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Short-chain enoyl-coA hydratase (ECHSI1) is a key
enzyme involved in mitochondrial fatty acid B-oxida-
tion (FAO). Since its initial identification in 2014, 46
patients have been described with ECHSI deficiency
(ECHSI1D) [1-21]. Almost all of these patients have
been diagnosed with Leigh syndrome (LS), a lethal
form of subacute necrotizing encephalomyelopathy.
Intriguingly, this severe disorder is typically associ-
ated with deficiencies in oxidative phosphorylation
(OXPHOS) and has not been described in any other
FAO diseases [22]. In addition, some patients with
ECHSI1D also exhibit defects in OXPHOS function,
which appear to be secondary to the primary defi-
ciency in ECHSI1 enzymatic activity. The unusual clini-
cal presentation of ECHSI1D, in combination with the
identification of secondary OXPHOS defects in some
patients, suggests that the disruption of OXPHOS may
play a role in the pathogenesis of ECHSID. However,
the mechanisms that are involved in this disease pro-
cess are currently unknown.

Biochemical interactions between the FAO and
OXPHOS pathways have long been recognized, but
more recently physical interactions between the com-
ponents of these two pathways have also been
described [23]. Furthermore, other FAO deficiencies
(apart from ECHSID) also exhibit secondary
OXPHOS defects, including reduced steady-state levels
of mature OXPHOS complexes [24]. These findings
suggest that certain FAO proteins, including ECHSI,
may not only be involved in FAO but also in main-
taining OXPHOS function, stability and/or biogenesis.
As such, secondary defects in OXPHOS may be con-
tributing to pathogenesis in FAO diseases, and under-
standing the mechanisms involved is critical if we are
to develop new, effective therapies that address this
OXPHOS dysfunction.

In this review, the clinical and biochemical features
of all ECHSI1D patients described to date will be dis-
cussed. Correlations between ECHS/ genotype and the
spectrum of LS clinical presentations have also been
explored, with particular examination of the nine
ECHSID patients with reported defects in OXPHOS.
The potential contribution of these secondary OXPHOS
defects to disease pathogenesis is discussed, as well as
their importance when considering the development of
new treatments for FAO disorders, including ECHSID.

Mitochondrial metabolism

Mitochondria are organelles responsible for powering
the entire cell, oxidizing fatty acids, amino acids and
the products of glucose (pyruvate and NADH), to
generate adenosine triphosphate (ATP) [25]. ATP
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production occurs via oxidative phosphorylation
(OXPHOS), a process performed by the electron trans-
port chain (ETC), which consists of five membrane-
bound complexes: complex I (NADH: ubiquinone oxi-
doreductase), complex II (succinate: ubiquinone oxi-
doreductase), complex III (ubiquinol: ferricytochrome
¢ oxidoreductase), complex IV (cytochrome ¢ oxidase)
and complex V (FFo-ATP synthetase) [26] (Fig. 1).
These complexes are comprised of many protein sub-
units that are encoded by the mitochondria’s own gen-
ome, as well as the nuclear genome [26,27].

Oxidative phosphorylation, in combination with gly-
colysis and the tricarboxylic acid (TCA) cycle, generates
approximately 30-38 molecules of ATP per single glu-
cose molecule [28]. Glycolysis produces pyruvate and
NADH, which are imported into the mitochondria.
Pyruvate is oxidized into acetyl-CoA and enters the
TCA cycle within the mitochondrial matrix, where it is
further oxidized into a series of products to generate
NADH and FADH,. For each round of the TCA cycle,
one pyruvate molecule can produce one FADH,, one
GTP and three NADH molecules. NADH and FADH,
act as reducing equivalents, donating their electrons to
OXPHOS complexes I and II, respectively (Fig. 1). The
electrons are shuttled from these OXPHOS complexes
via ubiquinone (Q) (Fig. 1) to complex III, then to cyto-
chrome ¢. Cytochrome c is finally oxidized by complex
IV with the subsequent reduction of O, to H,O. This
electron transfer through the OXPHOS complexes facil-
itates the pumping of protons from the mitochondrial
matrix to the intermembrane space by complexes I, III
and IV, generating a mitochondrial membrane potential
(AY,,). AY,, then drives complex V to phosphorylate
ADP to form ATP [26].

