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Abstract Recent advances have demonstrated substantial benefits from learning with both
generative and discriminative parameters. On the one hand, generative approaches address
the estimation of the parameters of the joint distribution—P(y, x), which for most network
types is very computationally efficient (a notable exception to this are Markov networks) and
on the other hand, discriminative approaches address the estimation of the parameters of the
posterior distribution—and, aremore effective for classification, since they fit P(y|x) directly.
However, discriminative approaches are less computationally efficient as the normalization
factor in the conditional log-likelihood precludes the derivation of closed-form estimation
of parameters. This paper introduces a new discriminative parameter learning method for
Bayesian network classifiers that combines in an elegant fashion parameters learned using
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both generative and discriminativemethods. The proposedmethod is discriminative in nature,
but uses estimates of generative probabilities to speed-up the optimization process. A second
contribution is to propose a simple framework to characterize the parameter learning task
for Bayesian network classifiers. We conduct an extensive set of experiments on 72 stan-
dard datasets and demonstrate that our proposed discriminative parameterization provides an
efficient alternative to other state-of-the-art parameterizations.

1 Introduction

Efficient training of Bayesian Network Classifiers has been the topic of much recent research
(Buntine 1994; Carvalho et al. 2011; Friedman et al. 1997; Heckerman and Meek 1997;
Martinez et al. 2016; Pernkopf and Bilms 2010; Webb et al. 2012; Zaidi et al. 2013). Two
paradigms predominate (Jebara 2003). One can optimize the log-likelihood (LL). This is tra-
ditionally called generative learning. The goal is to obtain parameters characterizing the joint
distribution in the form of local conditional distributions and then estimate class-conditional
probabilities using Bayes rule. Alternatively, one can optimize the conditional-log-likelihood
(CLL)—known as discriminative learning. The goal is to directly estimate the parameters
associated with the class-conditional distribution—P(y|x).

Naive Bayes (NB) is a Bayesian network BN that specifies independence between
attributes given the class. Recent work has shown that placing a per-attribute-value-per-class-
value weight on probabilities in NB (and learning these weights by optimizing the CLL) leads
to an alternative parameterization of vanilla Logistic Regression (LR) (Zaidi et al. 2014). The
introduction of these weights (and optimizing them by maximizing CLL) also makes it pos-
sible to relax NB’s conditional independence assumption and thus to create a classifier with
lower bias (Ng and Jordan 2002; Zaidi et al. 2014). The classifier is low-biased, as weights
can remedy inaccuracies introduced by invalid attribute-independence assumptions.

In this paper, we generalize this idea to the general class of BN classifiers. Like NB,
any given BN structure encodes assumptions about conditional independencies between the
attributes and will result in error if they do not hold in the data. Optimizing the log-likelihood
in this case will result in suboptimal performance for classification (Friedman et al. 1997;
Grossman and Domingos 2004; Su et al. 2008) and one should either optimize directly the
CLL by learning the parameters of the class-conditional distribution or by placing weights
on the probabilities and learn these weights by optimizing the CLL.

The main contributions of this paper are:

1. We develop a new discriminative parameter learning method for Bayesian network clas-
sifiers by combining fast generative parameter (and structure) learning with subsequent
fast discriminative parameter estimation (using parameter estimates from the former
to precondition search for the parameters of the latter). To achieve this, discriminative
parameters are restated as weights rectifying deviations of the discriminative model from
the generative one (in terms of the violation of independence between factors present in
the generative model).

2. A second contribution of this work is the development of a simple framework to charac-
terize the parameter learning task for Bayesian network classifiers. Building on previous
work by Friedman et al. (1997), Greiner et al. (2005), Pernkopf and Wohlmayr (2009),
Roos et al. (2005) and Zaidi et al. (2013), this framework allows us to lay out the different
techniques in a systematic manner; highlighting similarities, distinctions and equiva-
lences.
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Our proposed parameterization is based on a two-step learning process:

1. Generative step: We maximize the LL to obtain parameters for all local conditional
distributions in the BN.

2. Discriminative step: We associate a weight with each parameter learned in the generative
step and re-parameterize the class-conditional distribution in terms of these weights (and
of the fixed generative parameters). We can then discriminatively learn these weights by
optimizing the CLL.

In this paper, we show that:

– The proposed formalization of the parameter learning task for BN is actually a re-
parameterization of the one step (discriminative) learning problem (this will become
clear when we introduce the proposed framework) but with faster convergence of the
discriminative optimization procedure. In the experimental section, we complement our
theoretical framework with an empirical analysis over 72 domains; the results demon-
strate the superiority of our approach. In Sect. 5.5, we will discuss our proposed approach
from the perspective of pre-conditioning in unconstrained optimization problems.

– The proposed approach results in a three-level hierarchy of nested parameterizations,
where each additional level introduces (or “unties”) exponentially more parameters in
order to fit ever smaller violations of independence.

– Regularization of the discriminative parameters in the proposed discriminative learning
approach allows to limit the amount of allowable violation of independence and effec-
tively interpolate between discriminative and generative parameter estimation.

The rest of this paper is organized as follows. In Sect. 2, we present our proposed frame-
work for parameter learning of Bayesian network classifiers.We also give the formulation for
class-conditional Bayesian Network models (CCBN) in this section. Two established param-
eterizations of class-conditional Bayesian networks are given in Sects. 3 and 4, respectively.
In Sect. 5, we present our proposed parameterization of CCBN. In Sect. 6, we discuss some
related work to this research. Experimental analysis is conducted in Sect. 7. We conclude in
Sect. 8 with some pointers to future work.

All the symbols used in this work are listed in Table 1.

2 A simple framework for parameter learning of BN classifiers

We start by discussing Bayesian network classifiers in the following section.

2.1 Bayesian network classifiers

A BN B = 〈G,Θ〉, is characterized by the structure G (a directed acyclic graph, where each
vertex is a variable, Zi ), and a set of parameters Θ , that quantifies the dependencies within
the structure. The variables are partitioned into a single target, the class variable Y=Z0 and
n covariates X1=Z1, X2=Z2, . . . Xn=Zn , called the attributes. The parameter Θ , contains
a set of parameters for each vertex in G: θz0|Π0(x) and for 1 ≤ i ≤ n, θzi |y,Πi (x), where Πi (.)

is a function which given the datum x = 〈x1, x1, . . . , xn〉 as its input, returns the values of
the attributes that are the parents of node i in structure G. For notational simplicity, instead of
writing θZ0=z0|Π0(x) and θZi=zi |y,Πi (x), we write θz0|Π0(x) and θzi |y,Πi (x). A BN B computes
the joint probability distribution as: PB(y, x) = θz0|Π0(x) · ∏n

i=1 θzi |y,Πi (x).
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Table 1 List of symbols used

Notation Description

n Number of attributes

N Number of data points in D
P(e) Probability of event e

P(e|g) Conditional probability of event e given g

P̂(.) An estimate of P(.)

D = {x(0), . . . , x(N )} Data consisting of N objects

L = {y(1), . . . , y(N )} Labels of data points in D
x = 〈x1, x2, . . . , xn〉 An object (n-dimensional vector of attribute values)

z = 〈z0, z1, . . . zn〉 A labeled object, where
z0 = y(i), z1 = x1, . . . , zn = xn and x(i) ∈ D

Y Random variable associated with class label

y y ∈ Y . Class label for object. Same as z0
|Y | Number of classes

Xi Random variable associated with attribute i

xi xi ∈ Xi . i-th attribute value

|Xi | Number of values of attribute Xi

Zi Random variable associated with attribute i , or in the
case of Z0, the class

.

zi zi ∈ Zi . i-th attribute value, or for z0, the class

|Zi | Number of values of variable Zi
B Bayesian network (directed acyclic graph),

parameterized by Θ

B∗ Class-conditional BN based on B, parameterized by θ

G Structure of BN B
Θ Set of parameters associated with B
PB(.) Probability is based on BN B
Πi (.) Function taking z as an input, returns the values of the

attributes which are the parents of i

Π0(.) Parents of class

θZi=zi |Πi (z) Probability of Zi = zi given its parents

θzi |Πi (z) Short form of θZi=zi |Πi (x)

θzi : j |y:k,Πi :l Probability of variable i taking value j , class (y) taking
value k and its parents (Πi ) taking value l

βy,xi ,Πi (x) Parameter associated with class y, attribute i taking
value xi and i’s parent’s-values Πi

βy,xi ,Πi Same as βy,xi ,Πi (x)

