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ABSTRACT Team sports can be viewed as dynamical systems unfolding in time and thus require tools and
approaches congruent to the analysis of dynamical systems. The analysis of the pattern-forming dynamics
of player interactions can uncover the clues to underlying tactical behaviour. This study aims to propose
quantitative measures of a team’s performance derived only using player interactions. Concretely, we
segment the data into events ending with a goal attempt, that is, “Shot”. Using the acquired sequences
of events, we develop a coarse-grain activity model representing a player-to-player interaction network. We
derive measures based on information theory and total interaction activity, to demonstrate an association
with an attempt to score. In addition, we developed a novel machine learning approach to predict the
likelihood of a team making an attempt to score during a segment of the match. Our developed prediction
models showed an overall accuracy of 75.2% in predicting the correct segmental outcome from 13 matches
in our dataset. The overall predicted winner of a match correlated with the true match outcome in 66.6%
of the matches that ended in a result. Furthermore, the algorithm was evaluated on the largest available
open collection of soccer logs. The algorithm showed an accuracy of 0.84 in the classification of the
42,860 segments from 1,941 matches and correctly predicted the match outcome in 81.9% of matches that
ended in a result. The proposed measures of performance offer an insight into the underlying performance
characteristics.

INDEX TERMS Dynamical systems, network science, distribution entropy, football, Kolmogorov com-
plexity, machine learning, performance analysis, Shannon entropy, support vector machines, soccer.

I. INTRODUCTION

IMPROVING comprehension of strategic performance
and success in team competition is an important goal

in sports science [1]. Data-driven methods can effectively
overcome the subjective limitations (manual analysis) of the
match and offer better results for football clubs. Quantitative
analysis can provide players and coaches with such insight,
by allowing them to improve their match and assessment of
the event beyond what personal observation can accomplish
[2]. Traditionally, methods of performance analysis push the
study of one-dimensional and discrete performance indica-
tors towards probabilistic and correlational approaches [3].
However, this results in somewhat limited functional infor-

mation as it lacks the understanding of the player-to-player
interactions that support the actions of players and overall
team behaviour.

It is reasonable to expect an analysis of such one-versus-
one dynamics in team sports to be insufficient as multiplayer
interactions are important in determining success and fail-
ure [4]. Therefore, in order to quantify and explain per-
formance, it has been advocated that performance analysis
in team sports must also focus on the interactions between
players that sustain the overall team behaviour [5], [6]. From
the dynamical systems view, the understanding of how the
co-ordination emerges from the interaction among the system
components, that is, the player-to-player interaction, is the
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key to performance analysis [7], [8]. In team sports, per-
formance analysis approaches that consider the interactions
of the players in many multiplayer team competitions like
football are not well explored [9].

Inspired by empirical studies of networked systems, re-
searchers have recently developed a variety of techniques
and models to help us understand player interaction network
in sports [10]–[13]. Interaction or passing networks can be
constructed from the observation of ball transfer between
players. A key challenge is to leverage the interaction net-
works to gain a functional understanding of the underlying
team strategies. For example, by examining the structure
of interaction networks, recurrent pass sequences can be
identified and linked to a team’s playing style [14], [15].
When the emphasis is put at the player level, Duch et al. [16]
used the interaction networks to quantify and rank player’s
contribution relative to the overall team activity.

Due to dissimilarity and diversity in real-world sports data,
there is no systematic program for predicting network struc-
ture. In addition, there are no particular subsets of diagnostics
that are universally accepted [17]. Since team networks are
intrinsically subjective and dynamic objects, it is often hard
to determine a suitable way of network characterisation that
governs team formation [18]. In team sports like football,
quantifying player-to-player interaction is the key for un-
derstanding the dynamic patterns that generate a scoring
opportunity [19]. This motivated us to develop an approach
that quantitatively characterises players’ interaction in team
sports. In this study, a data-driven approach to the study of
complex player interactions from event stream data generated
during football matches (henceforth referred to as soccer) is
employed. The proposed framework can be used to quantify
player interactions and connect that with the outcome using
a machine learning approach.

Data-driven approaches for soccer analytics are given
importance with the availability of the event stream data
(e.g., Opta, Wyscout, STATS, SecondSpectrum, SciSports,
and StatsBomb). Cintia et al. [15] in their work, extracted
pass-based performance measures to learn the correlation to
match outcome using a machine learning approach. More
recently, Pappalardo et al. [20] in their work employed a
machine learning approach to rank players. Their approach is
based on computing statistical features from the event stream
data for each player, which are then utilised to learn feature
weights in a supervised learning framework i.e., relative
to the match outcome. The authors then use the learned
weights to compute the rating of a player. In another recent
study by Decroos et al. [21], the authors have performed a
segmental analysis of different match states to extract several
associative features of player performance, which are then
used to determine the scoring or conceding probability using
an ensemble classifier. In contrast to the above-mentioned
studies that consider individual player’s actions or cumulative
team statistics, the proposed study describes a segment of a
match using a set of activity and entropy-based quantifiable
markers that capture both inter- and intra-player interactions.

To quantify interaction among players in team sports con-
ceived as dynamical systems unfolding in time, it is important
to use appropriate measures [22], [23]. The proposed study
considers the behaviour of multiple players and the emergent
nature of performance to develop pattern-forming dynamics,
that is, the dynamic physical relationships that a player may
establish with the teammates and opponents to make a goal.
We developed a coarse-grain activity model of player-to-
player interaction from the possession chain data, that can
be used to quantify the dynamic patterns underlying the
interaction among players. We used the concepts of informa-
tion theory retrieval to quantify the complexity of a pattern
representing player interactions during sub-segments of the
match. Another key challenge from the analytics perspective
is the format of the soccer log data, as different vendors use
different data formats [21]. Therefore, an analyst has to de-
velop complex pre-processors specific to a dataset. To tackle
the challenges posed by the variety of event stream formats
and to benefit the data-science community, we propose an
approach that uses only a limited amount of information.
The proposed approach only uses the possession information,
such as player, team, action type, and result from the event
stream data. The segmental analysis was thus performed
using only the possession information to quantify the team
performance and stability in team-dynamics during a specific
module, that is, a match segment. Furthermore, based on
the derived performance measures we developed a machine
learning-enabled decision support system for automated pre-
diction of a team’s likelihood of a successful attempt at goal.

II. APPROACH
A. DATASET
In this study we have analysed the dataset from a season
of Major League Soccer division of the United States and
Canada. The dataset consists of the possession chain data
from 13 matches. The interaction information (possession
chain) comprises of time and duration of all ball passes
and tackles between players. The dataset also includes the
nature of the interaction which can be categorised as being
between teammates or between opposing players (Table 1).
The positional information includes the x-y position of all
individuals throughout the entire match (∼90 minutes).