While the OXPHOS complexes are pictured individu-
ally in Fig. 1 for simplicity, they also exist in ‘supercom-
plexes’ of more than one of each OXPHOS complex.
These OXPHOS supercomplexes are metabolically
active structures that have been observed in the follow-
ing forms: CI,CIII,, CI,CIII,CIV; (often termed the
‘respirasome’), CIII,CIV, and CI,CIII,CIV, , (termed
the ‘respiratory megacomplex’) [29]. While the existence
of mitochondrial supercomplexes is now accepted, the
reasons behind why they form are still debated [30]. It
is widely thought that the respirasome supercomplex
enhances electron transfer between the OXPHOS com-
plexes by channelling substrates; however, both struc-
tural information and biophysical information
challenge this view [30]. Other current theories as to the
existence of OXPHOS supercomplexes include the
reduction of reactive oxygen species (ROS) production
[31], the regulation of OXPHOS activity and assembly
of OXPHOS complexes [32] and the prevention of
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Fig. 1. Mitochondrial oxidative phosphorylation. Complex | oxidizes NADH to NAD* while complex Il oxidizes FADH, to FADH, with the
resulting electrons being transferred through the OXPHOS complexes via ubiquinone (shown as Q, also known as CoQ;o) to complex Il and
then cytochrome ¢ (Cyt ¢), which is finally oxidized by complex IV to reduce O, to H,O. This electron transfer through the OXPHOS
complexes facilitates the pumping of protons (H*) from the mitochondrial matrix to the intermembrane space by complexes |, Il and IV,
generating a mitochondrial membrane potential (A¥,,). Complex V (ATP synthase) uses the A¥,, to power the condensation of ADP + P; to

generate ATP.

protein aggregation at the mitochondrial inner mem-
brane [31]. An alternative theory is that the main pur-
pose of supercomplexes is to allow for tighter packing
of the OXPHOS complexes into the inner membrane
[30]. Interestingly, enzymes involved in mitochondrial
fatty acid P-oxidation can also be associated with
OXPHOS supercomplexes [23], suggesting they provide
both an enzymatic and structural link between the
OXPHOS and FAO pathways (as will be discussed
below).

Mitochondrial fatty acid p-oxidation

Fatty acid oxidation involves the metabolism of diet-
ary fatty acids to produce energy. Fatty acids are the
preferred substrate for catabolic metabolism in the

liver, skeletal muscle and heart [33], providing 60-70%
of the ATP required for regular heart function [34].
During periods of fasting or high metabolic intensity
(such as endurance exercise), the liver metabolizes fatty
acids to produce ketone bodies as an alternative
energy source for the brain when glucose availability is
limited [35,36]. FAO is also essential in newborns,
where it drives nonshivering thermogenesis in brown
adipose tissue to maintain body temperature [37-39].
Fatty acids are transported through the bloodstream
to their target cells via serum albumin or lipoproteins.
Upon arrival at their destination cells, short- and med-
ium-chain fatty acids (C4-Cl12) can freely diffuse
across the plasma membrane. However, longer fatty
acids and saturated fatty acids require transport pro-
teins, such as FAT/CD36, to facilitate their import
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into the cell [40]. Upon entry into the cytosol, fatty
acids are activated by acyl-CoA synthetases, convert-
ing them to fatty acyl-CoA esters. This activated form
can now be metabolized via FAO, or form the prelimi-
nary substrate for phospholipid, triacylglycerol or
cholesterol synthesis [41].

There are multiple types of FAO: o-FAO, B-FAO and
®-FAO, each occurring at different cellular locations with
different substrate specificity. «-FAO occurs in peroxi-
somes, preparing fatty acids to enter f-FAO by removing
methyl groups that would otherwise block oxidation of
the B-carbon [42]. B-FAO occurs in both peroxisomes and
mitochondria, with peroxisomal B-oxidation shortening
very-long-chain fatty acids (> 22 carbon atoms in length)
for subsequent B-oxidation within mitochondria (see
below). ®-FAO is a minor catabolic pathway with broad
substrate specificity, oxidizing the ® carbon (or ®-1 car-
bon) furthest away from the carboxyl group [43]. Interest-
ingly, peroxisomal w-oxidation of very-long-chain fatty
acids has been suggested as a potential rescue pathway
when B-FAO is disrupted [42,44].

The majority of B-FAO occurs within the matrix of
the mitochondria, breaking down fatty acids < 22 car-
bons in length. Fatty acyl-CoAs are imported into the
mitochondria via the carnitine shuttle system, consist-
ing of carnitine O-palmitoyltransferase I and II (CPT I
and CPT II, respectively) and carnitine-acylcarnitine
translocase (CACT) (Fig. 2). CPT I is the rate-limiting
enzyme for mitochondrial B-FAO as it controls the
import of fatty acyl-CoA molecules into the mitochon-
dria [45]. CPT I catalyses the addition of a carnitine
group to a fatty acyl-CoA ester, forming an acylcar-
nitine, which can be imported by CACT. Upon entry,
the carnitine group is removed by CPT II, allowing
the re-established fatty acyl-CoA ester to enter the
B-FAO spiral, with the carnitine exported back across
the inner mitochondrial membrane via CACT.

