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Abstract: This study investigates the asymptotic properties of mixed-order fractional systems. By using the variation of constants
formula, properties of real Mittag-Leffler functions, and Banach fixed-point theorem, the authors first propose an explicit criterion
guaranteeing global attractivity for a class of mixed-order linear fractional systems. The criterion is easy to check requiring the
system’s matrix to be strictly diagonally dominant (C1) and elements on its main diagonal to be negative (C2). The authors then
show the asymptotic stability of the trivial solution to a nonlinear mixed-order fractional system linearized along its equilibrium point
such that its linear part satisfies the conditions (C1) and (C2). Two numerical examples with simulations are given to illustrate the
effectiveness of the results over existing ones in the literature.

1 Introduction

Fractional calculus, i.e. calculus of integrals and derivatives of arbi-
trary orders, is a fascinating field of mathematics borne out of the
traditional definitions of calculus integral and derivative operators.
There are sufficient studies to show that fractional-order differen-
tial equations are suitable for capturing many complex phenomena
in science and engineering, particularly when describing memory
and hereditary properties of dynamical processes (for examples, see
[1]-[5]). One of the most important topics in the qualitative theory
of fractional-order differential equations is the study of the asymp-
totic behaviors of their solutions. This topic has received significant
research attention in the literature (for examples, see [6]-[15] and the
references therein).

In this paper, we consider mixed-order fractional systems. They
arise, for example, in the Basset equation which describes the forces
that occur when a spherical particle sinks in a incompressible vis-
cous fluid [16]), in the Bagley–Torvik equation which describes the
motion of a rigid plate immersed in a Newtonian fluid [17], and
in a general FitzHugh-Nagumo neuronal model which expresses a
biological neuron’s spiking behavior [18]. Linear mixed-order frac-
tional equations are also used to formulate a model of national
economies in a study of commonwealth countries which cannot
be simply divided into clear groups of independent and dependent
variables [19].

In contrast to fractional-order systems having only a fractional
derivative term, the research on asymptotic behavior of solutions to
mixed-order fractional systems is still in its early phase. So far, only
some results for these systems are available. By using Laplace trans-
form, in [20, Theorem 1], the authors proposed a criterion based
on a characteristic equation to test global attractivity of mixed-order
linear fractional systems. However, the criterion is not suitable for
dealing with systems of high dimensions and irrational fractional
orders. Mixed-order linear fractional systems with rational fractional
derivatives were discussed in [21, Theorem 4]. By exploiting the
monotonic and the asymptotic properties of constant delay systems
by virtue of the positivity, and comparing trajectory of time-varying
delay systems with that of constant delay systems, [22, Theorem 2]
proved that asymptotic stability of mixed-order positive fractional
systems is not sensitive to the magnitude of delays. The existence
and uniqueness of solutions to general mixed-order fractional sys-
tems was considered in [23, Theorem 2.3]. The authors also derived
a criterion based on the spectrum of the matrix of coefficients to

test global attractivity of the trivial solution to mixed-order frac-
tional upper-triangle systems. In [24], the authors derived a sufficient
condition for the stability of the trivial solutions to mixed-order
fractional systems, see [24, Theorem 4]. However, there are limi-
tations in the works mentioned above. In particular, it is not easy to
check the attractivity criteria presented in [20, 21] because they lead
to finding solutions to fractional-order characteristic polynomials, a
task which is very complicated for systems with high dimension,
and impossible for systems with irrational fractional derivatives.
Whereas, the result [24, Theorem 4] is elegant but it is too hard
to compute the contractive coefficient γ in this theorem (see [24,
condition (14), pp. 6]).

From the above analysis, it is clear that analyzing asymptotic
properties of mixed-order fractional systems is a complicated task.
In our view, it is still a long way from being able to find a gen-
eral and efficient criterion that characterizes their stability even for
the linear case. Our aim is to propose simple and explicit theorems
proving asymptotic stability of the trivial solution to a special class
of systems with multi fractional orders.