B. COARSE-GRAIN PLAYER INTERACTION MODEL
Given: A set of possession chain information for each match,
representing a set of events (pass, shot etc) between players
and the game outcome.

A match is split into a number of segments, where each
segment represents a phase of the match that begins with
either the start of the match or after an attempt (Shot) at
the goal and ends with a “SHOT ” (see Fig. 1). Further,
throughout the text the teams in an adversarial relationship
during a match were denoted by team-1 and team-2 for each
match in the dataset. Using the possession information corre-
sponding to every segment in the match, we propose a coarse-
grain model to find quantifiable measures of performance
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TABLE 1: An example of ball possession chain data. The table shows a part of a ball possession chain dataset, which represents
events in the 1st half of a match.

Team∗ Type SubType Period StartTime [s] From∗ To∗ Start X (GPS) Start Y (GPS)

team-1 Set Piece Kick Off 1 47.4 Player 1 nan nan
team-1 Pass 1 48.64 Player 1 Player 2 0.5 0.5
team-1 Pass 1 50.81 Player 2 Player 3 0.67 0.49
team-2 Challenge Aerial Fault Won 1 52.68 Player 4 0.32 0.22
team-1 Challenge Aerial Fault Lost 1 52.84 Player 3 0.32 0.23
team-1 Ball Lost Forced 1 54.8 Player 3 0.32 0.23
team-2 Set Piece Free Kick 1 55.96 Player 5 nan nan
team-2 Pass 1 57.52 Player 5 Player 6 0.27 0.3
team-2 Pass 1 59.96 Player 6 Player 7 0.3 0.66
team-2 Pass 1 64.44 Player 7 Player 6 0.43 0.9

∗
The data were deidentified by request of the data owner.

……. Throw in Pass Recovery Pass SHOT Set Piece Pass Pass Challenge Recovery SHOT

Throw in Pass Recovery Pass SHOT Set Piece Pass Challenge Recovery SHOT

The event stream

Segment 1 Segment 2

…….Recovery Ball lost Pass

Recovery Ball lost

Challenge Recovery

PassChallenge Recovery

FIGURE 1: Segmentation of the possession chain data. A match is split into different segments of varying length (or the number
of events in a segment) ending with a “SHOT ”. The red and blue shaded cells represent possession by different teams. Each
segment was individually evaluated for measures of performance.

that demonstrate an associationship with the outcome of that
segment, that is, which team (team-1 or team-2) makes an
attempt to score by taking a “SHOT ” at the opposition’s goal.

1) Coarse-Grain Models Derived from Possession Chain
Data
Each of the match segments was studied separately. The
segments represent a sequence of ball possession change
events leading to an attempt to score. Each team in a soccer
match has 11 players with 3 allowed replacements. Based on
the sequence of events in each segment we define two types
of coarse-grain models. The first model weighs all the events
(e.g. pass, shot at goal, ball lost) equally, whereas the second
model weighs events based on their type. More specifically, a
higher weight to an event denotes a higher relevance. As we
are interested in measures that quantify a successful attempt
to score, we assign higher weights to shots and recoveries and
lower weights to events like ball lost and faults.

For each segment we first generate a pairwise player
matrix, Mi, j, where i, j = {1, . . . ,28}, each element of which
was initialised to zero. The matrix M contains players of both
teams (i, j = {1, . . . ,14} and i, j = {15, . . . ,28} for team-1
and team-2, respectively) and any element Mi, j represents the
interaction of the ith player with jth player in the segment.
The value of the Mi, j element denotes the number of times
the players interacted or the number of times the players in-
teracted weighed by the type of event. For example, if player
1 of team-1 passes the ball to player 5 of team-1 the element

M1,5 of the matrix is incremented by 1 (i.e., M1,5 = M1,5+1).
Similarly, if player 3 of team 2 recovers the ball in a tackle
from player 5 of team 1, then the element M14+3,5 of the
matrix is incremented by 1 (i.e., M14+3,5 = M14+3,5 + 1).
Therefore, the diagonal 14x14 blocks of the matrix M denote
interactions of the players within a team whereas, the off-
diagonal blocks represent the inter-team player interactions.

Thus, the matrix M (such that, Mi, j ≥ 0 ∀i, j) was termed as
the interaction matrix. The matrix M represents the connec-
tions on the network of players (agents), related to activity-
based decision-making to the directed transfer of information
(ball) from one agent to another. This coarse-grain interaction
model (M), represents the network of connections, accumu-
lated over a sequence of events during a segment of the
match. We analysed the interaction between players based
on the following approach:

a: Unit increment
Each element Mi, j of the interaction matrix is incremented
by 1 for an interaction between the ith and jth player of the
same team (ball passed) or players of the different team (ball
recovery, tackle, ball lost etc.) as follows:

Mi, j 7→Mi, j +1 (1)

b: Weighted increment
Each element Mi, j of the interaction matrix is weighted by the
type of the event Et . More specifically, we assign a weight to
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each event for evaluation of its contribution. Given that we
are mostly interested in goal attempts, we introduce a higher
weight for shots in comparison to passes, ball losses and other
events that lead to loss of ball possession.

Mi, j 7→Mi, j +WEt , (2)

where WEt is the weight corresponding to the event Et . As
we are interested in the likelihood of a successful attempt at
goal, we assign a high weight Wshot = 2 to shots, a low weight
Wpass = 0.5 to passes, and an average weight Wshot,pass = 1 to
all other event types as suggested by Decroos et al. [24].

C. QUANTIFICATION OF TEAM PERFORMANCE FROM
COARSE-GRAIN MODELS
To quantify the performance of a team in each segment of the
match four measures were proposed:

1) Total Activity Index (TAI)
To quantify the interaction in a segment the matrix M is
further divided into four blocks by summing all the elements
(Mi, j) in top left (team-1 ∀ i, j in {1, . . . ,14}), and the bottom
right (team-2 ∀ i, j in {15, . . . ,28}), which represent the
overall activity of each team that is obtained by summing the
activity of all players in a team. The off-diagonal elements
represent the interaction between players of both teams. Any
row in the top left (team-1 ∀ i in {1, . . . ,14}) or bottom right
(team-2 ∀ i in {15, . . . ,28}) block of matrix M represents
the interaction of the ith player with the rest of his team.
Similarly, any row in the off-diagonal blocks of the matrix
M represents player i (∀ i ∈ {1, . . . ,14}) of team 1 losing the
ball to player j (∀ j ∈ {15, . . . ,28}) of team 2 and vice versa.
We introduce the average 2 × 2 team activity matrix T as
follows:

T =

[
T11 T12
T21 T22

]
(3)

where each element of matrix T represents the average activ-
ity of each block in M, as follows:

T11 =
N

∑
i, j=1

Mi, j (4)

T22 =
2N

∑
i, j=N+1

Mi, j (5)

T12 =
N

∑
i=1

2N

∑
j=N+1

Mi, j, (6)

T21 =
2N

∑
i=N+1

N

∑
j=1

Mi, j, (7)

where N = 14, and ∑
N
i, j=1 Mi, j represent a player’s activity

(team-1 ∀ i ∈ {1, . . . ,14}, and team-2 ∀ i ∈ {15, . . . ,28},
respectively). The overall activity (Ac) of each team in a
segment is then calculated as:

Ac1 = ε× (T11 +T21−T12) (8)
Ac2 = ε× (T22 +T12−T21) (9)

where ε = ∑i, j=1..2 Ti, j is a normalisation constant.
The total activity index (TAI) of the match is then com-

puted as follows:
TAI = Ac1−Ac2 (10)

2) Information Entropy as a Measure of Performance
It has been advocated that performance analysis in a team
sports should consider the dynamical nature of the match and
must consider player-to-player interaction [5], [8]. The stabil-
ity and consistency of interaction between different players
of a team have been considered as a measure of performance
in soccer matches [25]. Entropy quantifies the uncertainty
coming from the random aspect of the dynamics. Entropy
as a measure can be utilised to quantify the consistency
of patterns representing player-to-player interaction in the
match.

a: Shannon Entropy
Previously, Shannon entropy has been used as a measure of
uncertainty in team sports to quantify the variability associ-
ated with the movements of players in a match [26]. In this
work, we have used Shannon entropy to quantify the patterns
representing player-to-player interaction during a segment
of the match. Information or Shannon entropy is a measure
of the uncertainty or unpredictability in the estimate of the
information content of a random variable [27]. The Shannon
entropy (H) is defined as follows:

H =−
N

∑
i=1

pi ln(pi), (11)

where, pi is the probability of the ith element in the sequence.

b: Kolmogorov Complexity
As an alternative to the probabilistic notion of information
content, the Kolmogorov complexity is based on the concept
of recursive function [28]. Kolmogorov complexity allows
the characterisation of chaotic motion in dynamical systems
and the analysis of spatiotemporal patterns [28]. The Kol-
mogorov complexity c(N) of a sequence with N samples is
the length of the shortest binary program that can generate
that sequence as output [28], [29]. An appropriate measure of
Kolmogorov complexity can be defined by h(N) as follows:

h(N) =
c(N)

b(N)
(12)

where b(N) = N log2 N. In this work, Kolmogorov complex-
ity of the signal was calculated following Kaspar et al. [28].

c: Distribution Entropy
Distribution entropy (DistEn) computes the complexity of
a time-varying sequence using the distribution of the inter-
vector distances [30]. Unlike approximate and sample en-
tropy, DistEn offers high robustness for short length se-
quences and reduced dependence on pre-determined parame-
ters [30]. DistEn has been previously used in many biomed-
ical applications to quantify the complexity of short length
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signals [30], [31]. In the context of soccer, DistEn can be
used to characterise the complexity of the dynamical network
patterns representing the player-to-player interaction during a
segment. The DistEn of a vector can be defined as:

DistEn(m,τ,β ) =
1

log2(β )

β

∑
i=1

pi log2(pi) (13)

where β = 64 is the number of bins in the probability distri-
bution, obtained from the data with the lag τ = 1 and embed-
ding dimension m = 2. These parameter values are selected
based on common recommendations from literature [30].

d: Entropy Derived Performance Indexes
To quantify the complex behaviour in which players interact
during a soccer match, three entropy measures were calcu-
lated. Based on the type of the entropy three indexes were
defined: (1) Shannon entropy index (SEI), (2) Kolmogorov
complexity index (KCI), and (3) Distribution entropy index
(DEI). Let s(N) denote the entropy for a sequence of length
N. We calculate s(N) for each row in each of the four blocks
of the interaction matrix M. We introduce a 2× 2 matrix S to
represent the team entropy/complexity matrix as follows:

S =

[
S11 S12
S21 S22

]
(14)

Here, the elements of matrix S represent the averaged
entropy/complexity of player-to-player interaction in each
block of matrix M, as follows:

S11 =
1
N

N

∑
i=1

h(Mi, j=1...N) (15)

S22 =
1
N

2N

∑
i=N+1

h(Mi, j=(N+1)...2N) (16)

S12 =
1
N

N

∑
i=1

h(Mi, j=(N+1)...2N) (17)

S21 =
1
N

2N

∑
i=N+1

h(Mi, j=1...N), (18)

where N = 14.
The overall complexity for each team in a segment is given

by:

s1 = S11 +S21−S12 (19)
s2 = S22 +S12−S21, (20)

The three entropy derived indexes (SEI, KCI, and DEI) of
a segment in the match are then computed as follows:

DerivedIndex = s1− s2, (21)

where the DerivedIndex is SEI, KCI, DEI for s denoting
Shannon entropy, Kolmogorov complexity, and distribution
entropy, respectively.

D. MACHINE LEARNING APPROACH
The possession chain data from each segment in a match
was quantified using the proposed measures, which were
then used as features for predicting the team that makes the
“SHOT ” during the segment. In the model training phase, the
predictive model was trained using a supervised framework,
where each segment ending in a “SHOT ” was given a label
“1” if team-1 makes the shot and a label “2” if the opposition
makes the shot. During the testing and validation phase, the
learned model was then used to predict the team making
the “SHOT ” in a segmental manner. The outcome of the
game (i.e. team winning the match) was determined based
on the classification of the segments (team-1/team-2) where
the “SHOT ” ends in a goal. For each game, we report the
segmental performance and the predicted match outcome
(i.e. winner of the match). We now describe the classifier and
the learning procedure.

1) Support Vector Machine
Support vector machines (SVM) are state-of-art binary state
classifiers, which are suited for pattern recognition and classi-
fication problems with good robustness to overfitting. Given
an i.i.d. learning set {(x1,y1),(x2,y2), ...,(xi,yi)}, where x ∈
ℜN , y ∈ {−1,1}, the kernel function maps the input feature
space to a high-dimensional space where the data is linearly
separable, offering the ability to learn non-linear functions
and decision boundaries. The decision function separating
the two classes is learned as a hyperplane. The optimisation
problem can be formulated as:

min
ω,b,ξ

1
2
‖ω‖2 +

C
n

n

∑
i=1

l(ξ ) (22)

subject to yi(ω ·φ(x)+b) ≥ 1−ξi, ∀ i ∈ 1, . . . ,n, where C
is a positive regularisation constant and ξ is the slack term.