βxi : j,y:k,Πi :l Parameter associated with attribute i taking value j ,
class (y) taking value k and its parents (Πi ) taking
value l

θ ,w, β Vector of θ , w and β parameters respectively

Nxi ,y,Πi (x) Empirical count of data with attribute i taking value xi ,
class taking value y and parents taking value Πi (x)
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For a BN B, we can write:

PB(y, x) = θy|Π0(x)

n∏

i=1

θxi |y,Πi (x). (1)

Now, the corresponding conditional distribution PB(y|x) can be computed with the Bayes
rule as:

PB(y|x) = PB(y, x)
PB(x)

,

= θy|Π0(x)
∏n

i=1 θxi |y,Πi (x)∑
y′∈Y θy′|Π0(x)

∏n
i=1 θxi |y′,Πi (x)

. (2)

If the class attribute does not have any parents, we write: θy|Π0(x) = θy .
Given a set of data points D = {x(1), . . . , x(N )}, the Log-Likelihood (LL) of B is:

LL(B) =
N∑

j=1

log PB(y( j), x( j)),

=
N∑

j=1

(

log θy( j)|Π0(x( j)) +
n∑

i=1

log θ
x ( j)
i |Πi (x( j))

)

, (3)

with
∑

y∈Y
θy|Π0(x) = 1, and

∑

xi∈Xi

θxi |Πi (x) = 1. (4)

Maximizing Eq. 3 to optimize the parameters (θ ) is the maximum-likelihood estimation of
the parameters.

Theorem 1 Within the constraints in Eq. 4, Eq. 3 is maximized when θxi |Πi (x) corresponds
to empirical estimates of probabilities from the data, that is, θy|Π0(x) = PD(y|Π0(x)) and
θxi |Πi (x) = PD(xi |Πi (x)).

Proof See “Appendix 1”. �	

The parameters obtained by maximizing Eq. 3 (and fulfilling the constraints in Eq. 4) are
typically known as ‘Generative’ estimates of the probabilities.

2.2 Class-conditional BN (CCBN) models

Instead of following a two-step process for classification with BN, where step 1 involves
maximizing P(y, x) and the second step is application of Bayes rule to obtain P(y|x), one
can directly optimize for P(y|x) bymaximizing theConditional Log-Likelihood (CLL). Opti-
mizing CLL is generally considered a more effective objective function (for classification)
since it directly optimizes the mapping from features to class labels. The CLL can be defined
as:

CLL(B) =
N∑

j=1

log PB(y( j)|x( j)),
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which is equal to:

=
N∑

j=1

⎛

⎝log PB(y( j), x( j)) − log
|Y|∑

y′
PB(y′, x( j))

⎞

⎠

=
N∑

j=1

(

log θy( j)|Π0(x( j)) +
n∑

i=1

log θ
x ( j)
i |Πi (x( j))

)

− log

⎛

⎝
|Y|∑

y′
θy′|Π0(x( j))

n∏

i=1

θxi |y′,Πi (x( j))

⎞

⎠ . (5)

The only difference between Eqs. 3 and 5 is the presence of the normalization factor in the
latter, that is: log

∑|Y|
y′ PB(y′, x( j)). Due to this normalization, the values of θ maximizing

Eq. 5 are not the same as those that maximize Eq. 3. We provide two intuitions as to why
maximizing the CLL should provide a better model of the conditional distribution:

1. It allows the parameters to be set in such a way as to reduce the effect of the conditional
attribute independence assumption that is present in the BN structure and that might be
violated in data.

2. We have LL(B) = CLL(B) + LL(B\y). If optimizing LL(B), most of the attention will
be given to LL(B\y)—because CLL(B) 
 LL(B\y)—which will often lead to poor
estimates for classification.

Note, that if the structure is correct, maximizing both LL and CLL should lead to the same
results (Rubinstein and Hastie 1997). There is unfortunately no closed-form solution for θ

such that the CLL would be maximized; we thus have to resort to numerical optimization
methods over the space of parameters.

Like any Bayesian network model, a class-conditional BNmodel is composed of a graph-
ical structure and of parameters (θ ) quantifying the dependencies in the structure. For any
BN B, the corresponding CCBN will be based on graph B∗ (where B∗ is a sub-graph of
B) whose parameters are optimized by maximizing the CLL. We present below a slightly
rephrased definition from Roos et al. (2005):

Definition 1 A class-conditional Bayesian network model MB∗
is the set of conditional

distributions based on the network B∗ equipped with any strictly positive parameter set θB
∗
;

that is the set of all functions from (X1, X2, . . . , Xn) to a distribution on Y takes the form of
Eq. 2.

This means that the nodes in B∗ are nodes comprising only the Markov blanket of the class
y. However, for most BN classifiers the class has no parents and is made a parent of all
attributes. This has the effect that every attribute is in the Markov blanket of the class.

Wewill assume that the parents of the class attribute constitute an empty set and, therefore,
replace parameters characterizing the class attribute from θy( j)|Π0(x( j)) with θy( j) . Wewill also
drop the superscript j in equations for clarity.

2.3 A simple framework

It is no exaggeration to say that Eq. 1 has a pivotal role in BN classification. Let us modify
Eq. 1 by introducing an extra set of parameter, say w for every parameter θ . Let θ and w,
represent the vectors of all θ andw parameters. In the following, let us alsomake a distinction
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between ‘Fixed’ and ‘Optimized’ parameters—during the optimization process. Parameters
that are optimized are referred to asOptimized parameters and parameters that do not change
their value during the optimization process are referred to as Fixed. Now, we can write:

PB(y, x) = θ
wy
y

n∏

i=1

θ
wxi ,y,Πi (x)

xi |y,Πi (x)
. (6)

Optimizing to compute class-probabilities usingEq. 6, there are several possibilities, ofwhich
we will discuss only four in the following:

1. Generative: Initialize w with 1 and treat it as fixed parameter. Treat, θ as optimized
parameter and optimize it with the generative objective function as given in Eq. 3.

2. Discriminative: Initializewwith 1 and treat it as fixed parameter. Treat, θ as an optimized
parameter and optimize it with the discriminative objective function as given in Eq. 5.
As discussed, this results in adding a normalization term to convert P(y, x) in Eq. 6 to
P(y|x). We denote this ‘discriminative CCBN’ and describe it in detail in Sect. 3.

3. Discriminative: Initialize w with 1 and treat it as a fixed parameter. Treat, θ as an
optimized parameter and optimize it with the discriminative objective function as given
in Eq. 5, but constrain parameter θ to be actual probabilities. We denote this ‘extended
CCBN’ and provide a detailed description in Sect. 4.

4. Discriminative: Two step learning. In the first step, initialize w with 1 and treat it as a
fixed parameter. Treat, θ as an optimized parameter and optimize it with the generative
objective function as given in Eq. 3. In the second step, treat θ as a fixed parameter and
optimize for w using a discriminative objective function. This approach is inspired from
the fact that weightsw in Eq. 6 are set through generative learning, unlike discriminative
and extendedCCBN,where it is set to one.We denote this ‘weightedCCBN’ and describe
it in detail in Sect. 5.

A brief summary of these parameterizations is also given in Table 2.

3 Parameterization 1: Discriminative CCBN model

Logistic regression (LR) is the CCBN model associated to the NB structure optimizing
Eq. 2. Typically, LR learns a weight for each attribute-value (per-class). However, one can
extend LR by considering all or some subset of possible quadratic, cubic, or higher-order
features (Langford et al. 2007; Zaidi et al. 2015). Inspired from Roos et al. (2005), we define
discriminative CCBN as:

Definition 2 A discriminative class-conditional Bayesian network model MB∗
d is a CCBN

such that Eq. 2 is re-parameterized in form of parameter β such that β = log θ and parameter
β is obtained by maximizing the CLL.

Let us re-define PB(y|x) in Eq. 5 and write it on a per datum basis as:

PB(y|x) = exp(log θy + ∑n
i=1 log θxi |y,Πi (x))

∑|Y|
y′ exp(log θy′ + ∑n

i=1 log θxi |y′,Πi (x))
. (7)

In light of Definition 2, let us define a parameter β• that is associated with each parameter
θ• in Eq. 7, such that:

log θy = βy, and log θxi |y,Πi (x) = βy,xi ,Πi .
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Now Eq. 7 can be written as:

PB(y|x) = exp(βy + ∑n
i=1 βy,xi ,Πi )

∑|Y|
y′=1 exp(

∑
y′ βy′ + ∑n

i=1 βy′,xi ,Πi )
. (8)

One can see that this has led to the logistic function of the form 1
1+exp(−βT x)

for binary

classification and softmax exp(−βy
T x)

∑′
y(exp(−βy′ T x))

for multi-class classification. Such a formulation

is a Logistic Regression classifier. Therefore, we can state that a discriminative CCBNmodel
with naive Bayes structure is a (vanilla) logistic regression classifier.