Let the linear systems on the interval [0,∞)

CDαi
0+xi(t) =

d∑

j=1

aijxj(t), i = 1, . . . , d, (1)

where αi ∈ (0, 1], coefficients aij ∈ R, i, j = 1, . . . , d, and the
Caputo differential operator of order αi is defined by

CDαi
0+x(t) = J1−αiDx(t)

with the classical derivative D and the Riemann-Liouville integral
operator

J1−αix(t) =
1

Γ(1− αi)

∫ t

0
(t− τ)−αix(τ) dτ,

see e.g. [2].
The first of our contributions is to show that if the matrix of coef-

ficients (aij)1≤i,j≤d is strictly diagonally dominant and the entries
on its main diagonal are negative then this system is globally attrac-
tive. To do this, we focus on elements on the main diagonal of the
system matrix. Due to their role in determining asymptotic behavior
of the solutions, we consider (1) as a diagonal system and the ones
out-off the main diagonal as perturbed terms. Then by applying the
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variation of constants formula and properties of real Mittag-Leffler
functions, we calculate the contractive coefficient of a Lyapunov–
Perron type operator associated with the system which guarantees
its stability.

Next, by the linearized method, we also obtain a result on asymp-
totic stability (in the Lyapunov sense) of the trivial solution to a non-
linear mixed-order fractional system linearized along its equilibrium
point

CDαi
0+xi(t) =

d∑

j=1

aijxj(t) + fi(x(t)), i = 1, . . . , d, (2)

where the matrix (aij)1≤i,j≤d satisfies two conditions as men-
tioned above, and the nonlinear function f = (f1, . . . , fd) : Rd →
Rd describes a small perturbation satisfying:

(i) f is continuous;
(ii) f(0) = 0;
(iii) f is Lipschitz continuous in a neighborhood of the origin and

lim
r→0

`f (r) = 0,

in which

`f (r) := sup
x,y∈BRd (0,r)

‖f(x)− f(y)‖
‖x− y‖ (3)

with ‖ · ‖ is a norm in Rd and BRd := {x ∈ Rd : ‖x‖ ≤ r}.

Notation. We denote by N the set of all natural numbers, R the
set of all real numbers, R≥0 the set of nonnegative real numbers
and C the set of complex numbers. Let Rd be the d-dimensional
Euclidean space endowed with a norm ‖ · ‖. Due to the fact that
every norm in Rd is equivalent, hence without loss of general-
ity, in this paper we only use the max norm, that is, for any x =
(x1, . . . , xd) ∈ Rd we mean ‖x‖ = max{|x1|, . . . , |xd|}. The set
C([0,∞),Rd) is the space of continuous functions from [0,∞)

to Rd, and
(
C∞(Rd), ‖ · ‖∞

)
⊂ C([0,∞),Rd) is the space of

all continuous functions ξ : [0,∞)→ Rd which are bounded on
[0,∞), i.e.,

‖ξ‖∞ := sup
t≥0
‖ξ(t)‖ <∞.

It is well known that
(
C∞(Rd), ‖ · ‖∞

)
is a Banach space.

2 Main results

Consider the system (1). For convenience, we use the notation

CDα̂0+x(t) :=




CDα1
0+

. . .
CDαd

0+


x(t) =




CDα1
0+x1(t)

...
CDαd

0+xd(t)




and A = (ai,j)1≤i,j≤d ∈ Rd×d. Then this system is rewritten in
the form

CDα̂0+x(t) = Ax(t). (4)

Assume that the matrix A satisfies two conditions:

(C1) A is a strictly diagonally dominant matrix, i.e. |aii| >∑
1≤j≤d,j 6=i |aij | for 1 ≤ i ≤ d; and

(C2) the entries on the main diagonal of this matrix are negative, i.e.
aii < 0 for 1 ≤ i ≤ d.

Our main result is to prove global attractivity of (4), i.e. showing that
its every non-trivial solution converge to the origin at the infinity.
This is stated in the following theorem.

