survival and constructed stage-based population matri-
ces for each species by reviewing species life cycles and
published models and consulting with experts on the
species. From this, we calculated expected minimum
abundance (EMA). We chose this over probability of ex-
tinction because it provides a more nuanced indication
of the propensity for decline than risk of extinction, espe-
cially when risk of extinction is small, and it is regarded
as a more robust metric for ranking scenarios than risk
of extinction (McCarthy & Thompson 2001). The main
functions and parameters used in RAMAS, justifications
for parameter choice, and details of all metrics are de-
scribed in Supporting Information.

Measuring and Characterizing the Predicted Impact of
Environmental Changes

For consistency and interpretation, we measured im-
pact for a species (k) and scenario (s), Isk, as the pro-
portional difference between a given scenario (Xs) and
the baseline scenario (Xb) for each metric: Isk = (Xs –
Xb)/Xb × 100. An Isk value of 0 indicated there was no
difference in the scenario relative to baseline, whereas
negative and positive values indicated both direction and
magnitude of the impact for a scenario relative to the
baseline for a given metric, species, and scenario. We
used the direction and magnitude of change to rank the
scenarios from least to most negative impact for each
species and metric. Of the metrics used, only EMA in-
cluded error estimates around the values. We defined
differences in EMA between scenarios that were smaller
than the estimated SE as insignificant in terms of rank
and impact. When ranking based on structural landscape
measures, we assumed that more habitat area, fewer

patches, and increasing PCI were preferable to the alter-
natives.

Sensitivity Analyses

To investigate critical cases where metrics diverged in
their rank or where there were marked differences in im-
pact for the same scenario and species, we performed
sensitivity analyses by varying parameters in metrics
thought to be decisive. Depending on the species and
metrics in question, we varied dispersal by either includ-
ing or excluding it from the metric, recalculating, and
comparing the results. To test the impact of stochastic-
ity on the outputs from the stage-based model, we also
ran the model in a deterministic mode, excluding demo-
graphic and environmental stochasticity and any spatial
correlation in vital rates. Further details are in Supporting
Information.

Where the above investigations proved unhelpful in
revealing decisive parameters, we examined the pattern
of the disturbance itself and difference in scaling of the
metrics for affected patches. We examined the value of
affected patches as measured by different metrics by it-
eratively calculating the metric with and without the af-
fected patches and comparing results. This allowed com-
parison of the relative importance placed on the patches
affected by the different metrics.

Results

General Patterns of Habitat Loss and Fragmentation and
Relationship with Species Traits

Each scenario resulted in different species habitat avail-
ability and fragmentation patterns, resulting in 12 real-
izations of the disturbance scenarios, 3 for each species.
For all species, we observed the greatest impacts under
scenario 3, where habitat loss and fragmentation were
most severe (Fig. 3)

Scenarios 1 and 2 resulted in varying patch number
and local aggregation in subpopulations (PCI increases),
accompanied by a small loss of habitat in peripheral iso-
lated patches for green and golden bell frog. For these
cases, one would reasonably expect an increase in over-
all probability of persistence, especially if in aggregating
subpopulations new sites are within the dispersal abil-
ity of the species, because nearby sites emptied by local
extinction are more rapidly recolonized for this highly
fecund species.

Habitat loss and fragmentation were negligible for
tiger quoll, and there was no reduction in the num-
ber of patches. For greater glider and yellow-bellied
glider, there was negligible habitat loss and fragmen-
tation for scenarios 1 and 2, but scenario 3 indicated

Conservation Biology
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Figure 3. Pattern of disturbance for 4 species and
scenario and likely impact given species’ ecology and
resultant changes in habitat configuration and
quantity (gray, habitat; dark gray, area lost for each
species and scenario; PCI, patch cohesion index; �

patches values, change from baseline): (a) greater
glider, (b) green and golden bell frog, (c) tiger quoll,
and (d) yellow-bellied glider. Relative change in
habitat and PCI was calculated as percent loss from
baseline.

considerable fragmentation and habitat loss for both
species (Fig. 3).

Impacts by Species and Metric

The MTE behaved differently from all other metrics when
we used it to rank and assess impact of the development
scenarios. For example, this metric ranked scenario 3 as
providing the best outcome for greater glider and green
and golden bell frog, despite the scenario being the most
destructive to available habitat. The magnitude of impact
as indicated by this metric also differed markedly from
the other tested metrics (1.36 × 106 % and 2.97 × 1016 %
increase in MTE from baseline in scenario 3, respectively,
for the green and golden bell frog and greater glider);
thus, the formula did not approximate realistic values
with the combination of landscape and model parame-
ters in our case study and was not a reliable measure of
impact for the scenarios (Fig. 4). Results for all species
and metric and scenario combinations are in Supporting
Information.