B-FAO of the fatty acyl-CoA ester proceeds through
a series of four enzymatic reactions: dehydrogenation,
hydration, a second dehydrogenation and finally thioly-
sis. Fatty acid chain-length specific enzymes are
involved at each of the four steps, beginning with dehy-
drogenation by very-long-chain (C24-12), medium-
chain (C12-C6) or short-chain (C6—C4) acyl-CoA dehy-
drogenases (VLCAD, MCAD and SCAD, respectively).
For very-long-chain and long-chain (C14-24) fatty
acyl-CoA esters, the second, third and fourth steps of
B-FAO are performed by the multi-domain mitochon-
drial trifunctional protein (MTP), which consists of
long-chain 2,3-enoyl-CoA hydratase (LCEH), long-
chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD)
and long-chain 3-ketoacyl-CoA thiolase (LCKAT)
(Fig. 2).

Secondary OXPHOS defects in ECHS1 deficiency

Medium- (C12-C6) and short-chain (C6-C4) fatty
acyl-CoA esters are metabolized via a different set of
enzymes that perform hydration (step 2; short-chain
enoyl-CoA hydratase, ECHS1), dehydrogenation (step

3; hydroxyacyl-CoA dehydrogenase, HADH) and
thiolysis (step 4; 3-ketoacyl-CoA thiolase, KAT)
reactions.

The end product of the four enzymatic reactions of
B-FAO is one acetyl-CoA molecule and a fatty acyl-
CoA ester that is two carbons shorter in length. The
resulting acetyl-CoA can enter the citric acid cycle to
produce NADH and FADH,, which are used by the
ETC complexes to generate ATP. The shortened fatty
acyl-CoA ester is metabolized again (and again) by
B-FAO until only two acetyl-CoA molecules remain.
As such, the B-FAO pathway is often described as an
oxidation ‘spiral’ [46].

In addition, B-FAO also generates FADH, and
NADH during its two dehydrogenation reactions. In
the first dehydrogenation reaction, electron transfer
flavoprotein (ETF) and ETF dehydrogenase transfer
electrons from FADH, to ubiquinone, which is subse-
quently oxidized by OXPHOS complex III. Con-
versely, the second dehydrogenation reaction requires
oxidized NAD"' as a cofactor, with its reduction to
NADH completed during hydration of the fatty acyl-
CoA ester.

If the fatty acyl-CoA ester has an odd number of car-
bons, the last molecule cannot be released as acetyl-
CoA, and instead, a three-carbon-long molecule, propa-
noyl-CoA, is the last product of the B-FAO spiral. When
this occurs, propanoyl-CoA is carboxylated by propa-
noyl-CoA carboxylase to form (S)-methylmalonyl-CoA.
(S)-methylmalonyl-CoA is then isomerized to form (R)-
methylmalonyl-CoA by methylmalonyl-CoA epimerase.
Finally, (R)-methylmalonyl-CoA is converted to suc-
cinyl-CoA by methylmalonyl-CoA mutase, which
requires Vitamin B12 as a cofactor. Succinyl-CoA can
then enter the TCA cycle to generate NADH and
FADH; as reducing equivalents [47].

Short-chain enoyl-CoA hydratase

Short-chain enoyl-CoA hydratase (also called cro-
tonase; EC 42.1.17) catalyses the second step of
B-FAO and is expressed in most tissues, including
brain, heart, kidney, liver, skeletal muscle and skin
[48,49]. ECHSI activity was first observed in bovine
heart and liver, with the first ECHSI cDNA clones
isolated in 1993 [49]. The ECHSI gene is found on
chromosome 10g26.2-q26.3 and encodes eight exons,
with the 5" and 3’ UTRs contained within exons I and
VIII, respectively [50]. ECHSI mRNA is transcribed
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Fig. 2. Fatty acid B-oxidation. Fatty acyl-CoA esters are imported into the mitochondrial matrix as acylcarnitines by the carnitine shuttle
system, which consists of CPT I, CACT and CPT Il. Once inside the mitochondrial matrix, the carnitine is removed from the fatty acyl-CoA
ester by CPT Il. Four reactions occur in each round of B-FAO, catalysed by a group of enzymes with differing specificities based on the length
of the carbon chain of the fatty acyl-CoA. The first reaction is dehydrogenation of fatty acyl-CoA esters by very-long-chain (VLCAD), medium-
chain (MCAD) and short-chain (SCAD) acyl-CoA dehydrogenases to form enoyl-CoA and FADH,. The second reaction is hydration of enoyl-CoA
by the MTP, or ECHS1, to form 3-hydroxyacyl-CoA. The third reaction is dehydrogenation of 3-hydroxyacyl-CoA by MTP or HADH to form
3-ketoacyl-CoA and NADH. Finally, thiolysis of 3-ketoacyl-CoA by MTP or 3-ketoacyl-CoA thiolase (KAT) yields a fatty acyl-CoA (shortened by
two carbon atoms) and acetyl-CoA. Acetyl-CoA enters the TCA cycle to generate more NADH and FADH,, which is then utilized by OXPHOS
for ATP production, while the shortened acyl-CoA molecule re-enters B-FAO until only two acetyl-CoA molecules remain.