Theorem 1 (Global attractivity of mixed-order linear fractional sys-
tems). Consider the system (4) with the matrix A satisfies the con-
ditions (C1) and (C2). Then for any x0 ∈ Rd, the solution ϕ(·, x0)
of (4) which starts from x0 converges to the origin.

To prove this theorem we need some estimates concerning Mittag-
Leffler functions. For any β, γ > 0, a function Eβ,γ(·) : C→ C
defined by

Eβ,γ(z) :=
∞∑

k=0

zk

Γ(βk + γ)
, z ∈ C,

with Γ(·) is the Gamma function, is called the Mittag-Leffler
function, see e.g. [5, Chapters 3–4].

Lemma 1. For an arbitrary integer p ≥ 1, β ∈ (0, 1) and γ is an
arbitrary complex number, the following statement holds. For z ∈
{λ ∈ C : απ/2 < |arg(λ)| ≤ π}, we have

Eβ,γ(z) = −
p∑

k=1

z−k

Γ(γ − βk)
+O(|z|−1−p),

when |z| → ∞.

Proof: See [4, Theorem 1.4, pp. 33]. �

Lemma 2. Let 0 < β ≤ 1 and λ > 0. Then the following statements
hold:

(i) The function Eβ(−λtβ) is strictly decreasing on [0,∞) and

lim
t→∞

Eβ(−λtβ) = 0;

(ii) ∫ t

0
τβ−1Eβ,β(−λτβ) dτ = tβEβ,β+1(−λtβ)

for all t > 0;
(iii) ∫∞

0
τβ−1Eβ,β(−λτβ) dτ =

1

λ
.

Proof: (i) The proof is obtained directly from the completely mono-
tonic property of the Mittag-Leffler function, see e.g. [5, Proposition
3.23, pp. 47] and Lemma 1.
(ii) See [4, Formula (1.99), pp. 24].
(iii) From (ii), we obtain

0 ≤
∫ t

0
τβ−1Eβ,β(−λτβ) dτ = tβEβ,β+1(−λtβ), ∀t > 0.

On the other hand by virtue of Lemma 1, for p = 1, we have

Eβ,β+1(z) =
1

zΓ(1)
+O(

1

|z|2 )

=
1

z
+O(

1

|z|2 )

as z ∈ {λ ∈ C : απ/2 < |arg(λ)| ≤ π} and |z| → ∞. Let z =
−λtβ (λ > 0), then

Eβ,β+1(−λtβ) =
1

λtβ
+O(

1

λ2t2β
)

as t→∞. Hence,

lim
t→∞

tβEβ,β+1(−λtβ) =
1

λ
.
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This implies that

∫∞

0
τβ−1Eβ,β(−λτβ) dτ = lim

t→∞
tβEβ,β+1(−λtβ) =

1

λ
,

which completes the proof. �

Proof of Theorem 1: Due to the existence and uniqueness of solu-
tions to the system (4), if x0 = 0, we have ϕ(t, 0) = 0 for all
t ≥ 0. Hence, to complete the proof of this theorem we only study
non-trivial solutions. For any x0 ∈ Rd \ {0}, let

ε :=
‖x0‖

1−max1≤i≤d

∑
1≤j≤d,j 6=i |aij |
|aii|

. (5)

In the space C([0,R),Rd), we denote the ball with the radius ε
centered at the origin by BC∞(0, ε), i.e.

BC∞(0, ε) := {ξ ∈ C([0,∞),Rd) : ‖ξ‖∞ ≤ ε}.

Next, we establish a Lyapunov–Perron type operator on BC∞(0, ε)
as follows. For any ξ ∈ BC∞(0, ε) let

(Tx0ξ)(t) = ((Tx0ξ)1(t), . . . , (Tx0ξ)d(t)), t ≥ 0,

where for i ∈ {1, . . . , d}

(Tx0ξ)i(t) :=Eαi(aiit
αi)x0i +

∫ t

0
(t− τ)αi−1Eαi,αi(aii(t− τ)αi)

∑

1≤j≤d,j 6=i
aijξj(τ) dτ.