The 4 remaining species-specific metrics all ranked
scenario 3 as the worst scenario.

For scenarios 1 and 2, metrics gave identical rank or-
der for tiger quoll and yellow-bellied glider, whereas the
pattern-based metrics (TAO and TEA) contrasted with
process-based metrics (MPC and EMA) for green and
golden bell frog and greater glider. The MPC and EMA
were the only metrics for which ranked order for all
species matched (Fig. 4).

For greater glider, both MPC and EMA ranked scenarios
1 and 2 as equal, whereas pattern-based metrics ranked
scenario 1 as preferential to scenario 2. This diverged
from our expectations based on the landscape struc-
tural measures and species’ ecology (Fig. 3). For green
and golden bell frog, TAO and TEA ranked scenario 1
as preferential to scenario 2. Conversely, process-based
metrics ranked scenario 2 as preferential over scenario 1.
Rank was challenging to discern for the structural land-
scape measures because there were confounding signals
among changes in patch numbers, habitat area, and PCI
(Fig. 4).

Generally, for all species, pattern-based metrics pro-
vided similar assessments of impact to one another
(±5%), but MPC and EMA showed marked variation in
their individual characterizations of impacts, and on oc-
casion diverged markedly from pattern-based metrics.
The differences in magnitudes of impact between met-
rics became more pronounced as the amount of habitat
loss and fragmentation became more acute (Fig. 5).

Sensitivity to Metric Parameters

Rank differences between pattern- and process-based
metrics were most sensitive to the explicit inclusion or
exclusion of dispersal in metrics for greater glider and
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Figure 4. Rank order of scenario
impact for target species based on
different species’ metrics: (a) greater
glider, (b) green and golden bell
frog, (c) tiger quoll, and (d)
yellow-bellied glider (TAO, total area
of occurrence; TEA, total estimated
abundance; area, percent area loss;
� patches, change in number of
patches; PCI, patch cohesion index;
MTE, mean time to extinction; MPC,
metapopulation capacity; EMA,
expected minimum abundance).

green and golden bell frog. For tiger quoll, although ranks
for all metrics concurred, the marked difference in im-
pact between MPC and EMA was best explained by the
explicit inclusion or exclusion of demographic stochas-
ticity.

For yellow-bellied glider, the marked difference in im-
pact between EMA and MPC in scenario 3 was best ex-

plained by a difference in scaling between the 2 metrics
rather than by dispersal, stochasticity, or correlation in
vital rates. For example, the key patch affected in sce-
nario 3 (Figs. 4d and 5d) accounted for approximately
94% of the metapopulation persistence as measured by
MPC, whereas the relative contribution of the effected
patch accounted for approximately 63% of the total EMA

Conservation Biology
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(a)

(b)

(c)

(d)

Figure 5. Change relative to baseline for species under 3 scenarios, as measured by the different metrics: (a)
greater glider; (b) green and golden bell frog; (c) tiger quoll; (d) yellow-bellied glider (TAO, total area occupied;
TEA, total estimated abundance; MPC, metapopulation capacity; EMA, expected minimum abundance; dashed line
around bars, marginal increase in EMA and metapopulation capacity between scenarios 1 and 2; ∗, no significant
differences between scenarios when accounting for SE in EMA). Mean time to extinction is omitted for clarity. Full
results are in Supporting Information. Structural landscape metric relative change is summarized in Fig. 4.
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value. Also of note was the difficulty in interpreting any
definitive difference due to stochasticity in the case of
EMA or the asymptotic nature of MPC where metapop-
ulation persistence was ensured in scenario 1 and 2 for
greater glider (Supporting Information).

Discussion

Our metrics performed consistently in ranking differ-
ent scenarios in order of severity under circumstances
where variation in population size was driven by habi-
tat amount. However, where interpatch dynamics were
important for maintaining metapopulation persistence,
divergence in ranks occurred between pattern-based and
process-based metrics. Despite differences in assessment
of impact magnitude, MPC ranked scenarios most con-
sistently with those from highly parameterized and data-
rich spatial population models (Fig. 4). In contrast, MTE
was unreliable for our study species and context.