as a single 1.4 kb transcript, which encodes a 290
amino acid precursor protein containing a 27-amino
acid N-terminal mitochondrial targeting sequence
that is cleaved upon entry into the mitochondria
[51]. The resulting 28.3 kDa mature protein forms an

active 188 kDa homohexamer ‘dimer of trimers’
[52,53].
594 FEBS Lett

ECHS1 has multiple functions in both amino acid
and fatty acid metabolism. ECHSI has affinity for
intermediates in the isoleucine, leucine and valine path-
ways, with varying degrees of activity (Fig. 3). ECHSI1
has very low affinity for tiglyl-CoA (isoleucine path-
way), with increasing affinities for methacrylyl-CoA
(valine pathway), 3-methylcrotonyl-CoA  (leucine
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Fig. 3. ECHS1 catalyses reactions involved in amino acid metabolism, in addition to its role in FAO. ECHS1 has multiple substrates,
including intermediates of the valine, leucine and isoleucine metabolic pathways. However, ECHS1 has the strongest binding affinity (Vnax)
for crotonyl-CoA in mitochondrial B-FAO. BCAT, branched-chain aminotransferase; BCKD, branched-chain o-keto acid dehydrogenase
complex; SBCAD, short/branched-chain acyl-CoA dehydrogenase; IVD, isovaleryl-CoA dehydrogenase; IBD, isobutyryl-CoA dehydrogenase;
MHBD, 2-methyl-3-hydroxybutyryl-CoA dehydrogenase; HIBCH, 3-hydroxyisobutyryl-CoA hydrolase; MGH, 3-methylglutaconyl-CoA
hydratase; HIBDH, 3-hydroxyisobutyrate dehydrogenase; MMSDH, methylmalonate semialdehyde dehydrogenase; KAT, 3-ketoacyl-CoA
thiolase.

pathway) and crotonyl-CoA (B-FAO) [9,21]. ECHSI
does have a higher V.« for 3-methylcrotonyl-CoA
than methacrylyl-CoA; however, it has been suggested
that ECHSI is nonessential for leucine metabolism [6].
As only a small amount of tiglyl-CoA is hydrated by
ECHSI, it is also suggested that ECHSI is not essential
for isoleucine metabolism [21].

In B-FAO, ECHSI catalyses the hydration of trans-
A*-enoyl-CoA  thioesters to  3-L-hydroxyacyl-CoA
thioesters [54]. ECHSI1 has strongest substrate affinity

for the 4-carbon crotonyl-CoA but can bind enoyl-
CoA chains up to ten carbon atoms in length [52,55].

Mitochondrial -FAO disorders

Mitochondrial disease affects approximately 1 in 4300
people and causes significant morbidity and mortality
[56]. Patients commonly suffer from debilitating multi-
systemic metabolic disorders, including brain, heart
and skeletal muscle dysfunction [27]. Mitochondrial
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disease is commonly associated with OXPHOS defi-
ciencies; however, mitochondrial B-FAO deficiencies
can also cause human disease [23]. The first B-FAO
deficiencies were described in 1973 in CPT I [57], with
the first B-FAO pathogenic mutations identified in
ACADM (MCAD) in 1990 [58-60].

B-FAO disorders affect as many as 1 in 10 000 peo-
ple in certain populations [61]. These diseases are typi-
cally inherited in an autosomal recessive manner, with
at least 21 disease-causing B-FAO genes identified.
Common symptoms of B-FAO disease include liver
defects, hypoglycaemia and cardiac abnormalities such
as dilated hypertrophic cardiomyopathy and arrhyth-
mias [62] (Table 1). Milder forms of B-FAO disease
can present with symptoms such as exercise-induced
myopathy and rhabdomyolysis (the breakdown of
muscle fibres) [63]. Disease presentation is not

Table 1. FAO genes associated with diseases and their common symptoms.

dehydrogenase; PCC, propionyl-CoA carboxylase.

H. J. Burgin and M. McKenzie

persistent, with some patients remaining asymptomatic
until an episode of metabolic crisis, such as fasting,
exercise or a fat-rich diet [64-66]. In infants, B-FAO is
the primary pathway for generating ATP as metabolic
rates are high, and stored glycogen levels are low
[67,68]. As such, deficiencies in B-FAO are often more
severe in younger patients, causing build-up of excess
metabolites and fatty acid intermediates that result in
toxicity and neonatal death in some cases [69,70].
B-FAO deficiencies have also been linked to sudden
infant death syndrome [71], with deficiencies in
MCAD and LCHAD attributed to 1-3% of sudden
infant deaths [72]. As many patients die during their
first episode of metabolic crisis, early detection of
B-FAO deficiency is critical. Consequently, newborn
screening (NBS) for B-FAO deficiencies using mass
spectroscopy has been implemented in numerous