First, we show that Tx0(BC∞(0, ε)) ⊂ BC∞(0, ε). Indeed, for any
t > 0, we obtain the following estimates

|(Tx0ξ)i(t)| ≤ Eαi(aiit
αi)|x0i |+

∫ t

0
(t− τ)αi−1Eαi,αi(aii(t− τ)αi)

∑

1≤j≤d,j 6=i
|aij ||ξj(τ)| dτ

≤ ‖x0‖+ ‖ξ‖∞
∫ t

0
ταi−1Eαi,αi(aiiτ

αi) dτ

∑

1≤j≤d,j 6=i
|aij |

≤ ‖x0‖+ ‖ξ‖∞
∫∞

0
ταi−1Eαi,αi(aiiτ

αi) dτ

∑

1≤j≤d,j 6=i
|aij |.

This together (5) and Lemma 2(iii) implies

(Tx0ξ)i(t) ≤ ε
(

1− max
1≤i≤d

∑
1≤j≤d,j 6=i |aij |
|aii|

)

+ max
1≤i≤d

∑
1≤j≤d,j 6=i |aij |
|aii|

ε

= ε, ∀i ∈ {1, · · · , d}.

Hence, ‖Tx0ξ‖∞ ≤ ε for all ξ ∈ BC∞(0, ε). Furthermore, it is
easy to show that this operator is contractive with the coefficient
of contraction as max1≤i≤d

∑
1≤j≤d,j 6=i |aij |
|aii| . From Banach fixed

point theorem, Tx0 has a unique fixed point ξ∗ in BC∞(0, ε). It

is worth noting that from [23, Theorem 2.3], the system (4) with
the initial condition x(0) = x0 has a unique solution. Moreover,
by applying the variation of constants formula as in [25, Lemma
3.1] for each component of (4), this solution must be a fixed point
of the operator Tx0 . Thus for any x0 ∈ Rd \ {0}, the system (4)
has a unique solution as the fixed point ξ∗. This solution belongs
to the ball BC∞(0, ε). Finally, we show that limt→∞ ξ∗(t) = 0.
Let a = lim supt→∞ ‖ξ∗(t)‖. Assume that a > 0. Let T0 > 0 is a
constant such that

‖ξ∗(t)‖ ≤ aM

p
, ∀t ≥ T0, (6)

where p := max1≤i≤d

∑
1≤j≤d,j 6=i |aij |
|aii|

< 1 and p < M < 1.

From the presentation of ξ∗, for each i ∈ {1, . . . , d}, we have

lim sup
t→∞

|ξ∗i (t)| ≤ lim sup
t→∞

Eαi(aiit
α)|x0i |

+ lim sup
t→∞

∫T0

0
(t− τ)αi−1Eαi,αi(aii(t− τ)αi)

∑

1≤j≤d,j 6=i
|aijξ∗j (τ)| dτ

+ lim sup
t→∞

∫ t

T0

(t− τ)αi−1Eαi,αi(aii(t− τ)αi)

∑

1≤j≤d,j 6=i
|aijξ∗j (τ)| dτ.

Due to Lemma 2,

lim sup
t→∞

Eαi(aiit
α)|x0i | = 0

and

lim sup
t→∞

∫T0

0
(t− τ)αi−1Eαi,αi(aii(t− τ)αi)

∑

1≤j≤d,j 6=i
|aijξ∗j (τ)| dτ

≤ lim sup
t→∞

∫ t

t−T0

ταi−1Eαi,αi(aiiτ
αi) dτ

∑

1≤j≤d,j 6=i
|aij | max

t∈[0,T0]
‖ξ∗(t)‖

= 0.

Moreover, from Lemma 2(iii) and (6), we have

lim sup
t→∞

∫ t

T0

(t− τ)αi−1Eαi,αi(aii(t− τ)αi)
∑

1≤j≤d,j 6=i
|aijξ∗j (τ)| dτ

≤
∫∞

0
tαiEαi,αi(aiit

αi) dt
aM

p

∑

1≤j≤d,j 6=i
|aij |

≤ aM.