The landscape configurations in this study rendered
Frank and Wissel’s (2002) MTE formula unworkable.
Frank and Wissel (2002) and Frank (2005) identify 4 key
conditions under which their approximation is likely
to fail: the population includes isolated subnetworks
of patches; the metapopulation patch size is very
heterogeneous; metapopulation persistence is driven
by several large patches; and the number of patches
falls below approximately 5 (Frank & Wissel 2002;
Frank 2005). At least one of these conditions was met
in our landscape patch configurations. We suggest
similar arrangements are likely to occur frequently in
many large-scale assessments of biodiversity impact,
restricting the formula’s use to smaller, more classically
structured metapopulations (e.g., Levins 1969).

Measures of landscape structure (percent area loss,
PCI, and change in number of patches) (Fig. 4) failed to
capture the species-specific ecological impact, and ranks
were difficult to discern where there were confounding
signals between changes in patch numbers, habitat area,
and the PCI. We therefore caution use of these struc-
tural landscape measures in assessing the condition of a
landscape related to suitability for a given species or as
proxies for assessing impacts on biodiversity.

The species-specific metrics in this study performed
consistently in identifying the worst scenario (scenario
3) for all species. For yellow-bellied glider and tiger
quoll, pattern-based metrics concurred with the rank or-
der of the most complex models and metrics. In these
cases, the disturbance pattern and ecological traits of the
species meant that persistence was driven by a few large
patches or supported by the species’ good dispersal ca-
pability. Although changes in habitat and area may have
still affected population processes in smaller patches,
this did not appear to significantly affect the metapop-

ulation as a whole, such that pattern-based metrics were
a reasonable proxy for MPC and EMA in terms of rank.

Where changes in landscape configuration were more
nuanced, critical differences in rank order occurred be-
tween pattern- and process-based metrics. For green and
golden bell, the aggregation of patches in scenario 2 was
beneficial, which was best accounted for in the metrics
that explicitly included dispersal parameters (MPC and
EMA). Including dispersal was more decisive than includ-
ing stochasticity in our case; however, this may not hold
for other situations where, for example, asynchronous
colonization and extinction in subpopulations are deci-
sive for maintaining persistence (Hanski 1998). Includ-
ing dispersal is likely particularly important for range-
restricted species (Cardillo et al. 2005), such as the green
and golden bell frog, and indeed using MPC in systematic
spatial prioritization has been shown to benefit range-
restricted species over more traditional pattern-based ap-
proaches (Strimas-Mackey & Brodie 2018). Such a change
in rank order of scenarios could affect decisions based on
such assessments.

Ranks also differed for the greater glider, but although
our initial results suggested dispersal was a decisive fac-
tor in altering rank between pattern- and process-based
metrics, we also caution that differences may be hidden
in the stochastic noise of EMA or the asymptotic scaling
of MPC. The results of the sensitivity analysis for yellow-
bellied glider also pointed to differences in scaling be-
tween EMA and MPC. We suggest further investigations
of how MPC scales to more complex metrics; for exam-
ple, EMA in spatially realistic landscapes is needed to dis-
cern patterns or scaling relationships.

Although not critical to rank order for our cases, sensi-
tivity analysis uncovered additional parameters that may
have been decisive in altering ranks under slightly differ-
ent landscape or disturbance patterns. These differences
in impact were a function of the metrics and their under-
lying models (deterministic and stochastic) (Frank 2005),
the pattern and configuration of the disturbance scenar-
ios (spatially autocorrelated, large, small, or fractal), and
the configuration of the species habitat (size of patches,
interpatch distance, and patch aggregation) (Kallimanis
et al. 2005).

First, including demographic and environmental
stochasticity and spatial correlation drastically altered
the magnitude of impact measured for tiger quoll. In
similar species with naturally low-density populations,
demographic stochasticity can drive populations to lo-
cal extinction purely by random or correlated fluctua-
tions in vital rates (Akcakaya 2000). The same can be
said for range-restricted species, especially those that
rely on colonization and extinction dynamics to maintain
metapopulation persistence (Hanski 1998). Although for
tiger quoll excluding stochasticity was insufficient to al-
ter rank, this will not always be the case, especially
for species with high sensitivity to stochasticity (Frank
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2005). For species with restricted ranges or with nat-
urally low densities relying on colonization dynamics,
including stochasticity in representations of impact and
dispersal will further increase the relevance of the met-
rics in characterizing impact.