SBCAD, short/branched-chain specific acyl-CoA

Primary tissue(s)

Enzyme Gene Clinical phenotype effected OMIM
CPT I CPT1A Metabolic acidosis, hypoglycaemia, liver dysfunction, coma, Liver 600528
CPTIC seizures 608846
CPT I CPT2 Rhabdomyolysis, late-onset myopathies Skeletal muscle 255110
CACT SLC25A20 Neurologic abnormalities, cardiomyopathy, arrhythmias, skeletal  Brain, liver, heart, 613698
muscle damage, liver dysfunction skeletal muscle
Organic cation/ SLC22A5  Hypoketotic hypoglycaemia, skeletal myopathy, cardiomyopathy  Kidney, skeletal muscle, 603377
carnitine translocase heart, pancreas
VLCAD ACADVL Hypoketotic hypoglycaemia, cardiomyopathy, myoglobinuria, Liver, skeletal muscle 201475
rhabdomyolysis
MCAD ACADM Hypoglycaemia coma, impaired ketogenesis, low plasma and Skeletal muscle 201450
tissue carnitine levels
SCAD ACADS Acidosis, neurological impairment, myopathy, developmental Skeletal muscle 201470
delay
SBCAD ACADSB  Asymptomatic, impaired isoleucine dehydration observed Asymptomatic 600301
HADH HADH Recurrent myoglobinuria, hypoketotic hypoglycaemic Skeletal muscle 231530
encephalopathy, hypertrophic/dilated cardiomyopathy
MTP HADHA Neonatal dilated cardiomyopathy or progressive neuromyopathy, Brain, skeletal muscle 600890
hypoglycaemia
HADHB Hypoketotic hypoglycaemia, episodic myoglobinuria Liver 143450
ACAD9 ACAD9 Cardiorespiratory depression, hypertrophic cardiomyopathy, Brain, skeletal muscle 611126
encephalopathy and severe lactic acidosis
ETF ETFA Nonketotic hypoglycaemia, metabolic acidosis, large amounts of ~Multi-systemic 608053
ETFB fatty acid and amino acid-derived metabolites excreted 130410
ETFDH 231675
ECHS1 ECHS1 Delayed psychomotor development, neurodegeneration, Brain, liver, skeletal 616277
increased lactic acid, brain lesions in the basal ganglia muscle
PCC PCCA Propionic academia, episodic vomiting, lethargy and ketosis, Liver, skeletal muscle 232000
PCCB neutropenia, periodic thrombocytopenia, 232050
hypogammaglobulinemia
Methylmalonyl-CoA MCCE Severe metabolic acidosis, dehydration, tachypnoea, retarded Skeletal muscle, brain 251120
epimerase motor development, spasticity
Methylmalonyl-CoA MUT Developmental retardation, chronic metabolic acidosis, lethargy,  Brain 251000

mutase

failure to thrive, recurrent vomiting, dehydration, respiratory
distress, hypotonia
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countries, reducing B-FAO-related mortalities [73].
Screening for MCAD deficiency is common across
many countries [74], including the Netherlands, where
it has a relatively high prevalence of 1 in 8300 [75].
NBS can also include CPT I, CPT II, CACT,
VLCAD, LCHAD, TFP and MCKAT [76,77], with
some countries, including the USA and Japan, also
screening for SCAD and M/SCHAD [74,77].

Treatment options for B-FAO disease remain limited,
and no cure is presently available. Dietary interventions
aimed at regulating fatty acid levels have been trialled,
but have had limited success [78]. For defects such as
VLCAD deficiency, where the metabolism of longer
chain fatty acids is disrupted, supplementation with
medium-chain fatty acids is thought to be a potential
treatment option [69]. Clinical trials of triheptanoin, an
artificially produced triglyceride consisting of medium-
chain fatty acids, have been shown to improve cardiac
structure and function, both at rest and during exercise,
in patients with LCHAD, VLCAD and CPT II defi-
ciencies [79]. Maintaining constant high blood glucose
levels has also been trialled in some patients to reduce
the effects of fasting; however, this does not address the
underlying aetiology [78].

Emerging links between -FAO and
OXPHOS in pathophysiology

It is clear that the B-FAO and OXPHOS pathways are
tightly linked biochemically. However, there is increas-
ing evidence that physical interactions between the
components of the B-FAO and OXPHOS pathways
also exist, and that these physical interactions are
important for protein activity and stability in both
pathways. The first interactions between B-FAO and
OXPHOS proteins were shown to involve hydroxya-
cyl-CoA dehydrogenase (HADH) and OXPHOS com-
plex T [80]. Similarly, the electron transfer flavoprotein
(ETF) was purified in a protein complex with
OXPHOS complex III, where it can donate electrons
directly to this OXPHOS complex [81].