Hence,

0 < a = lim sup
t→∞

‖ξ∗(t)‖ ≤ aM < a,

a contradiction. This implies that

lim sup
t→∞

‖ξ∗(t)‖ = a = 0.

The proof is complete. �
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Fig. 1: Trajectories of the solution ϕ(·, x0) to the system (7).

Remark 1. Unlike the approach considered in [20, Theorem 1] and
[21, Theorem 4], our method does not use any characteristic poly-
nomial equation to analyze asymmetrical behavior of solutions. Our
result is independent of fractional orders of the system and depends
only on its matrix of coefficients A. It is clear that our condition is
very easy and computationally simple to check, as well as it can deal
with mix-order fractional systems of high dimensions and irrational
fractional derivatives.

Remark 2. Consider the system (4). For any non-singular matrix
T ∈ Rd×d, in general, we have CDα̂0+Tx(t) 6= TCDα̂0+x(t).
Hence, the matrix transformation technique (which is used in the
commensurate caseα1 = α2 = · · · = αd, see [9, Section 3.1]) does
not hold for mixed-order fractional systems (the non-commensurate
case). In our opinion, the qualitative theory of mixed-order frac-
tional systems is still in its infancy. In particular, the question about
the relationship between stability of systems and the spectrum of the
linearization of the “vector fields" is still open.

Example 1. Consider the following mixed-order fractional system
on the interval (0,∞)

{
CDα1

0+x1(t) = −2x1(t) + x2(t),
CDα2

0+x2(t) = −2x1(t)− 3x2(t),
(7)

where α1, α2 ∈ (0, 1] are rational number and α1 ≥ α2. For this

system, we can easily obtain matrix A, where A =

(
−2 1
−2 −3

)
. It

is easy to see that matrix A satisfies the conditions (C1) and (C2)
stated in Theorem 1, and hence we immediately conclude that the
system (7) is globally attractive. In Figure 1, we simulate the solution
ϕ(·, x0) of (7) with α1 = 0.75, α2 = 0.5, and the initial condition
x(0) = x0 = (1,−1)T .

In the following discussion, we compare our result to existing
ones in the literature. Suppose that α1 = p1

q1
and α2 = p2

q2
with

p1, p2, q1, q2 ∈ N and gcd(p1, q1) = gcd(p2, q2) = 1. According
to [20, Theorem 1], in order to test the global attractivity of (7),
we have to solve the following characteristic equation

sα1+α2 + 3sα1 + 2sα2 + 8 = 0 (8)

and check whether all the solutions s of (5) satisfy the condition

| arg (s)| > π

2
.

While, if we apply the condition presented in [21, Theorem 4], we
have to compute all the solutions to the equation

sm(α1+α2) + 3smα1 + 2smα2 + 8 = 0 (9)

and check the following condition for all the solutions s of (9)

| arg (s)| > π

2m

wherem = lcm(q1, q2). The above tasks are computationally inten-
sive especially for systems with high dimension, i.e. d is a large
number. Moreover, for the case where the fractional orders α1 and
α2 in the system (7) are irrational, the approaches presented in [20,
Theorem 1] and [21, Theorem 4] do not work. Also, we cannot apply
the condition presented in [23, Theorem 3.1] to check the global
attractivity of (7) because the matrix A is not in the triangle form.
On the other hand, due to the fact that matrix A is not Metzler, fol-
lowing [22, Theorem 1], this system is not positive. Thus we can not
use the criterion [22, Theorem 2] to investigate this example. More-
over, according to [24, Theorem 4], to prove the global attractivity
of solutions to (7), we have to compute explicitly the coefficients

S(λ, α1, α2) = sup
t≥0

∫ t

0
(t− s)α1−1Eα1,α1(−λ(t− s)α1)

(s+ 1)−α2(t+ 1)α2 ds

with λ = 2 and λ = 3 and show that

max{S(2, α1, α2), S(3, α1, α2)} < 1,

which is not an easy task to do.
The above discussion clearly shows the advantages of our result

over existing ones in the literature. Our result as stated in Theorem
1 is very easy to apply as we can immediately establish the system
(7) is globally attractive.