By using the Lagrange multiplier techniques, the optimi-
sation problem in SVM is reduced to a dual optimisation
problem:

max
αk

W (α) =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiyiα jy jK〈xi · x j〉 (23)

subject to ∑
n
i=1 αiyi = 0 and αi ∈ [0,C] ∀ i = 1, ...,n.

The learned decision function can then be represented as:

f (x) = sgn

(
n

∑
i=1

αiyiK〈xi,x〉+b

)
, (24)

where K〈xi,x j〉 represents the kernel function. In this study
we have used the Gaussian radial basis kernel function.

2) Learning Classification Models
The classification models were trained using a leave-one-
out cross-validation approach [32]. Let N represents the
total number of matches. In leave-one-out cross-validation
approach, the dataset corresponding to a match is left out
while the dataset from the remaining matches (N−1) is used
for training the SVM classifier. A feature selection using

VOLUME 4, 2016 5



Kusmakar et al.: Machine learning enabled team performance analysis in the dynamical environment of soccer

TABLE 2: Mean, standard deviation, and area under the receiver operator characteristic curve statistics of the indexes TAI, SEI,
KCI, and DEI derived using two different types of interaction matrix M over all matches in the dataset. The statistics show that
the proposed indexes have significantly different values corresponding to the team taking the shot at the goal. A positive value
of the derived indexes denotes that team-1 takes the shot, while a negative value indicates team-2, relative to whom the indexes
are computed.

Measure Interaction Matrix Team 1 (mean ± std) Team 2 (mean ± std) p-value AUC

TAI Unit 0.09 ± 0.2 −0.21 ± 0.27 1.1×10−15 0.79
Weight 0.13 ± 0.26 −0.21 ± 0.29 5.63×10−15 0.81

SEI Unit 0.11 ± 0.2 −0.2 ± 0.28 1.51×10−15 0.80
Weight 0.1 ± 0.23 −0.2 ± 0.27 3.55×10−15 0.78

KCI Unit 0.04 ± 0.07 −0.02 ± 0.08 6.1×10−10 0.73
Weight 0.04 ± 0.07 −0.02 ± 0.07 8.1×10−10 0.72

DEI Unit 0.11 ± 0.2 −0.16 ± 0.26 3.45×10−15 0.79
Weight 0.11 ± 0.2 −0.18 ± 0.24 8.8×10−17 0.81

TAI: Total activity index; SEI: Shannon entropy index; KCI: Kolmogorov complexity index; DEI: Distribution entropy index.
AUC: area under the receiver operator characteristics curve [34].
p-value: the p-value was calculated using two-tailed Mann Whitney U test and the statistical significance was considered for
p < 0.05.

Lasso technique was applied on the training set for finding
the least correlated and most discriminating features [33],
thus ensuring the test data (left-out match) was not a part of
feature selection and model learning procedure.

III. RESULTS AND DISCUSSION
In this study, we have analysed each match by segmenting
into sequences that end with a “SHOT ”. The possession
chain data in each segment was first mapped onto a matrix
M representing match-integrated ball possession activity of
players (Fig. 2). To calculate the estimate of complexity and
non-linear dynamics in a match of soccer using the proposed
coarse-grain model of teams’ activity, we introduced four
quantitative measures of team performance (TAI, SEI, KCI,
and DEI). In addition, a machine learning approach was
presented, where we developed machine learning models to
predict the outcome of a segment based on the proposed
quantitative measures of performance.

We first explain the quantitative measures of performance
derived from the proposed coarse-grain model of player
interactions network, (A) total activity index (TAI), (B) Shan-
non entropy index (SEI), (C) Kolmogorov complexity index
(KCI), and (D) distribution entropy index (DEI), followed
by (E) the performance of the proposed machine learning
approach and future work.

A. TOTAL ACTIVITY INDEX (TAI)
The total activity index (TAI) is a measure of a team’s
activity relative to the other during a segment. Based on the
definition of TAI, a positive value of TAI indicates that team-
1 is likely to take the “SHOT ” at the end of the segment,
while a negative value indicates team-2 (Table 2, Fig. 3
(a)). The underlying hypothesis was that the more frequently
or longer the players of a team interact during a segment,
the more likely it is that this team scores in the particular
segment of the match. This was further corroborated by the
minimum and the maximum values of TAI as seen, for ex-

ample, in match G3 (Atlanta United FC (team-1) vs. San Jose
Earthquakes (team-2), season 2018 (final result: 4-3)) that
correspond to the segments when first team-2 was trying to
score and then team-1 was trying to equalise by maintaining
a higher possession of the ball (the segment ending at 12th
and 25th minutes of the match G3, Fig. 3 (a)). When plotted
with respect to the ground truth (i.e the outcome of the
segment w.r.t to the team taking the shot) the distribution of
TAI is close to normal for both the teams (Fig. 4a, Fig. 4b).
The descriptive statistics relating to the performance of TAI
are shown in Table 2. Results showed significantly different
(p< 0.05) means for both teams (Table 2). Although a certain
overlap could be seen among the TAI value ranges derived
using the unit and weighted increment matrices (Table 2,
Fig. 4a, and Fig. 4b), the area under the receiver operator
characteristics curve (AUC) values of 0.79 and 0.81 for TAI
derived from the unit and weighted increment matrices show
a good class separability.

The better performance of the weighted increment matrix
shows the introduced bias towards the segment outcome
(“SHOT ”) due to the higher weights given for the events
that are likely to result in goal attempts in comparison to
normal passes. Furthermore, the use of weights provides an
alternative evaluation function that offers the opportunity to
consider the types of events appearing in a pattern, and the
pattern’s support to determine its relevance. Finally, the TAI
derived from the coarse-grain activity model shows good
potential as a quantitative measure of performance in a team
sport like soccer.