More recently, several B-FAO enzymes have been
shown to comigrate with OXPHOS supercomplexes by
native gel electrophoresis, including VLCAD, LCAD,
MCAD, ETF and MTP [23]. Furthermore, isolated
fractions containing the OXPHOS supercomplex can
directly oxidize palmitoyl-CoA and octanoyl-CoA,
suggesting the OXPHOS supercomplex harbours f-
FAO activity [23]. Taken together, these findings sug-
gest that a metabolically active superstructure com-
prised of both B-FAO and OXPHOS complexes
(potentially in the form of an OXPHOS supercomplex)
exists within the mitochondria.

Secondary OXPHOS defects in ECHS1 deficiency

Interestingly, patients with primary f-FAO deficien-
cies can also exhibit significant secondary OXPHOS
enzyme defects. As early as 1996, it was noted that
patients with LCHAD deficiency also exhibit defects in
OXPHOS complex I activity [82-85]. Historically, it
has been thought that these secondary OXPHOS
defects are due to the accumulation of fatty acyl-CoA
intermediates that inhibit normal OXPHOS function.
However, the identification of physical B-FAO-
OXPHOS interactions (as described above) suggests
that more complex mechanisms are involved.

Recently, secondary OXPHOS defects were
described in patients with MCAD deficiency [24].
MCAD deficiency is one of the most common B-FAO
disorders, presenting with hypoketotic hypoglycaemia,
vomiting and lethargy [62]. Fibroblasts from MCAD-
deficient patients exhibit reduced carbohydrate oxida-
tion, as well as decreased steady-state levels of
OXPHOS complexes I, III, IV and the OXPHOS
supercomplex [24]. In addition, assembly of OXPHOS
subunits into de novo OXPHOS complexes was also
disrupted in cells lacking MCAD expression [24].
These findings highlight that the loss of MCAD is
associated with a disruption of both OXPHOS com-
plex assembly and stability, which subsequently con-
tributes to defects in OXPHOS function.

Interestingly, the normalization of blood glucose
levels can be used to alleviate symptoms following epi-
sodes of encephalopathy in MCAD-deficient patients
[78]. However, this form of treatment is not always suc-
cessful, potentially due to the disruption of carbohy-
drate metabolism caused by the secondary OXPHOS
defects in these patients. Furthermore, increased oxida-
tive stress, due to the disruption of OXPHOS, may also
be contributing to MCAD deficiency disease pathogen-
esis. Increased ROS production has been reported in
patients with MCAD deficiency [86,87], while cells lack-
ing MCAD expression exhibit elevated ROS generation
associated with increased sensitivity to OXPHOS com-
plex IIT inhibition [24].

Further links between B-FAO and OXPHOS have
been uncovered through studies examining the biogen-
esis of OXPHOS complex I. Complex I is the largest
of the OXPHOS complexes, assembled from 45 sub-
units that are encoded by both nuclear and mitochon-
drial DNA [88.89]. Proper assembly of complex I
requires the assistance of multiple assembly factors,
including acyl-CoA dehydrogenase 9 (ACAD9) [90,91].
ACADY was initially identified as an acyl-CoA dehy-
drogenase with activity for C16:0 and C18:0 saturated
fatty acids, with activity for Cl6:1, C18:1, C18:2 and
C22:6 unsaturated fatty acids also described [92-94].
However, ACADY was subsequently shown to interact
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with the bona fide complex 1 assembly factors NDU-
FAF1 and Ecsit, with ACAD9 knockdown resulting in
complex I deficiencies [90,91]. Further studies have
shown that mutations in ACAD9 cause defects in both
OXPHOS and B-FAO, suggesting ACAD9 plays an
important role in both complex I assembly and as a
fatty acyl-CoA dehydrogenase [91].

Additionally, the B-FAO proteins HADH and
enoyl-CoA delta isomerase 1 (ECI1) are predicted to
be involved in complex I biogenesis. Phylogenetic com-
parison of species with, or without, complex I has been
used to generate a complex I phylogenetic profile
(COPP) gene list of putative complex I assembly fac-
tors [95,96]. While HADH and ECI1 are both parts of
the COPP list, they are yet to be experimentally con-
firmed as complex I assembly factors in the same way
that other proteins such as NDUFAFS5/C200rf7 [97],
FOXREDI [98], NDUFAF6/C8orf38 [99] and NDU-
FAF3/C30rf60 [100] have been.