Finally, we consider the nonlinear mixed-order fractional system
(2). This system can be rewritten as

CDα̂0+x(t) = Ax(t) + f(x(t)). (10)

Suppose that f = (f1, . . . , fd)) is continuous on Rd and Lipschitz
continuous in a neighborhood of the origin and

f(0) = 0 and lim
r→0

`f (r) = 0, (11)

where `f (r) is the Lipschitz coefficient defined in (3). We recall the
notions of stability of the trivial solution to (10).

Definition 1. (i) The trivial solution to (10) is called stable if for
any ε > 0 there exists δ = δ(ε) > 0 such that for every ‖x0‖ < δ
the solution ϕ(t, x0) exists on [0,∞) and satisfies

‖ϕ(t, x0)‖ < ε, ∀t ≥ 0.

(ii) The trivial solution is called asymptotically stable if it is sta-
ble and there exists δ̂ > 0 such that limt→∞ ϕ(t, x0) = 0 whenever
‖x0‖ < δ̂.

Using the approach as in Theorem 1 and arguments as in the proof
of [9, Theorem 3.1], we can obtain the following result.

Theorem 2 (Linearized stability of nonlinear mixed-order fractional
systems). Consider the system (10). Assume that the matrix A sat-
isfies the conditions (C1) and (C2), and the function f is Lipschitz
continuous in a neighborhood of the origin such that the condition
(11) holds. Then the trivial solution of this system is asymptotically
stable.

Remark 3. Because every norm in Rd is equivalent, the global
attractivity of (4) and the asymptotic stability of the trivial solution
to (10) do not depend on the norm endowed in this space.
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Fig. 2: Trajectories of the solution ϕ(·, x0) to the system (12).

Example 2. Consider the following mixed-order nonlinear frac-
tional system

CDα̂0+x(t) = Ax(t) + f(x(t)), t ≥ 0, (12)

where α̂ = (0.8, 0.6, 0.5),

A =



−3 1 1
0 −2 1
1 1 −5




and

f(x) =




3x22
x32 + x43
2x21 + x23




for all x = (x1, x2, x3)T ∈ R3. In this case, it is clear that A sat-
isfies conditions (C1) and (C2). On the other hand, it is clear that
f(0) = 0 and for all x, y ∈ R3,

‖f(x)− f(y)‖ ≤ max
{

3(|x2|+ |y2|)|x2 − y2|,

2(x22 + y22)|x2 − y2|+ (x23 + y23)(|x3|+ |y3|)|x3 − y3|,

2(|x1|+ |y1|)|x1 − y1|+ (|x3|+ |y3|)|x3 − y3|
}
.

This shows that f is Lipschitz continuous in a neighborhood of 0 and

lim
x→0

‖f(x)‖
‖x‖ = 0.

Thus, f(x) satisfies (11). By Theorem 2, the trivial solution of (12) is
asymptotically stable. Let ϕ(·, x0), x0 = (0.5,−1, 1)T , is the solu-
tion to (12) which starts from x0 at t = 0. The trajectories of this
solution are shown in Figure 2.

3 Conclusion

In this study, we have studied the asymptotic properties of mixed-
order fractional systems. We have derived a condition for global
attractivity of mixed-order linear fractional systems. The condition
is very easy to check, requiring the system’s matrix to be strictly
diagonally dominant and its diagonal elements to be negative. The
proposed condition offers some advantages over existing results as
it can deal with mixed-order fractional systems of high dimension
and irrational fractional orders. We also have presented a linearized

stability theorem which ensures asymptotic stability of the triv-
ial solution to a nonlinear mixed-order fractional system linearized
along its equilibrium point. In the future, we will seek to weaken the
conditions (C1) and (C2) on the coefficient matrix to obtain general
results characterizing stability of mixed-order fractional systems.
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