B. SHANNON ENTROPY INDEX (SEI)

Shannon entropy gives a measure of uncertainty to quantify
the randomness associated with a time-varying signal. The
Shannon entropy index (SEI) quantifies the underlying vari-
ability in player-to-player interaction for a team relative to
the other team. The Shannon entropy of a team in a segment
would be low (≈ 0) if only few players interact with each
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FIGURE 2: (a) Player interaction matrix M, computed for the
unit increment for a segment of match G3. (b) Same as (a)
for the weighted increment. (c) Team activity matrix T , com-
puted for the unit increment for a segment of match G3. (d)
Same as (c) for the weighted increment. The self-interaction
(main diagonal of the matrix M) has been saturated in the
left panel to reveal the interaction between the players. Every
element Mi, j represents the ball originator and receiver for an
event. The main diagonal blocks in (a) and (b) represent the
interaction between players of the same team, whereas the
top-right and bottom-left corner blocks represent interactions
with the players of the opposition team. The lighter the color,
the higher the value of activity between the players. For the
shown segment, team-1 made an offensive attack against the
team-2, which is also evident in the higher activity (lighter
color) of team-1 as shown in (c) and (d).

other, thus minimising the randomness and the associated
unpredictability, whereas it would be high (≈ 1) if different
players are continuously interacting with each other. A higher
entropy indicates that there is more uncertainty in pattern-
forming dynamics governing the interaction among players.
Alternatively, a higher entropy represents that players are not
constrained to a specific role and assume a higher tactical role
(e.g. players moving both forward, backward, and through
the sides of pitch, thus forging more player-to-player interac-
tions). In team sports, a longer possession of the ball is likely
to forge more player-to-player interactions especially, during
a strategy leading to an offensive on the opposition more
players are likely to be involved (e.g. in a match of soccer
midfielders, centre forwards, wing forwards can be a part
of an attack). Therefore, we hypothesised that the Shannon
entropy for the team that is attacking would be higher relative

0-1 0-2 1-2 1-3 2-3 3-3 4-3

(c)

(b)

(a)

(d)

FIGURE 3: Match G3: Atlanta United FC (team-1) vs. San
Jose Earthquakes (team-2), season 2018 (final results: 4-3).
Temporal evolution of the proposed quantitative markers of
performance (a) Total activity index (TAI), (b) Shannon en-
tropy index (SEI), (c) Kolmogorov complexity index (KCI),
and (d) Distribution entropy index (DEI), derived using the
weighted network of connections represented by matrix M.
The vertical dashed lines indicate the moments at which a
goal was scored in the match (the red (−−−) and blue
(−−−) lines represent the goal scored by team-1, and team-
2, respectively). Each interval on the timeline represents the
time stamp of the segment ending with a “SHOT ”.

to the other. Therefore, as defined in section II-C2d, SEI
would be > 0 if team-1 is attacking and < 0 if team-2
is attacking (Table 2, Fig. 3 (b)). The minimum and the
maximum values of SEI denote an offensive behaviour by
team-2 and team-1, respectively (segments ending at 12th and
25th minute in Fig. 3 (b)).

Thus, SEI can be a good marker indicating when a team
makes an offensive against the opposition. The SEI index
correlated with the segment outcomes, that is whether team-
1 or team-2 takes the shot (highest AUC: 0.80, Table 2). The
mean SEI for team-1 and team-2 were significantly different
for both unit and weighted increment matrix (Table 2). A
similar observation was made from the distribution when SEI
was plotted with respect to the true outcome of the segment
(Fig. 4c, and Fig. 4d). Based on the descriptive statistics
(Table 2), the SEI index can be used as a potential marker
of a team’s performance derived from a coarse-grain network
model representing player-to-player interaction.

C. KOLMOGOROV COMPLEXITY INDEX (KCI)

The use of Kolmogorov complexity was motivated by
the presumption that interaction among players during a
segment can be both random or synchronised (if certain
players interact more frequently). Let us consider two
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 4: A distribution of the proposed measures of
performance on “SHOT S” with respect to the true segmen-
tal outcome, shown for all matches in the dataset; (a-b)
TAI, (c-d) SEI, (e-f) KCI, and (g-h) DEI, derived using
unit and weighted network of connections represented by
the interaction matrix M. The distribution of the derived
quantitative measures (TAI, SEI, KCI, and DEI) was close
to normal, with both teams having a significantly different
means (p < 0.05).

vectors sx = {0,0,1,0,0,1,0,0,1,0,0,1,0,0} , and sy =
{0,1,0,0,0,1,0,1,0,0,1,0,0,0} of length 14 each (only a
maximum of 11 players of each team were active during
any segment of the match; however, a pattern length of 14
was considered as a soccer match can have a maximum of
3 substitutes.), that represents interaction pattern of players
sx and sy. The value of the ith element in vectors sx and sy
represents the number of times the ith player (∀i∈ {1, ...,14})
interacted with player sx or sy, including any self-interaction.
Both the sequences sx and sy have the same Shannon entropy
of 2 and DistEn of 0.143 (m = 2, β = 64), whereas both have
a different Kolmogorov complexity (0.81 and 1.63, respec-
tively). Sequence sx has a pattern composed of units {0,0,1}
in recursion, whereas sequence sy has no obvious pattern,
thus sy has a higher complexity. In the context of soccer, if
the players are interacting in a synchronised manner, that
is, few particular players are part of a strategy (offensive
or defense), such patterns would be represented by simpler
sequences with lower complexity or unpredictability. From a
coaches point of view, it is important to assess the dynam-
ics of pattern formation occurring in each segment of the
match to decode the underlying strategy [22]. The proposed
Kolmogorov complexity index derived from the player-to-
player interaction network (matrix M) gives a quantitative
measure of local numerical relations in which the dynamics
of a teams pattern formation varies relative to the other team.
For example, if certain players are only restricted to particular
parts of the playing pitch as in the formation 4:4:3, the player-
to-player interactions in such a segment would be represented
by a less complex patterns like sx. On the other hand, if a team
allocates more players in sub-segments of a match to prevent
opposition’s attacking move (i.e., a defensive strategy) or to
create an offensive move at opposition’s goal, the player-to-
player interactions would be represented by more complex
patterns without any recursive sub-patterns as shown by
sy. Therefore, Kolmogorov complexity derived (KCI) index
captures the complexity of patterns that is different from
Shannon entropy derived index or SEI. KCI showed a good
correlation when plotted with the segmental outcome of a
match (AUC (0.73), Table 2). A KCI value > 0 favoured
team-1, while a KCI < 0 indicates a shot taken by team-2
(Fig. 3 (c)). For match G3, the segment ending at the 54th
minute represents a case when team-1 is making an offensive
against the opposition to level the scores at 2− 2, which is
shown by the maximum value of KCI at the 54th minute
(Fig. 3 (c)). The KCI index followed a distribution close
to normal, when plotted on the true segment outcome, that
is, with respect to the team taking the “SHOT ” (Fig. 4e,
and 4f), with a significantly different mean values for both the
teams (Table 2). KCI is a measure to quantify the regularity
of complex patterns in which players interact during team
sports. It gives a numerical relation in which the dynamics
of a team’s pattern formation varies over the segments of
a match. KCI can allow coaches to discover, identify and
quantify segments during a match, when a team interacts in
more complex or rather synchronised patterns.
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D. DISTRIBUTION ENTROPY INDEX (DEI)
The distribution entropy (DistEn) measures the complexity
of patterns governing player-to-player interactions by taking
into account the hidden information in the state-space via
estimating the probability density of inter-vector distances.
A chaotic sequence has the maximum DistEn, thus patterns
of player-to-player interaction with high variability would
be characterised by a high DistEn (≈ 1) and vice versa.
The distribution entropy derived index (DEI) quantifies the
chaotic patterns underlying player-to-player network of in-
teraction for a team relative to the other. Similar to Shan-
non entropy-derived index, a DEI > 0 would indicate a
higher variability (associated with an attacking move) in
patterns governing player-to-player interaction for team-1,
when computed relative to team-2 (Fig. 3 (d)). However, a
particular advantage of DEI over SEI is that SEI can be
affected by the variance of the sequences representing player
interaction patterns, while DEI is derived using a probability
density function with fixed bin number (β ). Thus, DEI is
more robust as it considers inter-vector distances. Let us con-
sider two vectors sx = {0,0,1,0,0,0,1,1,1,1,3,1,1,0}, and
sy = {0,0,1,0,0,1,0,2,0,0,5,0,1,0} that represent the inter-
action patterns of player x and player y during a segment of
the match, and having the same number of total interactions
(∑sx = ∑sy = 10). The 5 in sy represents the number of times
the 11th player of the team interacted with player y during
the segment. The Shannon entropy for sx, and sy is 2.84, and
1.96, respectively, whereas DistEn is 0.27, and 0.36, respec-
tively. Pattern sy represents that player y interacts more fre-
quently (5 times) with the 11th player, which results in high
inter-vector distances thus leading to a higher DistEn value.
The interaction pattern represented by sy indicates the events,
when player y is continuously interacting with a particular
player (11th player in the team). This pattern might signify an
underlying strategy where the players’ (defender/midfielder)
are interacting with a particular player (forward) as a part of
a strategy to generate a scoring opportunity. DistEn provides
an ability to encode such patterns, thus distribution entropy-
derived index (DEI) can be a good marker to characterise
the complexity of player-to-player interaction patterns, such
that the underlying strategy can be quantified as a measure of
a team’s performance during a segment of the match. When
plotted with respect to the outcome of the segment, the DEI
values were normally distributed (Fig. 4g, and 4h). The mean
DEI values for the teams in the adversarial relationship were
significantly different (Table 2), and a good class separability
was achieved with an AUC of 0.79, and 0.81 for DEI derived
using unit and weighted interaction network of players.