ECHS1 deficiency

ECHSID onset generally occurs during early infancy,
often at birth. The median lifespan is 2 years; how-
ever, death can occur within the first 2 days of life
in severe cases [1,6,8]. ECHSID patients typically
present with Leigh syndrome (subacute necrotizing
encephalomyelopathy; LS) or Leigh-like syndrome
(LLS), with symptoms including developmental delay,
dystonia, cardiomyopathy, bilateral symmetric brain
lesions, metabolic acidosis and apnoea [15,22,101].
Leigh syndrome is a neurodegenerative disease that is
not typically observed in other B-FAO disorders, and
is more commonly associated with primary OXPHOS
deficiencies. Over 75 genes have been associated with
LS/LLS, including those that encode OXPHOS com-
plex subunits as well as genes involved in OXPHOS
protein biogenesis and assembly [22].

Almost all reported cases of ECHSID present with
T2 bilateral hyperintensities, a hallmark of LS. In fact,
it has been proposed that ECHSID is a distinct form
of LS, associated with progressive encephalopathy,
mitochondrial dysfunction and bilateral brain lesions
[9]. While LS and LLS are common in ECHSID
patients, other symptoms, including exercise-induced
metabolic stress and growth deficiency, or mitochon-
drial encephalopathy with cardiac involvement, have
also been reported [9,102]. In addition, two patients
have presented with paroxysmal exercise-induced dysk-
inesia (PED), which is a milder form of ECHS1D with
a more positive prognosis [11,14].

All currently identified ECHSID patients have
mutations in both ECHS]1 alleles, indicating autosomal
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recessive inheritance, with many different mutations
identified [1-21] (Table 2). Patients who are homozy-
gous for mutations in ECHSI have all been offspring
of consanguineous relationships, resulting in two
copies of the same rare mutation [1,6,7,9,12]. These
mutations can affect the mitochondrial targeting
sequence, intro/exon boundaries, splice sites, potential
protein—protein interaction sites or encode premature
stop codons that lead to non-sense-mediated decay of
the mRNA [9,14,102]. Interestingly, two possible
ECHSI founder mutations have been identified;
p-Asn59Ser, which is present in multiple patients of
Japanese descent [9,13,20,21], and p.Thr180Ala, identi-
fied in an Irish traveller family and in French—Cana-
dian patients [7,19]. In addition, p.GIn159Arg has also
been suggested as a founder mutation of Pakistani ori-
gin [7], although this mutation has also been identified
in patients of German, Japanese and North American
ancestry [9,19].

ECHSI activity has found to be reduced whenever it
has been measured in patients with confirmed patho-
genic ECHS1 mutations [4,6,9,10,15,16,20,21]. Interest-
ingly, certain mutations appear to cause a more severe
reduction in ECHSI activity than others. Yamada
et al. [21] explored this idea by expressing the p.Asn59-
Ser and p.Alal38Val variants of ECHS1 and measur-
ing their activity compared to wild-type ECHS1. The
p-Asn59Ser variant had almost no detectable ECHSI1
activity, whereas the p.Alal38Val variant had approx.
30% activity compared to the control. Interestingly,
when both mutations were expressed (as in patients
I11-2 and I11-3), ECHSI activity was 15% of wild-type
levels [21]. Alternatively, other patients with the
p-Alal58Asp mutation, in conjunction with a mutation
affecting the splicing of ECHSI, had no detectable
ECHSI activity compared to controls [15]. These
patients died within 8 months of birth, suggesting a
correlation between disease severity and loss of
ECHSI activity [15]. However, as ECHSI1 activity has
not been reported for every patient with confirmed
pathogenic ECHS1 mutations, a definitive correlation
between residual ECHSI1 activity and clinical presenta-
tion remains elusive.

Similarly, attempts to correlate specific ECHSID
genotypes and phenotypes have proved difficult, and it
is currently unclear what influences disease severity in
ECHSID patients. Notably, none of the identified
pathogenic ECHSI mutations impact the key residues
of Glyl41l (substrate binding) or Glul64 (catalytic
activity) (Table 2) [16]. Some genotypes have been
linked to a more severe phenotype, such as p.Ala3l-
Glufs*23 [1]. This mutation causes a frameshift and
premature stop codon early in the ECHSI gene, with
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homozygous patients dying within 48 h of life [I]
(Table 2).

Similarly, the p.GIn159Arg mutation appears to cor-
relate with a severe disease phenotype [6,7,9,19]. Two
patients homozygous for this mutation both died at
3 years of age [7,9], with a heterozygous patient
(p-Asn59Ser; p.GIn159Arg) dying at 4 months of age
[9]. The p.GIn159Arg mutation is highly conserved in
vertebrates, with the resulting substitution from a polar,
uncharged residue to a positively charged residue pre-
dicted to be ‘possibly damaging’ [103] and disease-caus-
ing [9,19]. However, other patients heterozygous for the
p-GIn159Arg mutation have less severe clinical progres-
sion and remain alive at 4.5 years (p.Threl80Ala;
p-GInl59Arg), 7 years (p.Leuld45Phe; p.GInl59Arg),
12 years (p.Threl80Ala; p.GIn159Arg) and 31 years
(p.Glu77GIn; p.GIn159Arg) of age at the time of
reporting [6,7,9,19]. These findings suggest that the cor-
responding heterozygous mutations may be less patho-
genic than the p.GInl59Arg mutation; however, it
should be noted that all of these mutations are associ-
ated with LS (which in itself is a severe disorder)
and that they are all predicted to be disease-causing
[9,19].