In light of Definition 2, CLL optimized by MB∗
d , on a per-datum-basis, can be specified

as:

log PB(y|x) =
(

βy +
n∑

i=1

βy,xi ,Πi

)

− log

⎛

⎝
|Y|∑

y′=1

exp

(

βy′ +
n∑

i=1

βy′,xi ,Πi

)⎞

⎠ . (9)

Now, we will have to rely on an iterative optimization procedure based on gradient-descent.
Therefore, let us first calculate the gradient of parameters in the model. The gradient of the
parameters in Eq. 9 can be computed as:

∂ log PB(y|x)
∂βy:k

= (
1y=k − P(k|x)) , (10)

for the class parameters. For the other parameters, we can compute the gradient as:

∂ log PB(y|x)
∂βy:k,xi : j,Πi :l

= (
1y=k − P(k|x)) 1xi= j1Πi=l , (11)

where 1 is the indicator function. Note, that we have used the notation βy:k,xi : j,Πi :l to denote
that class y has the value k, attribute xi has the value j and its parents (Πi ) have the value l. If
the attribute has multiple parent attributes, then l represents a combination of parent attribute
values.

4 Parameterization 2: Extended CCBN model

The name Extended CCBN Model is inspired from Greiner et al. (2005), where the method
named Extended Logistic Regression (ELR) is proposed. ELR is aimed at extending LR and
leads to discriminative training of BN parameters. We define:

Definition 3 (Greiner et al. 2005) An extended class-conditional Bayesian network model
MB∗

e is a CCBN such that the parameters (θ ) satisfy the constraints in Eq. 4 and is obtained
by maximizing the CLL in Eq. 5.
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Let us re-define PB(y|x) in Eq. 5 on a per-datum-basis as:

log PB(y|x) =
(

log θy +
n∑

i=1

log θxi |y,Πi (x)

)

− log
|Y|∑

y′

(

θy′
n∏

i=1

θxi |y′,Πi (x)

)

. (12)

Let us consider the case of optimizing parameters associated with the attributes θxi |y,Πi (x).
Parameters associated with the class can be obtained similarly. We will re-write θxi |y,Πi (x) as
θxi : j |y:k,Πi :l which represents attribute i (xi ) taking value j , class (y) taking value k and its
parents (Πi ) takes value l. Now we can write the gradient as:

∂ log PB(y|x)
∂θxi : j ′|y:k,Πi :l

=
(
1y=k1xi= j ′1Πi=l

θxi : j ′|y:k,Πi :l
− P̂(k|x)1xi= j ′1Πi=l

θxi : j ′|y:k,Πi :l

)

,

= 1xi= j ′1Πi=l

θxi : j ′|y:k,Πi :l

(
1y=k − P̂(k|x)

)
.

Enforcing constraints that
∑

j ′ θxi : j ′|y:k,Πi :l = 1, we introduce a new parameters β and
re-parameterize as:

θxi : j ′|y:k,Πi :l = exp(βxi : j ′|y:k,Πi :l)∑
j ′′ exp(βxi : j ′′|y:k,Πi :l)

. (13)

It will be helpful if we differentiate θxi : j ′|y:k,Πi :l with respect to βxi : j |y:k,Πi :l (the use of
notation j and j ′ will become obvious when we apply the chain rule afterwards), we get:

∂θxi : j ′|y:k,Πi :l
∂βxi : j |y:k,Πi :l

= exp(βxi : j ′|y:k,Πi :l)1y=k1xi= j ′= j1Πi=l
∑

j ′′ exp(βxi : j ′′|y:k,Πi :l)

−exp(βxi : j ′|y:k,Πi :l) exp(βxi : j ′′|y:k,Πi :l)1xi= j ′′= j1Πi=l
(∑

j ′′ exp(βxi : j ′′|y:k,Πi :l)
)2 ,

= 1y=k1xi= j ′= j1Πi=lθxi : j |y:k,Πi :l
−1xi= j ′′= j1Πi=lθxi : j ′|y:k,Πi :lθxi : j |y:k,Πi :l ,

= (1y=k − θxi : j |y:k,Πi :l)1xi= j1Πi=lθxi : j ′|y:k,Πi :l .

Applying the chain rule:

∂ log PB(y|x)
∂βxi : j |y:k,Πi :l

=
∑

j ′

∂ log P(y|x)
∂θxi : j ′|y:k,Πi :l

∂θxi : j ′|y:k,Πi :l
∂βxi : j |y:k,Πi :l

,

= (
1y=k1xi= j1Πi=l − 1xi= j1Πi=lP(k|x))

−θxi : j |y:k,Πi :l
∑

j ′

(
1y=k1xi= j ′1Πi=l − 1xi= j ′1Πi=lP(k|x)) , (14)

we get the gradient of log PB(y|x) with respect to parameter βxi : j |y:k,Πi :l . Now one can use
the transformation of Eq. 13 to obtain the desired parameters of extended CCBN. Note that
Eq. 14 corresponds to Eq. 11. The only difference is the presence of the normalization term
that is subtracted from the gradient in Eq. 14.
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5 Parameterization 3: Combined generative/discriminative
parameterization: weighted CCBN model

Inspired from Zaidi et al. (2014), we define a weighted CCBN model as follows:

Definition 4 A weighted conditional Bayesian network model MB∗
w is a CCBN such that

Eq. 2 has an extra weight parameter associated with every θ such that it is re-parameterized
as: θw, where parameter θ is learned by optimizing the LL and parameter w is obtained by
maximizing the CLL.

In light of Definition 4, let us re-define Eq. 2 to incorporate weights as:

PB(y|x) = θ
wy
y

∏n
i=1 θ

wy,xi ,Πi
xi |y,Πi (x)

∑|Y|
y′ θ

wy′
y′

∏n
i=1 θ

wy′,xi ,Πi
xi |y′,Πi (x)

. (15)

The corresponding weighted CLL can be written as:

log PB(y|x) = (wy log θy +
n∑

i=1

wy,xi ,Πi log θxi |y,Πi (x))

− log
|Y|∑

y′
(θ

wy

y′

n∏

i=1

θ
wy,xi ,Πi
xi |y′,Πi (x)

). (16)

Note, that Eq. 16 is similar to Eq. 12 except for the introduction of weight parameters.
The flexibility to learn parameter θ in a prior generative process of learning greatly simplifies
subsequent calculations ofw in a discriminative search. Sincew is a free-parameter and there
is no sum-to-one constraint, its optimization is simpler than for MB∗

e . The gradient of the
parameters in Eq. 16 can be computed as:

∂ log PB(y|x)
∂wy:k

= (
1y=k − P(k|x)) log θy|Π0(x), (17)

for the class y, while for the other parameters:

∂ log PB(y|x)
∂wy:k,xi : j,Πi :l

= (
1y=k − P(k|x)) 1xi= j1Πi=l log θxi |y,Πi (x). (18)

One can see that Eqs. 17 and 18 correspond to Eqs. 10 and 11. The only difference between
them is the presence of the log θ• factor in the MB∗

w case.

5.1 On initialization of parameters

Initialization of the parameters, which sets the starting point for the optimization, is critical
to the speed of convergence and will be addressed in this section. Obviously, a better starting
point (in terms of CLL), will make the optimization easier and conversely, a worse starting
point will make optimization harder. In this paper, we will study two different starting points
for the parameters:

Initialization with Zeros This is the standard initialization where all the optimized
parameters are initialized with 0 (Ripley 1996).
Initialization with Generative estimates Given that our approach utilizes generative
estimates, a fair comparison with other approaches should study starting from the gener-
ative estimates for all approaches. Thiswill correspond to initializing the θ parameterwith
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the generative estimates for Parameterizations 1 and 2 (MB∗
d andMB∗

e ), and initializing
the w parameter to 1 for Parameterization 3 (MB∗

w ).

Note that in the initialization with “Zeros” case, only our proposed Weighted CCBN param-
eterization requires a first (extra) pass over the dataset to compute the generative estimates,
while for the initialization with “Generative estimates” case all methods require this pass
(when we report training time, we always report the full training time).