E. PERFORMANCE OF THE MACHINE LEARNING
APPROACH
We developed an automated machine learning model to pre-
dict the outcome of a match segment using the proposed
measures of performance quantification (TAI, SEI, KCI,
and DEI). Our machine learning approach showed a mean
sensitivity of 78.3% (95% confidence interval (CI): 70.3%

- 85.3%), a specificity of 73.8% (95% CI: 69% - 80.2%)
and an overall accuracy of 75.2% in predicting the segmental
outcomes of the matches. Although our dataset comprised of
only 13 matches, it should be noted that we performed a seg-
mental analysis on segments of different duration (segments
ending with “SHOT ”), resulting in a sizeable number of
samples (241 temporal segments) for training and validating
the machine learning classifier. In addition, our approach is
based on a robust cross-validation approach that ensures no
bias of the learned model to the ground truth.

The predicted segmental outcomes for all the matches in
the database are shown in Table 3. One match G13 ended
in draw. Among the rest, the predicted outcome correlated
with the ground truth (i.e., the winner of the match) in 8
(66%) of 12 matches. Furthermore, the application of the
automated segmental analysis is not limited to the overall
match outcome. It also helps to analyse the underlying local
prediction statistics. The outcome of our developed predic-
tion model on a complete match is shown in Fig. 5. The
prediction models give the segmental likelihood of an attempt
to goal for both the teams (Fig. 5 (a)). In the particular match
shown in Fig. 5, team-1 (shown in red) won the match 4-3.
The segments where a goal was scored are marked with ∗
(segments 3, 11, 13, 17, 19, 20, and 22 shown in Fig. 5). It
can be seen in Fig. 5 that segments where team-1 has scored
a goal (segments 13, 19, 20, and 22) have a higher likelihood.
Similarly, the likelihood for team-2 is higher in the segments
where they scored a goal. Segments 9, 14, 18, and 19 show
the where both the teams are engaged in gaining the pos-
session of the ball as they want to equalise. The segments
where the predicted outcome (Fig. 5 (b)) did not match the
true outcome (Fig. 5 (c)) are the ones, where the possession
of the ball is continuously changing between the teams. To
quantify the minority of segments, where the model does not
provide a sufficient agreement with the ground truth data,
in future we would incorporate more sophisticated measures
by introducing player labels (forwards, mid-fielders, defence)
to understand player-to-player interaction using concepts of
mutual information retrieval [36].

F. VALIDATION AND COMPARISONS ON PUBLIC
DATASET
To elaborate on the efficacy of the proposed approach a thor-
ough performance evaluation was carried out on the largest
available public dataset of soccer logs [35]. This dataset com-
prised event logs (possession chain data) from 1,941 matches
of 7 major competitions (Table 4). The proposed machine
learning approach showed an overall sensitivity of 83.5%, a
specificity of 83.4%, F1 score of 83.7%, and an AUC of 0.84
in classifying a total of 42,860 segments ending in “SHOT ”
(i.e., whether team-1 or team-2 makes the “SHOT ” at the
goal) (Table 4). The match outcome (segments leading to a
goal) correctly correlated in 1,202 (81.9%) of 1,467 matches
that ended in a result. The performance measures with the
95% CI (calculated over all matches in a competition) for
each competition are also reported (Table 4). The European
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TABLE 3: The predictive performance of our developed machine learning models. Shown are the segments predicted in favour
of a team with the overall prediction accuracy, the predicted winner, and the true match results.

Team Segments won - team 1
(Predicted)

Segments won - team 2
(Predicted) Classification Accuracy Predicted Winner∗ Match Winner

G1 5 7 0.75 team 2 team 2
G2 10 11 0.62 team 2 team 1
G3 13 9 0.77 team 1 team 1
G4 7 7 0.71 team 1 team 1
G5 12 7 0.78 team 1 team 1
G6 8 12 0.70 team 2 team 1
G7 11 14 0.72 team 2 team 2
G8 9 5 0.71 team 1 team 1
G9 17 10 0.74 team 1 team 1
G10 6 15 0.71 team 2 team 1
G11 8 5 0.69 team 1 team 2
G12 7 7 0.71 team 1 team 1
G13 8 11 0.84 team 2 DRAW

∗
For all matches ending in a result, the predicted outcome of the segments ending in goal was used to decide the predicted winner of the

match. If both the teams have the same number of predicted winning segments, the team with the higher possession time was considered
the winner.