Second, as species become more susceptible to
stochastic events the pattern of the disturbance itself also
becomes increasingly important to consider in metric
choice. Where disturbance is fine scaled and affects only
isolated patches, deterministic and stochastic models
and indeed pattern- and process-based metrics will likely
rank impact similarly. If, however, disturbance is spa-
tially autocorrelated on important subpopulations, met-
rics, including dispersal and stochasticity, are likely to
be critical for obtaining meaningful characterizations of
impact. This will likely be compounded as disturbances
become larger or more heterogeneous (Kallimanis et al.
2005). For most real landscapes, spatially autocorrelated
patterns of disturbance are likely (Hanski 2009). Because
patterns of disturbance are difficult to predict, to err on
the side of caution, metrics with dispersal at a minimum,
ideally with stochastic processes included, will provide
more meaningful metrics. For poorly dispersing species
in particular, the effect of the pattern of disturbance on
species habitat may have as much bearing on metric
choice and measuring a reliable impact as the biology
and ecology of the species.

In our case, it appears the additional detailed pa-
rameters describing population dynamics, density
dependence, survival, and fecundity included in EMA
were not decisive enough to alter rank with the next
most complex metric, MPC. However, where source–
sink dynamics are present, Allee effects are probable,
different patterns of density-dependence are important,
or inclusion of density-dependent dispersal is required,
these more complex parameters and metrics may prove
essential. However, including meaningful parameter
values for these may be difficult for all but the most
well-studied species.

Results of our exploratory analysis suggest that includ-
ing dispersal is the next important parameter to account
for after amount and quality of habitat in obtaining more
meaningful representations of impact. This is followed
closely by the addition of stochasticity properties in pop-
ulation processes. Where dispersal accounts for config-
uration of habitat in a species-specific way, including
stochasticity in ecological processes accounts for, and
better captures, extinction risk to a species due to nat-
ural variation. Both dispersal and population structure
are likely susceptibility to stochastic events and may be
inferred from body size and general species traits (Suther-
land et al. 2000; Van Houtan et al. 2007; Santini et al.
2013).

Although our results suggest MPC provides a use-
ful shortcut for the most complex metric (EMA), it

does have its shortcomings and limitations. The de-
terministic character of MPC may make it unreliable
in small patch networks, especially where extinction–
colonization stochasticity is decisive or where the pop-
ulation dynamics are highly spatially correlated (Frank
2005; Hanski 2010). It is also limited in cases where habi-
tat is mostly linear (Hanski et al. 2013). The MPC is also
asymptotic and thus where persistence is assured in a
landscape, it may not be particularly sensitive to small-
scale and localized changes.

The choice of metric, and how comprehensively it rep-
resents the species of interest, will always be traded off
against data availability and resources (Jones . 2011). Al-
though rules of thumb for choosing metrics of perfor-
mance have been suggested (Frank 2004; Henle et al.
2004; Drechsler 2009; Grilli et al. 2015), these are of-
ten based on hypothetical landscapes and scenarios. Sig-
nificant further research is required before such rules
and guidelines can be safely used in multispecies impact
assessment over large, spatially realistic, and heteroge-
neous landscapes. Further simulations investigating re-
alistic disturbance scenarios, the pattern of the distur-
bance itself, and a broader range of species may help
elucidate these rules. In the meantime, where knowl-
edge of outcomes for multiple species over a range of
ecological traits is required, hybrid approaches to per-
formance assessment based on a combination of pattern-
based metrics and more sophisticated models that incor-
porate some aspects of dispersal and species’ ecology
may present a better way forward (Sebastián-González
et al. 2011).

Although not comprehensively dealt with in our
assessment, sensitivity and uncertainty to parameter
estimates are critical to address where metrics are used
to inform decisions or assess impact. Specifically, spatial
parameters including population configuration, number
of patches, carrying capacity, dispersal survival, and
dispersal rates are likely most influential (Naujokaitis-
Lewis et al. 2009). Importantly, the assumptions and
uncertainties of our base SDM have the ability to
propagate through to all metrics. In their creation, we
assumed a linear relationship between habitat quality
and density; however, altering the functional form
of the response can significantly change assessments
(Cadenhead et al. 2016).

Biodiversity assessments should be used to guide pol-
icy at continental or global scales (UN 2015; IPBES 2016).
However, our results suggest that the consequences of
not explicitly including ecological complexity, including
dispersal as a bare minimum, may result in misleading
conclusions as in the examples we explored. If conserva-
tion is to move beyond coarse approximations of biodi-
versity, such as mean species abundance (Alkemade et al.
2009), MPC offers an appealing shortcut. However, addi-
tional investigation of its properties is needed.
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