5.2 Comment on regularization

MB∗
w parameterization offers an elegant framework for blending discriminatively and gener-

atively learned parameters.With regularization, one can indeed ‘interpolate’ between the two
sets of parameters. Traditionally, one regularizes parameters towards 0 to prevent over-fitting.
For example, let us modify Eq. 15 to integrate an L2-regularization:

PB(y|x) = 1

Z exp

(

wy log θy +
n∑

i=1

wy,xi ,Πi log θxi |y,Πi (x)

)

+ λ

2
‖w‖2,

where Z is the normalization constant and λ is the parameter controlling regularization. The
new term will penalize large (and heterogeneous) parameter values. Larger λ values will
cause the classifier to progressively ignore the data and assign more uniform class proba-
bilities. Alternatively one could penalize deviations from the BN conditional independence
assumption by centering the regularization term at 1 rather than zero. In this case, we can
write:

PB(y|x) = 1

Z exp

(

wy log θy +
n∑

i=1

wy,xi ,Πi log θxi |y,Πi (x)

)

+ λ

2
‖w − 1‖2.

Doing so allows the regularization parameter λ to be used to ‘pull’ the dicriminative esti-
mates toward the generative ones. A very small value of λ results in optimized parameter w
dominating the determination of P(y|x), whereas, a very large value of λ pulls w towards 1
and, therefore, the fixed parameters will dominate the class-conditional probabilities. Regu-
larization for MB∗

w remains an area for future research, but we conjecture that one can tune
a value of λ (for example through cross-validation) to attain better performance than can be
achieved by either generative or discriminative parameters alone. Once could also interpret
the regularization parameter as controlling the amount of independence violation between
the discriminative and generative models.

5.3 Optimizing discriminative/generative parameterization

There are great advantages in optimizing an objective function that is convex. The convexity of
the three discriminative parameterizations that we have discussed depends on the underlying
structure of the CCBN (MB∗

). From Roos et al. (2005), it follows that optimizing a CCBN
parameterized by either MB∗

d , MB∗
e or MB∗

w leads to a convex optimization problem if and
only if the structure has no immoral nodes. In otherwords, the optimization problem is convex
if and only if parents of all the nodes are are connected with each other. This constraint is
true for a number of popular BN classifiers including NB, TAN and KDB (K = 1), but not
true for general BN or for KDB structures with K > 1. Therefore, in this work, we have
used only limited BN structures such as NB, TAN and KDB (K = 1). Investigation of the
application of our approach to more complex moral structures is a promising topic for future
work. We note in passing, that a similar two step discriminative parameterization has also
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Fig. 1 Depiction of various levels in parameter nesting, along with number of parameters (m) to be optimized
at each level. Note that only one node per level is expanded, for illustration. Attribute X1 takes values {a, b, c}
and takes class Y = {0, 1} and attribute X2 = {d, e, f } as parents

been shown to be effective for the non-convex objective function mean-square-error (Zaidi
et al. 2016).

5.4 Nested parameterizations

One can see that learning MB∗
d , MB∗

e and MB∗
w models can lead to a large number of

parameters that needs to be optimized discriminatively, even on moderate size datasets. One
can, however, nest these parameters. The idea is to exploit relationships between parameters
so that the number of parameters that need to be optimized are reduced significantly. Figure 1
depicts four levels of parameter nesting. The first level entails learning a parameter for each
attribute. The second level entails learning a parameter for every attribute-value. The next
level learns a parameter for every attribute-value-per-class-value. The final level (Level 4) is
the most comprehensive case. It entails learning a parameter for every attribute-value-per-
class-per-parent-value.

Nesting as shown in Fig. 1, though effective, is not very intuitive for MB∗
e and MB∗

d .
For example, doing a logistic regression by learning a parameter associated only with the
attributes will result in optimizing fewer parameters but might not be effective in terms of
classification accuracy. However, the hierarchy of models applies naturally to MB∗

w . MB∗
w

incorporates learning initial parameters by optimizing the LL objective function. Therefore,
the searched parameters optimized in the second step can be nested effectively. For example,
Level 1 weighting in Fig. 1 can be seen as alleviating the conditional attribute independence
assumption (CAIA) between attributes. Similarly, Level 2 will have the effect of binarizing
each attribute, and alleviating CAIA between new attributes. In the following we will derive
the respective gradients for each level from the most comprehensive case of Level 4.
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Gradients for Level 4 are given in Eqs. 17 and 18. Level 3 corresponds to learning a
weight-per-attribute-value-per-class. The weight vector in this case will be of the size m =∑

i (|Y | × |Xi |). The gradients with respect to new weight vectors can be obtained in the
following way:

∂ log PB(y|x)
∂wxi : j |y:k

= (1y=k − P(k|x))1xi= j log θxi |y,Πi (x). (19)

Level 2 weighting corresponds to learning a weight-per-attribute-value. We can compute the
gradient with respect to the weight vector of size m = ∑

i |Xi |, as:

∂ log PB(y|x)
∂wxi : j

=
⎛

⎝log θxi |y,Πi (x) −
∑

y′
P(y′|x) log θxi |y′,Πi (x)

⎞

⎠ 1xi= j . (20)

Similarly, learning a weight-per-attribute leads to a weight vector of size m and can its
gradients can be obtained as:

∂ log PB(y|x)
∂wi

= log θxi |y,Πi (x) −
∑

y′
P(y′|x) log θxi |y′,Πi (x). (21)

Now, one can control the bias and variance of the classifier by selecting between three different
levels of parameterization with ever greater model complexity.

5.5 Discussion

5.5.1 Pre-conditioning: why is our technique helpful?

It can be seen that MB∗
w results in re-scaling of MB∗

d parameterization. What is the effect
of this re-scaling on the model? Since there is no closed-form solution, we optimize the
CLL with first-order gradient-descent methods, such as gradient descent, conjugate gradient,
quasi-Newton (L-BGFS) or Stochastic Gradient Descent. These are all affected by scaling.1

We use the generative estimates as an effective pre-conditioning method.
A pre-conditioner converts an ill-conditioned problem into a better conditioned one, such

that the gradient of the objective function is uniform across all dimensions. A better con-
ditioned optimization problem has a better convergence profile. This is because if different
parameters have significantly different “influence” on the objective function, then the gra-
dient does not point directly towards the minimum that is the objective of the optimization
process. We illustrate this in Fig. 2 where we show the contour plot of the CLL for different
β. We can see that when the CLL has an ‘elliptical’ shape with respect to the parameters, then
the gradient is not oriented directly towards the objective and each step makes only partial
progress in the true direction of the final objective. Our re-scaling improves the orientation
of the gradient speeding convergence.

Note that it is the relative scaling of the axes that affects the orientation of the gradient.
Isotropic scaling (that is, scaling all axes uniformly) has no effect on convergence.

To further demonstrate our point, we perform a simple experiment with synthetic data that
we generate so that the CLL is more or less “elliptical”. We use with three binary features
and two class values. We sample the covariates randomly and uniformly and use a simple

1 Note that second-order algorithms such as the Newton method are not affected by scaling, but they are often
computationally impractical because they require computation and inversion of the Hessian at each step.
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Fig. 2 On the importance of scaling for first-order gradient descent methods. Axes represent two possible β1
and β2. Left non-scaled space. Right re-scaled space
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100 101 102

No. of Iterations

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

α  = 0.5

β
wlogθ

(c) α = 0.5

100 101 102

No. of Iterations

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

α  = 0.75

β
wlogθ

(d) α = 0.75

100 101 102

No. of Iterations

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

α  = 0.9

β
wlogθ

(e) α = 0.9

100 101 102

No. of Iterations

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

N
e

g
a

ti
v

e
 L

o
g

-L
ik

e
li

h
o

o
d

α  = 1

β
wlogθ

(f) α = 1

Fig. 3 Comparison of rate of convergence on the three synthetic datasets by varying α. The X-axis is on log
scale. Parameters are initialized to zero

logistic regression model, which corresponds to our framework using Naive Bayes as the BN
structure. The class distribution is given by

P(y|x1, x2, x3) = 1

exp(−(10α · x1 + 1 · x2 + 10−α · x3)) .

By increasing the value of α, we increase the elongation of the CLL space. When α = 0, the
three features contribute uniformly to the class prediction and it is awell-conditionedproblem.
We can then expect pre-conditioning to have little to no influence on the convergence. As
α → 1, the problem becomes very ill-conditioned. On such problems, pre-conditioning will
have greatest effect.