(c)

(b)

(a)

1 2 1 3 2 3 4

FIGURE 5: Match G3: Atlanta United FC (team−1) vs. San Jose Earthquakes (team−2), season 2018 (final results: 4-3).
The segmental analysis for match G3, showing the predicted outcomes for every segment compared to the true outcomes; (a)
segmental likelihoods, (b) predicted outcomes, and (c) the true match outcome, which is the team taking the “SHOT ” at the
oppositions goal at the end of the segment. The vertical bars on the match timeline show the segments where a team scored a
goal. Red bars indicate team-1 and blue bars indicate goals scored by team-2. The intervals on the timeline indicate the time
stamp corresponding to the segments ending with a “SHOT ”.
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TABLE 4: Validation of the proposed approach on the largest open collection of soccer logs from 7 major competitions [35].
Shown are the total number of matches, matches ending in result, the number of analysed segments, mean performance
measures with 95% [CI: confidence interval] over all matches of each competition, and the accuracy depicting the percentage
of matches where the predicted winner correlated with the true match outcome.

Competition Total
Matches

Matches
with

Results

Segments
Ending

in “SHOT ”

Statistical measures of segmental performance Correctly Predicted
Match Outcome†

Sensitivity†

(95% [CI])
Specifivity†

(95% [CI])
F1 score†

(95% [CI])
AUC†

(95% [CI])

European
Cup 2016 51 40 1195 77.4%

(71.9%-79.6%)
85.8%

(82.9%-89.4%)
82.5%

(77.7%-85.3%)
0.82

(0.79-0.84) 72.5% (29/40)

French First
Division 380 282 8277 85.5%

(83.9%-87.0%)
81.0%

(78.9%-82.8%)
83.4%

(82.0%-84.6%)
0.83

(0.82-0.84) 80.4% (227/282)

German First
Division 306 221 6869 84.7%

(82.6%-86.2%)
83.2%

(81.0%-84.9%)
82.8%

(81.3%-84.0%)
0.84

(0.83-0.85) 81.9% (181/221)

Italian First
Division 380 297 8758 87.1%

(85.5%-88.4%)
82.3%

(80.6%-84.0%)
84.7%

(83.5%-85.9%)
0.85

(0.84-0.86) 85.5% (254/297)

Spanish First
Division 380 293 7933 84.7%

(83.0%-86.2%)
82.9%

(80.9%-84.4%)
82.9%

(81.7%-84.1%)
0.84

(0.83-0.85) 78.1% (232/293)

World Cup
2018 64 55 1413 85.9%

(82.5%-88.2%)
81.6%

(77.6%-84.5%)
85.1%

(82.5%-86.9%)
0.83

(0.81-0.85) 70.1% (39/55)

English First
Division 380 279 8415 79.4%

(77.4%-81.3%)
87.3%

(85.4%-88.5%)
84.7%

(83.4%-85.8%)
0.83

(0.82-0.84) 86.1% (240/279)

Overall 1941 1467 42860 83.5% 83.4% 83.7% 0.84 81.9% (1202/1467)
†

Sensitivity: the percentage of segments correctly classified for team-1 in each match; Specificity: the percentage of segments correctly classified as belonging
to team-2 in each match; F1 score: the harmonic mean of precision and recall; 95% [CI]: AUC: the area under the ROC curve for the segmental analysis of each
match [34]; 95% confidence interval [CI] computed for measures of segmental performance over all matches in each competition; Correctly Predicted Match
Outcome: the percentage of matches where the predicted winner of the match correlated with the true match outcome.

cup 2016, and the Italian first division had the lowest and the
highest AUC for segmental analysis among the 7 competi-
tions. Overall the AUC of the segmental performance was
close to the overall AUC for each of the 7 competitions,
which shows the consistent performance of the proposed
approach across the competitions. The Italian first division
had the highest number of segments ending in “SHOT ”
(8,758) from the 380 matches. The proposed machine learn-
ing approach resulted in an AUC of 0.85 (95% [CI]: 0.84
- 0.86) in correctly classifying the segments. Furthermore,
the predicted match winner correlated with the ground truth
in 254 (85.5%) of the 297 matches of the Italian first divi-
sion that ended in a result. The overall performance of the
proposed approach on 1,941 matches and 42,860 segments
shows the efficacy of the proposed quantitative markers (TAI,
SEI, KCI, and DEI) of a team’s performance.

Furthermore, to elaborate the efficacy of the proposed
quantifiable markers of team performance, we compared the
results of the proposed approach with studies that employ a
machine learning approach for evaluating performance [15],
[20], [21]. A direct comparison of the proposed segmental
analysis approach can be done with the study by Decross et
al. [21]. They employed a segmental analysis to learn the
importance of players actions based on the outcome of a
match state (e.g. success in taking a “SHOT ” at opponents
goal). On the contrary, Pappalardo et al. [20] defined a feature
vector for each team and modelled the outcome of the match
(Win/Loss) using a linear support vector machines classifier.
As both the studies [20], [21] use different datasets, therefore,
to ensure a direct comparison of the proposed approach the

algorithms by Decross et al. [21], and Pappalardo et al. [20]
are run on the soccer logs from 1,941 matches of 7 competi-
tions [35]. The model estimation and the learning task was
performed using a leave-one-out cross-validation approach
as explained in section II-D. Additionally, the results on the
public dataset were compared with the study by Cintia et
al. [15], who analysed the match outcome using pass-based
performance indicator (H-indicator) and evaluated the perfor-
mance on the German, Spanish, Italian, and English division
leagues.

For a comparison of the segmental performance, the algo-
rithm by Decross et al. [21] was used to model the segments
ending in a “SHOT ” with an XGBoost classifier [37]. The
algorithm by Decross et al. [21] showed an overall AUC of
0.83 (Table 5). In comparison, the proposed approach showed
a similar performance with an overall AUC of 0.84 on 42,860
analysed segments (Table 5). Further, for a comparison of
the correctly predicted match outcome, the algorithm by
Pappalardo et al. [20] was employed. The algorithm by
Pappalardo et al. [20] could correctly classify the match
outcome in 1176 (77.5%) of 1467 matches that ended in a
result among the 7 competitions (Table 5). In comparison, the
proposed approach could correctly classify the match-winner
in 1,202 of 1,467 matches. Furthermore in comparison to
the study by Cintia et al. [15] who reported a mean accuracy
0.55 in correctly predicting the match outcome, the proposed
approach showed a higher mean accuracy of 0.82 (German:
0.81, Spanish: 0.78, Italian: 0.85, and English division: 0.86)
in correctly predicting the match outcome. The improved per-
formance of the proposed approach shows the robustness and
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TABLE 5: Comparisons of the proposed approach with some
recent machine learning-based studies.