We compare the convergence profile of vanilla LR (discriminative CCBN) and our pre-
conditioned weighted CCBNwith Naive Bayes structure (which is associated to a LRmodel)
by varying α from 0 to 1. For each dataset 10000 data points were generated. We report the
convergence results in Fig. 3. These confirm the explanation given above. The benefit of
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our technique progressively increases as the relative influence of the covariates on the class
increases. We will show in Sect. 7 that this is the case for the vast majority of real-world
datasets.

5.5.2 Is this an over-parametrised model?

It can be seen that theMB∗
w parameterization is based on Eq. 6—which is over-parameterized

in the sense that there are twice asmany parameters specifying the likelihood aswould strictly
be necessary. The question is: do we benefit from having both w and θ parameters? In this
section, we will discuss the implications of introducingw parameters to the following vanilla
(per-datum) likelihood (on which MB∗

d is based on):

PB(y, x) = θy

n∏

i=1

θxi |y,Πi (x), (22)

If one goal of weighted CCBN is to combine generative and discriminative learning by using
over-parameterized likelihood in Eq. 6, one could do the following two-step learning. In
step 1, one can learn the θ by optimizing a generative objective function, and in the second
step, optimize a discriminative objective function but initialize the θ parameters with the
parameters that were obtained in step 1. In fact, this should be a recommended procedure to
speed-up discriminative training (for discriminative CCBN and extendedCCBN) as it is often
effective in practice. However, one should notice that in this case, the discriminative learning
model does start from the estimates of parameters thatwere obtained fromgenerative learning,
but once an iterative step is taken for discriminative learning, the generative estimates are
lost, and have no further influence on the discriminative learning process.

6 Related work

There have been several comparative studies of discriminative and generative structure and
parameter learning of Bayesian networks (Greiner and Zhou 2002; Grossman and Domingos
2004; Pernkopf and Bilmes 2005). In all these works, generative parameter training is the
estimation of parameters based on empirical estimates whereas discriminative training of
parameters is actually the estimation of the parameters of CCBN models such as MB∗

e or
MB∗

d . The MB∗
e model was first proposed in Greiner and Zhou (2002). Our work differs

from these previous works as our goal is to highlight different parameterization of CCBN
models and investigate their inter-relationship. Particularly, we are interested in the learning
of parameters corresponding to a weighted CCBN model that leads to faster discriminative
learning.

An approach for discriminative learning of the parameters of BN based on discriminative
computation of pseudo-frequencies from the data is presented in Su et al. (2008). Discrim-
inative Frequency Estimates (DFE) are computed by injecting a discriminative element
to generative computation of the probabilities. During the pseudo-frequencies computa-
tion process, rather than using empirical frequencies, DFE estimates how well the current
classifier does on each data point and then updates the frequency tables only in propor-
tion to the classifier’s performance. For example, they propose a simple error measure, as:
L(x) = P(y|x) − P̂(y|x), where P(y|x) is the true probability of class y given the datum
x, and P̂(y|x) is the predicted probability. The counts are updated as: θ t+1

i jk = θ ti jk + L(x).
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Several iterations over the dataset are required. The algorithm is inspired from Perceptron
based training and is shown to be an effective discriminative parameter learning approach.

7 Empirical results

In this section, we compare and analyze the performance of our proposed algorithms and
related methods on 72 natural domains from the UCI repository of machine learning (Frank
and Asuncion 2010). The experiments are conducted on the datasets described in Table 3.

There are a total of 72 datasets, 41 datasets with less than 1000 instances, 21 datasets with
between 1000 and 10000 instances, and 11 datasets with more than 10000 instances. Each
algorithm is tested on each dataset using 5 rounds of 2-fold cross validation. 2-fold cross
validation is used in order to maximize the variation in the training data from trial to trial,
which is advantageous when estimating bias and variance. Note that the source code with
running instructions is provided as a supplementary material to this paper.

We compare fourmetrics: 0–1 Loss, RMSE, Bias andVariance. The reason for performing
bias/variance estimation is to investigate if optimizing a discriminative function leads to a
lower bias classifier or not. There are a number of different bias-variance decomposition
definitions. In this research, we use the bias and variance definitions of Kohavi and Wolpert
(1996) together with the repeated cross-validation bias-variance estimation method proposed
by Webb (2000). Kohavi and Wolpert (1996) define bias and variance as follows:

bias2 = 1

2

∑

y∈Y

(
P(y|x) − P̂(y|x)

)2
,

and

variance = 1

2

⎛

⎝1 −
∑

y∈Y
P̂(y|x)2

⎞

⎠ .

The reason for reporting 0–1Loss andRMSE is to investigate if the proposed parameterization
MB∗

w leads to a comparable performance to MB∗
d and MB∗

e parameterizations and also to
determine how much performance gain is achieved over generative learning. We will also
evaluate parameterizations in terms of training time (measured in seconds) and number of
iterations it takes each parameterization to converge.

We report Win–Draw–Loss (W–D–L) results when comparing the 0–1 Loss, RMSE, bias
and variance of twomodels. A two-tail binomial sign test is used to determine the significance
of the results. Results are considered significant if p ≤ 0.05. Significant results are shown
in bold font in the table.

We report results on two categories of datasets. The first category, labeled All, consists
of all datasets in Table 3. The second category, labeled Big, consists of datasets that have
more than 10000 instances. The reason for splitting datasets into two categories is to show
explicitly the effectiveness of our proposed optimization on bigger datasets2. It is only on big
datasets, that each iteration is expensive and, therefore, any technique that leads to faster and
better convergence is highly desirable. Note, that we do not expect the three discriminative
parameterizations MB∗

d , MB∗
e and MB∗

w to differ in their prediction accuracy. That is, we
should expect a similar spread of both 0–1 Loss and RMSE values. However, we should be
interested in each parameterization’s convergence profile and the training time.

2 By big, we mean datasets that have large number of instances, rather than large number of features
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Numeric attributes are discretized using the Minimum Description Length (MDL) dis-
cretization method (Fayyad and Irani 1992). A missing value is treated as a separate attribute
value and taken into account exactly like other values.

Optimization is done with L-BFGS (Byrd et al. 1995) using the original implementation
available at http://users.eecs.northwestern.edu/~nocedal/lbfgsb.html. Following standard
procedures (Zhu et al. 1997), the algorithm terminates when improvement in the objective
function, given by ( ft− ft+1)

max{| ft |,| ft+1|,1} , drops below 10−32, or the number of iterations exceeds

104.
We experiment with three Bayesian network structures that is: naive Bayes (NB), Tree-

Augmented naive Bayes (TAN) (Friedman et al. 1997) and k-Dependence Bayesian network
(KDB) with K = 1 (Sahami 1996). Naive Bayes, is a well-known classifier which is based
on the assumption that when conditioned on the class, attributes are independent. Tree-
Augmented Naive Bayes augments the NB structure by allowing each attribute to depend
on at most one non-class attribute. It relies on an extension of the Chow-Liu tree (Chow and
Liu 1968), that utilizes conditional mutual information (between pairs of attributes given the
class) to find a maximum spanning tree over the attributes in order to determine the parent
of each. Similarly, in KDB, each attribute takes k attributes plus the class as its parents. The
attributes are selected based on their mutual information with the class. Then, the parent of
an attribute i is chosen that maximizes the conditional mutual information of attribute i and
parent j given the class that is: argmax jCMI(Xi , X j |Y ).

We denote MB∗
w , MB∗

d and MB∗
e with naive Bayes structure as NBw, NBd and NBe

respectively. With TAN structure, MB∗
w , MB∗

d and MB∗
e are denoted as TANw, TANd and

TANe. With KDB (K = 1), MB∗
w , MB∗

d and MB∗
e are denoted as KDB-1w, KDB-1d and

KDB-1e.
As discussed in Sect. 5.1, we initialize the parameters to the log of the MAP estimates (or

parameters optimized by generative learning). The following naming convention is used in
the results:

– The ‘(I)’ in the label represents this initialization
– An absence of ‘(I)’ means the parameters are initialized to zero.

7.1 NB structure

Comparative scatter plots on all 72 datasets for 0–1 Loss, RMSE and training time values for
NBw, NBd and NBe are shown in Fig. 4. Training time plots are on the log scale. The plots
are shown separately for Big datasets. It can be seen that the three parameterizations have a
similar spread of 0–1 Loss and RMSE values, however, NBw is greatly advantaged in terms
of its training time. We will see in Sect. 7.4 that this computational advantage arises due to
the desirable convergence property of NBw. Given that NBw achieves equivalent accuracy
with much less computation indicates that it is a more effective parameterization than NBd

and NBe. Slight variation in the accuracy of three discriminative parameterizations (that is
0–1 Loss and RMSE performance) on All datasets is due to the numerical instability of the
solver use for optimization. The difference mainly arises on very small datasets. It can be
seen that on big datasets, the three parameterizations result in the same accuracy.

The geometric means of the 0–1 Loss and RMSE results are shown in Fig. 5. It can be
seen that the three discriminative parameterizations, especially on Big datasets, has much
better performance (both 0–1 Loss and RMSE) than the generative learning.

The training time comparison is given in Fig. 6a. Note that the training time is measured
in seconds and is plotted on the log scale. It can be seen that in terms of the training time,
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Fig. 4 Comparative scatter of results for NBw, NBd and NBe. NBw is on the X-axis whereas NBd (red-cross)
and NBe (green-triangle) are on the Y-axis. For any points above the diagonal line NBw wins
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the three discriminative parameterizations are many orders of magnitude slower than plain
naive Bayes. To show the comparison of the training time ofMB∗

d ,MB∗
e andMB∗

w only, we
normalize the results with respect to MB∗

w . Results are shown in Fig. 6b. It can be seen that
MB∗

d is almost twice as slow as compared to MB∗
w , whereas, MB∗

e is order of magnitude
slower that MB∗

w .

7.2 TAN structure

Figure 7 shows the comparative spread of 0–1 Loss, RMSE and training time in seconds of
TANw, TANd and TANe on All and Big datasets. A trend similar to that of NB can be seen.
With a similar spread of 0–1 Loss and RMSE among the three parameterizations, training
time is greatly improved for TANw when compared with TANd and TANe. Note, as pointed
out before, that minor variation in the performance of three discriminative parameterizations
is due to the numerical issues with-in the solver on some small datasets. On big datasets, one
can see a similar spread of 0–1 Loss and RMSE.

The geometric means of the 0–1 Loss and RMSE results are shown in Fig. 8. It can be
seen that TANd, TANe and TANw, on average results in much better accuracy than generative
model (TAN).

A comparison of the training time is shown in Fig. 9a. It can be seen that, like NB, training
time of the discriminative methods is orders of magnitude longer than that of generative
learning. Note, the training time of discriminative learning also includes the structure learning
process. We also show the comparison of the training time of TANd, TANe and TANw in
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Fig. 7 Comparative scatter of results for TANw, TANd and TANe. TANw is on the X-axis whereas TANd

(red-cross) and TANe (green-triangle) are on the Y-axis. For any points above the diagonal line TANw wins
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Fig. 8 Geometric mean of 0–1 Loss and RMSE for TANw, TANd and TANe on All and Big datasets. Results
are normalized with respect to TAN

giBllA
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Training Time

TANw (I)
TANd (I)
TANe (I)

(a) Training Time

Little Big100

101

102 Training Time

TANw (I)
TANd (I)
TANe (I)

(b) Training Time

Fig. 9 aGeometric mean of training time for TAN, TANw, TANd and TANe on All and Big datasets. Results
are normalized with respect to NB. b Geometric mean of training time for TANw, TANd and TANe on All
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Fig. 9b. Like, NB, it can be seen that TANw is almost twice as fast as TANd, whereas, TANe

is orders of magnitude slower than TANw.

7.3 KDB (K = 1) structure

Figure 10 shows the comparative spread of 0–1 Loss, RMSE and training time in seconds of
KDB-1w, KDB-1d and KDB-1e on All and Big datasets. Like NB and TAN, it can be seen
that a similar spread of 0–1 Loss and RMSE is present among the three parameterizations
of discriminative learning. Similarly, it can be seen that training time is greatly improved for
KDB-1w when compared with KDB-1d and KDB-1e.

Geometric average of the 0–1 Loss and RMSE results are shown in Fig. 11. It can be
seen that the three discriminative parameterizations have better 0–1 Loss and RMSE than
generative learning (KDB-1).

A comparison of the training time is given in Fig. 12a. Note, the training time of discrimi-
native methods also includes the time of structure learning. It can be seen that discriminative
learning leads to a significantly longer training time than generative learning. We compare
the training time of KDB-1d, KDB-1e and KDB-1w in Fig. 12b. Like, NB and TAN structure,
it can be seen that KDB-1w is faster than both KDB-1d and KDB-1e.
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Fig. 10 Comparative scatter of results for KDB-1w, KDB-1d and KDB-1e. KDB-1w is on the X-axis whereas
KDB-1d (red-cross) and KDB-1e (green-triangle) are on the Y -axis. For any points above the diagonal line
KDB-1w wins
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7.4 Convergence analysis

A comparison of the convergence of Negative Log-Likelihood (NLL) of the three parame-
terizations on some sample datasets with NB, TAN and KDB (K = 1) structure is shown in
Figs. 13 and 14.

As discussed in Sect. 5.1, in Fig. 13, parameters are initialized to zero, whereas, in Fig. 14,
parameters are initialized to the log of the MAP estimates. It can be seen that for all three
structures and for both initializations, MB∗

w not only converges faster but also reaches its
asymptotic value much quicker than theMB∗

d andMB∗
e . The same trend was observed on all

72 datasets. A comparison on many more datasets is given in Figs. 18 and 19 in Appendix 2.
To quantify how much MB∗

w is faster than the other two parameterizations, we plot a
histogram of the number of iterations it takesMB∗

d andMB∗
e after five iterations to reach the

negative log-likelihood thatMB∗
w achieved in the fifth iteration. If the three parameterizations

follow similar convergence, one should expect many zeros in the histogram. Note that if after
the fifth iteration, NLL of MB∗

w is greater than that of MB∗
d , we we plot the negative of the

number of iterations it takes MB∗
w to reach the NLL of MB∗

d . Similarly, if after the fifth
iteration, NLL of MB∗

w is greater than that of MB∗
e , we we plot the negative of the number

of iterations it takes MB∗
w to reach the NLL of MB∗

e . Figures 15, 16 and 17 show these
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Fig. 13 Comparison of rate of convergence on the four biggest datasets for NB, TAN and KDB (K = 1)
(right column) structures. The X-axis is on log scale. Parameters are initialized to zero. Note, the first iteration
is actually NLL before the start of optimization. It can be seen that the three parameterizations start from the
same point in the space

histogram plots for NB, TAN and KDB (K = 1) structure respectively. It can be seen that
MB∗

w (with all three structures) achieves a NLL that otherwise, will take on average 10 more
iterations over the data forMB∗

d and 15 more iterations forMB∗
e . This is an extremely useful

property of MB∗
w especially for big data where iterating through the dataset is expensive.
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Fig. 14 Comparison of rate of convergence on the four biggest datasets for NB, TAN andKDB (K = 1) (right
column) structures. TheX-axis is on log scale. Parameters are initialized to the log of theMAP estimates. Note,
the first iteration is actually NLL before the start of optimization. It can be seen that the three parameterizations
start from the same point in the space

7.5 Comparison with MAP

The purpose of this section is to compare the performance of the discriminative learning with
that of generative learning. In Table 4, we compare the performance of NBw with NB (i.e.,
naive Bayes with MAP estimates of probabilities), TANw with TAN (i.e., TAN with MAP
estimates of probabilities) and KDB-1w with KDB (K = 1) (i.e., KDB with MAP estimates
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Table 4 Win–Draw–Loss: NBw versus NB, TANw versus TAN and KDB-1w versus KDB-1

NBw versus NB TANw versus TAN KDB-1w versus KDB-1

W–D–L p W–D–L p W–D–L p

All datasets

Bias 62/3/7 <0.001 50/4/18 <0.001 54/5/13 <0.001

Variance 19/3/50 <0.001 21/2/49 0.011 19/4/49 <0.001

0–1 Loss 45/4/23 0.010 34/3/35 1 39/4/29 0.275

RMSE 45/3/24 0.015 25/1/46 0.017 29/2/41 0.1882

Big datasets

0–1 Loss 11/1/0 <0.001 11/1/0 <0.001 11/0/1 <0.001

RMSE 11/0/1 <0.001 11/0/1 <0.001 11/0/1 <0.001

Significant results are shown in bold

of probabilities). We use NBw, TANw and KDB-1w as a representative of discriminative
learning - sinceMB∗

w ,MB∗
d andMB∗

e have similar 0–1 Loss and RMSE profile. It can be see
that the discriminative learning of parameters has significantly lower bias but higher variance.
On big datasets, it can be seen that discriminative learning results in much better 0–1 Loss
and RMSE performance.