Competition
Segmental

Performance (AUC)†
Correctly Predicted
Match Outcome†

Proposed
Approach

Decross
et al. [21]

Proposed
Approach

Pappalardo
et al. [20]

European
Cup 2016

0.82
(0.79-0.84)

0.81
(0.78-0.85)

72.5%
(29/40)

67.5%
(27/40)

French First
Division

0.83
(0.82-0.8)

0.83
(0.82-0.85)

80.4%
(227/282)

81.5%
(230/282)

German First
Division

0.84
(0.83-0.85)

0.83
(0.81-0.85)

81.9%
(181/221)

80.5%
(178/221)

Italian First
Division

0.85
(0.84-0.86)

0.85
(0.83-0.86)

85.5%
(254/297)

79.4%
(236/297)

Spanish First
Division

0.84
(0.83-0.85)

0.83
(0.82-0.85)

78.1%
(232/293)

81.5%
(239/293)

World Cup
2018

0.83
(0.81-0.85)

0.82
(0.77-0.89)

70.1%
(39/55)

70.1%
(39/55)

English First
Division

0.83
(0.82-0.84)

0.84
(0.83-0.85)

86.1%
(240/279)

81.3%
(227/279)

Overall 0.84 0.83 81.9%
(1202/1467)

77.5%
(1176/1467)

†
AUC: the area under the ROC curve for the segmental analysis of each

match [34]; Correctly Predicted Match Outcome: the percentage of matches
where the predicted winner of the match correlated with the true match
outcome.

efficiency of the proposed quantitative markers (TAI, SEI,
KCI, and DEI) in capturing a team’s underlying performance
characteristics (Table 5).

The performance of the proposed approach can be at-
tributed to the use of kernelised classifier and the non-
linearity of the proposed indices like SEI, KCI, and DEI
that can quantify the underlying non-linear dynamics of
player interaction. Based on the performance validation on
external dataset and comparison with recent studies, it can
be concluded that the proposed approach offers a data-driven
framework for evaluating a team’s performance in a segmen-
tal manner, offering the potential for predictive analytics in
sport sciences using data science research.

G. INTERPRETABILITY FOR SPORTS ANALYSTS
Our analysis shows that the interaction between players is
essential for generating a scoring opportunity. To outline the
applicability of the proposed features, we use histogram plots
representing each player’s feature values that are derived
from the player interaction matrix M for a segment of the
match (Fig. 6).

The histograms illustrate the level of interaction of each
player, when their team has possession of the ball. The
players that are more frequently involved in the ball pos-

session have feature values above the team’s mean value,
which is represented by the dashed line (−−) as shown
in Fig. 6. Across this match segment, team-1 performs better
than team-2, because the segment ends with team-1 having
a successful attempt at scoring i.e., a “SHOT ” at goal. Six
players of team-1 (P2, P5, P8, P9, P10, and P11) maintain a level
of interaction (as indicated by the rectangular box in Fig. 6a)
above the team’s mean, which is higher than team-2, where
only three players are above the team’s mean (as indicated by
the rectangular box in Fig. 6b).

The feature Activity shows the players that are more fre-
quently involved in a team’s ball possession activity. The
remaining features (ShnEn, KolCmp, and DistEn) were also
above average for more players in team-1 than for team-2.
Sports analysts can interpret this as an association between
the complexity of passing between players and the likelihood
of having a shot at goal. In other words, when a team has
possession of the ball, there may be a benefit in making a
relatively large number of passes between a large proportion
of the team, as they move the ball towards their opponent’s
goal post.

The usual analysis of an opponent’s tactics is a resource-
intensive procedure, as most tactical analyses are performed
by manually reviewing the match videos or scouting matches
in-person to identify the players that are constantly part of
the ball possession activity and are involved in generating
scoring opportunities [24]. The features used in the present
analysis may enable the automatic identification of such
players using a data-driven approach. For example, player
P10 in team-1 is one such player who had the highest ball
possession activity during the shown segment of the match
(indicated by an ∗ in Fig. 6a). Identifying the players that
are more frequently involved in match states that end with
an attempt at scoring i.e., a “SHOT ” at goal, may assist
sports analysts and team staff to develop strategies suited to
an opponent’s playing style.

The proposed study presents different characteristics of a
team’s performance during a segment of a match that ends
with a “SHOT ” on the goal. Although, there are different
ways to define match segments (e.g. a segment ending with
the ball going out, a foul etc.) the purpose of the study
was to identify the characteristics leading to an attempt at
scoring a goal. Therefore, in this study, we analysed segments
ending with a “SHOT ” on the goal, which is also a limitation
of the study. Furthermore, the influence of match location,
quality of opposition, match type etc. were not controlled
for while developing the predictive models. Thus, further re-
search is required to investigate the effects of these variables
to further enhance the understanding of teams and players
performances.

IV. CONCLUSION
Our study proposes information theory-derived quantifiable
measures of performance that can uncover the dynamic pat-
terns underlying team sports like soccer. The study provides
first evidence of a machine learning-enabled approach for
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FIGURE 6: The feature histograms showing players activity, Shannon entropy (ShnEn), Kolmogorov complexity (KolCmp),
and Distribution entropy (DistEn) derived from the player interaction matrix M. The derived parameters are normalised to
ensure feature commensurablity. Shown here for a segment of match G3 (a) team-1, and (b) team-2. The dotted horizontal lines
in subplots (a), and (b) represent the mean across all the players of a team. The rectangular box in histogram plot for team-1
(subplot (a)) indicates the players (P2, P5, P8, P9, P10, and P11) who maintain a ball possession activity that is higher than the
team’s mean. Player P10, who makes the shot at goal had the highest interaction with the rest of the players during team-1 ball
possession activity. In contrast, the ball possession activity of team-2 is mainly among players P1, P5, P7, and P8.

automated predictive analysis of performance in a segmental
manner, offering the potential for uncovering local numeri-
cal markers of team performance. Our developed predictive
models show a mean accuracy of 75.2% in predicting the
segmental outcome of the likelihood of team making a suc-
cessful attempt to score a goal on our dataset comprising 13
matches. In addition, the segmental outcomes could predict
the correct overall winner in 66.6% of the matches that re-
sulted in a winner. Furthermore, the validation on an external
dataset comprising 42,860 segments from 1,941 matches
showed the robustness of the approach. Finally, the study
demonstrates that the analysis we present can help uncover
the pattern dynamics of a team’s network derived using
possession chain data, by quantitatively analysing measures
of performance that have a specific distribution and that can
be used to predict the performance of a team.
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