Note that though discriminative learning (optimizes the parameters characterizing
CCBN) has better 0–1 Loss and RMSE performance than generative learning (opti-
mizing joint probability),—generative learning has the advantage of being extremely
fast as it incorporates counting of sufficient statistics from the data. Another advantage
of generative learning is its capability of back-off in case a certain combination does
not exist in the data. For example, if TAN or KDB classifiers have not encountered
a <feature-value, parent-value, class-value> combination at training
time they can resort back to <feature-value, class-value> at testing time. For
instance TAN classifier can step back to NB and NB can step back to class prior probabilities.
Such elegantly back-tracking is missing from discriminative learning. If a certain combina-
tion does not exist in the data, parameters associated to that combinationwill not be optimized
and will remain fixed to the initialized value (for example 0). A discriminative classifier will
have no way of handling unseen combinations but to ignore them if they occur in the testing
data. How to incorporate such hierarchical learning with discriminative learning is the goal
of future research as will be discussed in Sect. 8.

8 Conclusion and future work

In this paper,we propose an effective parameterization ofBN.Wepresent a unified framework
for learning the parameters of Bayesian network classifiers. We formulate three different
parameterizations and compare their performance in terms of 0–1 Loss, RMSE and training
time each parameterization took to converge. We show with NB, TAN and KDB structures
that the proposed weighted discriminative parameterization has similar 0–1 Loss and RMSE
to the other two but significantly faster convergence. We also show that it not only has
faster convergence but it also asymptotes to its global minimum much quicker than the
other two parameterizations. This is desirable when learning from huge quantities of data
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with Stochastic Gradient Descent (SGD). It is also shown that discriminative training of BN
classifiers also leads to lower bias than the generative parameter learning.

We plan to conduct following future work as the result of this study:

– The three parameterizations presented in thiswork learn aweight for each attribute-value-
per-class-value-per-parent-values. As discussed in Sect. 5.4, contrary toMB∗

d andMB∗
e ,

MB∗
w parameterization can generalize parameters. For example, once MAP estimates

of probabilities are learned, one can learn a weight: (a) for each attribute only (i.e.,
same weight for all attribute-values, for all class values and for all parent values), (b)
for each attribute-value only, (c) for each attribute-value-per-class-value, (d) for each
attribute-value-per-class-value-per-parent, etc. Such parameter generalization could offer
additional speed-up of the training and is a promising avenue for future research.

– Handling combinations of 〈feature-value,parent-value,class-value〉
that have not been seen at training time is one of the weaker properties of discrimi-
native learning. We plan to design an hierarchical algorithm of discriminative learning
that can learn lower-level discriminative weights and can back-off from higher levels if
a combination is not observed in the training data.

– We plan to conduct an extended analysis of BN models that can capture higher-order
interactions. Because the CLL is not convex for most of these models (Roos et al. 2005),
it falls outside the scope of this paper. This does, however, suggest inviting avenues for
big data research, in which context low-bias classifiers are required.

9 Code and datasets

All the datasets used in this paper are in the public domain and can be downloaded from Frank
and Asuncion (2010). Code with running instructions can be download from https://github.
com/nayyarzaidi/EBNC.git.
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Appendix 1: Proof of Theorem 1

Let us use Lagrange multipliers for constraints in Eq. 4 to be placed in Eq. 3. Now, we can
maximize the resulting objective function:

LL(B) + λ0

⎛

⎝1 −
∑

y∈Y
θy|Π0(x)

⎞

⎠ +
n∑

i

λi

⎛

⎝1 −
∑

xi∈Xi

θxi |Πi (x)

⎞

⎠ ,

by first computing its derivative as:

∂LL(B)

∂θxi |Πi (x)
=

N∑

j=1

1
x ( j)
i =xi

1y( j)=y1Π
( j)
i (x)=Πi (x)

θ
x ( j)
i |Πi (x)

− λi .
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and then setting it to zero. This will lead to

θxi |Πi (x) =
∑N

j=1 Nxi ,y,Πi (x)

λi
,

where Nxi ,y,Πi (x) is the empirical count of instances with attribute i taking value xi , class
taking value y and parents taking value Πi (x). Placing θxi |Πi (x) value in Eq. 4, we get:

∑

xi∈Xi

∑N
j=1 Nxi ,y,Πi (x)

λi
= 1,

which implies: λi = ∑
xi∈Xi

∑N
j=1 Nxi ,y,Πi (x). Therefore, λi = Ny,Πi (x). Hence we can

write:

θxi |Πi (x) = Nxi ,y,Πi (x)

Ny,Πi (x)
. Similarly: θy|Π0(x) = Ny,Π0(x)

NΠ0(x)
.

This equals empirical estimates of probabilities from the data: PD(xi |Πi (x)).

Appendix 2: Convegence curves

Continued from Sect. 7.4, in this section, we present some more results to compare the
convergences of three discriminative parameterizations. In Fig. 18, we initialize the param-
eterizations with the generative estimates, whereas, in Fig. 19, parameters are initialized to
zero.

Appendix 3: Training time significance test

Let us discuss the significance of the training time for three discriminative parameterizations
using Friedman and Nemenyi tests. Following procedure is taken to generate the results:

– We have three algorithms to compare that is: MB∗
w , MB∗

d and MB∗
e , therefore, k = 3.

– We compare the results on 72 datasets, therefore, N = 72.
– Friedman test rank each algorithm for each dataset separately. In case of ties, it uses

average ranks.
– If r j

i is the rank of algorithm j on i-th dataset, average rank for each algorithm compared

are computed as: R j = 1
N

∑
i r

j
i .

– We state:

– Null hypothesis—Algorithms are equivalent and, therefore, ranks should be equal.
Mean rank is 2.5.

– p value—probability of getting ranks R j if null-hypothesis as stated in previous point
is true.

– Compute the Friedman statistics:

χ2
F = 12N

k(k + 1)

⎡

⎣
∑

j

R2
j − k(k + 1)2

4

⎤

⎦ ,

123



Mach Learn (2017) 106:1289–1329 1323

100 101 102 103

No. of Iterations

-1.7

-1.65

-1.6

-1.55

-1.5

-1.45

-1.4

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

× 104 Connect-4

NBd (I)
NBe (I)
NBw (I)

100 101 102 103 104

No. of Iterations

-1.88

-1.86

-1.84

-1.82

-1.8

-1.78

-1.76

-1.74

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

× 104 Connect-4

TANd (I)
TANe (I)
TANw (I)

100 101 102 103 104

No. of Iterations

-1.82

-1.8

-1.78

-1.76

-1.74

-1.72

-1.7

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

× 104 Connect-4

KDB1d (I)
KDB1e (I)
KDB1w (I)

100 101 102 103

No. of Iterations

-10500

-10000

-9500

-9000

-8500

-8000

-7500

-7000

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

Adult

NBd (I)
NBe (I)
NBw (I)

100 101 102 103 104

No. of Iterations

-1.08

-1.07

-1.06

-1.05

-1.04

-1.03

-1.02

-1.01

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

× 104 Adult

TANd (I)
TANe (I)
TANw (I)

100 101 102 103 104

No. of Iterations

-1.08

-1.07

-1.06

-1.05

-1.04

-1.03

-1.02

-1.01

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

× 104 Adult

KDB1d (I)
KDB1e (I)
KDB1w (I)

100 101 102 103

No. of Iterations

-3200

-3000

-2800

-2600

-2400

-2200

-2000

-1800

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

Magic

NBd (I)
NBe (I)
NBw (I)

100 101 102 103 104

No. of Iterations

-3550

-3500

-3450

-3400

-3350

-3300

-3250

-3200

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

Magic

TANd (I)
TANe (I)
TANw (I)

100 101 102 103

No. of Iterations

-3550

-3500

-3450

-3400

-3350

-3300

-3250

-3200

-3150

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

Magic

KDB1d (I)
KDB1e (I)
KDB1w (I)

100 101 102

No. of Iterations

-5.645

-5.64

-5.635

-5.63

-5.625

-5.62

-5.615

-5.61

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

× 104 Shuttle

NBd (I)
NBe (I)
NBw (I)

100 101 102

No. of Iterations

-5.643

-5.642

-5.641

-5.64

-5.639

-5.638

-5.637

-5.636

-5.635

-5.634

-5.633

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

× 104 Shuttle

TANd (I)
TANe (I)
TANw (I)

100 101 102

No. of Iterations

-5.643

-5.642

-5.641

-5.64

-5.639

-5.638

-5.637

-5.636

-5.635

-5.634

-5.633

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

× 104 Shuttle

KDB1d (I)
KDB1e (I)
KDB1w (I)

100 101 102 103 104

No. of Iterations

-3.1

-3

-2.9

-2.8

-2.7

-2.6

-2.5

-2.4

-2.3

-2.2

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

× 104 Letter-recog

NBd (I)
NBe (I)
NBw (I)

100 101 102

No. of Iterations

-3.3

-3.25

-3.2

-3.15

-3.1

-3.05

-3

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

× 104 Letter-recog

TANd (I)
TANe (I)
TANw (I)

100 101 102

No. of Iterations

-3.3

-3.25

-3.2

-3.15

-3.1

-3.05

-3

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

× 104 Letter-recog

KDB1d (I)
KDB1e (I)
KDB1w (I)

100 101 102 103

No. of Iterations

-9400

-9300

-9200

-9100

-9000

-8900

-8800

-8700

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

Nursery

NBd (I)
NBe (I)
NBw (I)

100 101 102 103

No. of Iterations

-10200

-10100

-10000

-9900

-9800

-9700

-9600

-9500

-9400

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

Nursery

TANd (I)
TANe (I)
TANw (I)

100 101 102 103

No. of Iterations

-10200

-10100

-10000

-9900

-9800

-9700

-9600

-9500

-9400

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

Nursery

KDB1d (I)
KDB1e (I)
KDB1w (I)

100 101 102 103

No. of Iterations

-2600

-2500

-2400

-2300

-2200

-2100

-2000

-1900

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

Sign

NBd (I)
NBe (I)
NBw (I)

100 101 102 103 104

No. of Iterations

-3500

-3450

-3400

-3350

-3300

-3250

-3200

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

Sign

TANd (I)
TANe (I)
TANw (I)

100 101 102 103

No. of Iterations

-3350

-3300

-3250

-3200

-3150

-3100

-3050

-3000

-2950

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

Sign

KDB1d (I)
KDB1e (I)
KDB1w (I)

100 101 102

No. of Iterations

-1.3

-1.25

-1.2

-1.15

-1.1

-1.05

-1

-0.95

-0.9

-0.85

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

× 104 Pendigits

NBd (I)
NBe (I)
NBw (I)

100 101 102

No. of Iterations

-1.27

-1.265

-1.26

-1.255

-1.25

-1.245

-1.24

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

× 104 Pendigits

TANd (I)
TANe (I)
TANw (I)

100 101 102

No. of Iterations

-1.27

-1.265

-1.26

-1.255

-1.25

-1.245

-1.24

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

× 104 Pendigits

KDB1d (I)
KDB1e (I)
KDB1w (I)

Fig. 18 Comparison of rate of convergence on the six sample datasets for NB (left column), TAN (middle
column) and KDB (K = 1) (right row) structures. The X-axis is on log scale. Parameters are initialized to the
log of the MAP estimates
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Fig. 19 Comparison of rate of convergence on the four biggest datasets for NB (left column), TAN (middle
column) and KDB (K = 1) (right row) structures. The X-axis is on log scale. Parameters are initialized to 0
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(a) Training Time – p ≤ 0.001, CD = 0.39

NBw (I) NBe (I) NBd (I)
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CD

(b) No. of Iterations – p ≤ 0.001, CD = 0.39

Fig. 20 Significance testing of Training time (a) and No. of Iterations (b) to converge for three parameteri-
zations NBw, NBd and NBe, with Friedman and Nemenyi test on All datasets. Ranks are different according
to Friedman test and, therefore, null-hypothesis is rejected. (Nemenyi) Post-hoc test is powerful

to determine if the measure ranks are significantly different from the mean rank of 2.5
(under null hypothesis).

– If the p value is ≤0.05, we reject the null hypothesis and proceed with the post-hoc test.
– We use the Nemenyi test which states that the performance of two algorithms is signifi-

cantly different if the corresponding average ranks differ by at least the critical difference
(CD) of:

CD = qα

√
k(k + 1)

6N
,

where qα in our experiments is 2.3430 as k = 3.
– If the difference between top rank and the bottom rank is less than the CD, we conclude

pos-hoc test to be not powerful.
– Otherwise [following the graphical representation of Demšar (2006)], we plot the ranks

(along with the name of algorithm) on a horizontal line. Algorithms are connected by a
line if their differences are not significant. We also show the CD on the same scale to
highlight the significance of the difference of two ranks.
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(a) Training Time – p ≤ 0.001, CD = 0.39
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(b) No. of Iterations – – p ≤ 0.001, CD = 0.39

Fig. 21 Significance testing of Training time (a) and No. of Iterations (b) to converge for three parameteriza-
tions TANw, TANd and TANe, with Friedman and Nemenyi test on All datasets. Ranks are different according
to Friedman test and, therefore, null-hypothesis is rejected. (Nemenyi) Post-hoc test is powerful

We show the significance test using Friedman andNemenyi test on All datasets in terms of
training time and no. of iterations it takes each algorithm to converge in Figs. 20, 21 and 22.
It can be seen that for all three structures that is NB, TAN and KDB-1, MB∗

w is rank lower
than MB∗

d and MB∗
e both in terms of training time and no. of iterations.

For NB and TAN, MB∗
w has significantly better training time and converges in far fewer

iterations than the other two. However, for KDB-1 structure, the difference is not significant
between MB∗

w and MB∗
d .

Appendix 4: Convergence significance test

We compare the NLL obtained by each parameterization at fifth (denoted as NLL (5)), tenth
(denoted as NLL (10)) and fiftieth (denoted as NLL (50)) iteration and presented results
in terms of win–draw–loss in Table 5 for MB∗

w versus MB∗
d and for MB∗

w versus MB∗
e in

Table 6. It can be seen from the two tables, thatMB∗
w wins significantly againstMB∗

d with all
three structures. The trend is extremely impressive when comparing against 12 big datasets.
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Fig. 22 Significance testing of Training time (a) and No. of Iterations (b) to converge for three parameteriza-
tions KDB-1w, KDB-1d and KDB-1e, with Friedman and Nemenyi test on All datasets. Ranks are different
according to Friedman test and, therefore, null-hypothesis is rejected. (Nemenyi) Post-hoc test is powerful

Table 5 Win–Draw–Loss: NBw versus NBd, TANw versus TANd and KDB-1w versus KDB-1d

NBw versus NBd TANw versus TANd KDB-1w versus KDB-1d

W–D–L p W–D–L p W–D–L p

All datasets

NLL (5) 67/2/2 <0.001 64/6/1 <0.001 66/5/0 <0.001

NLL (10) 67/2/2 <0.001 63/7/1 <0.001 65/5/1 <0.001

NLL (50) 56/14/1 <0.001 44/25/2 <0.001 46/22/3 <0.001

Big datasets

NLL (5) 12/0/0 <0.001 12/0/0 <0.001 12/0/0 <0.001

NLL (10) 12/0/0 <0.001 12/0/0 <0.001 12/0/0 <0.001

NLL (50) 12/0/0 <0.001 11/1/0 <0.001 11/1/0 <0.001

Significant results are shown in bold
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Table 6 Win–Draw–Loss: NBw versus NBe, TANw versus TANe and KDB-1w versus KDB-1e

NBw versus NBe TANw versus TANe KDB-1w versus KDB-1e

W–D–L p W–D–L p W–D–L p

All datasets

NLL (5) 69/0/2 <0.001 67/4/0 <0.001 66/5/0 <0.001

NLL (10) 68/0/3 <0.001 65/5/1 <0.001 65/5/1 <0.001

NLL (50) 61/10/0 <0.001 51/19/1 <0.001 52/19/0 <0.001

Big datasets

NLL (5) 12/0/0 <0.001 12/0/0 <0.001 12/0/0 <0.001

NLL (10) 12/0/0 <0.001 12/0/0 <0.001 12/0/0 <0.001

NLL (50) 12/0/0 <0.001 11/1/0 <0.001 11/1/0 <0.001

Significant results are shown in bold

Since, each iteration encompasses looping through all the data, these are datasets where each
iteration is expensive. It can be seen thatMB∗

w achieves a better NLL not only after fifth and
tenth iteration, but better even after fiftieth iteration.
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