Conversely, both reported PED patients share the
p-Alal73Val mutation, suggesting that this mutation is
associated with milder clinical symptoms [14]. In fact,
alanine at residue 173 is not completely conserved,
with valine (as well as other amino acids) present at
this position in other species. However, the p.Alal73-
Val mutation is predicted to be ‘possibly damaging’
[103], and it should be noted that a sibling of one of
the PED patients suffered from Leigh-like symptoms
[14]. This discrepancy further highlights the clinical
heterogeneity associated with specific mutations, as
well as the difficulty in assigning genotype/phenotype
correlations in ECHS1 deficiency.

Different genotype combinations may also influence
biochemical dysfunction and clinical presentation. For
example, Pt536 (p.Ala2Val; p.MetlVal) has a normal
maximal respiration rate, whereas Pt1038’s (p.Ala2Val,
p-Asn59Ser) maximal respiration rate is reduced to
only 51% of control levels [13]. This suggests that the
p-Asn59Ser mutation in the aforementioned patient is
the primary pathogenic contributor. Indeed, this muta-
tion is predicted to be ‘probably damaging’ with a
maximum score of 1.0 [103] and is also associated with
early lethality in other patients (Patient F1, I1:2) [9].

Conversely, the p.MetlVal and p.Ala2Val mutations
may only be mildly pathogenic, which could be due to
their location within the first 27 residues that form the
mitochondrial targeting signal of ECHSI. Neither
mutation is predicted to alter the amphipathic status

Secondary OXPHOS defects in ECHS1 deficiency

of the targeting signal [104] and would therefore not
disrupt its localization to the mitochondrial matrix (or
the function of the mature ECHS1 protein once it has
been processed). Conversely, some patients with muta-
tions in this region (p.Ala3Asp) appear to have a more
severe phenotype with early death [4,8]. This
p.-Ala3Asp mutation substitutes a hydrophobic side
chain for a much larger uncharged polar side chain,
which could impact mitochondrial import and subse-
quently ECHS1 expression within the mitochondria
[104].

Biochemical and metabolic
characterization of ECHS1D

While the clinical presentation of ECHSID can vary,
there are often common underlying biochemical and/
or metabolic defects. Urinalysis frequently reveals ele-
vated levels of S-(2-carboxypropyl) cysteine and N-
acetyl-S-(2-carboxypropyl) cysteine, even in milder
cases [21]. More severe cases also include the detection
of methacrylate and 2-methyl-2,3-dihydroxybutyric
metabolites [4,7,8,15]. Interestingly, only patients with
severe clinical presentation have high acylcarnitine
levels (C4 and C6 lengths) [12].

These findings support the use of urinary metabolite
analysis for the diagnosis and prognosis of ECHSID.
Early diagnosis could be achieved through the detec-
tion of S-(2-carboxypropyl) cysteine and N-acetyl-S-(2-
carboxypropyl) cysteine, while acylcarnitine profiling
may serve as an indicator of ECHSI disease severity.

ECHSI is important in valine metabolism, where is
converts methacrylyl-CoA and acryloyl-CoA to (S)-3-
hydroxyisobutyryl-CoA and 3-hydroxypropionyl-CoA,
respectively [105,106]. Loss of ECHSI1 activity results
in the accumulation of these highly reactive intermedi-
ates, which can become toxic via spontaneous reac-
tions with sulphydryl groups, causing impairment of
ATP production and metabolic acidosis [107] [reaction
with free cysteine produces the S-(2-carboxypropyl)
cysteine detected in ECHS1D patient urine]. Further-
more, methacrylyl-CoA and acryloyl-CoA can inhibit
the function of the pyruvate dehydrogenase complex
(PDC) by reacting with the E2 subunit’s lipoyl
domains [6]. This inhibition appears to be specific to
the PDC, as no other lipoyl domain-containing
enzymes within the mitochondria are reported to show
inhibition due to methacrylyl-CoA and acryloyl-CoA
accumulation [6].

Interestingly, there may be a correlation between
ECHSI1 phenotypic severity and PDC activity. Patients
with low PDC activity also have high lactate levels,
with several of these patients presenting with more
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severe prognosis [7,9,15,19], including death within
48 h of birth [1,6]. In contrast, milder cases of
ECHSID do not exhibit reduced PDC activity or lac-
tic acidosis [11,14,21].

Methacrylyl-CoA and acryloyl-CoA are the only
metabolites identified to accumulate in ECHSID, sug-
gesting that ECHSI is essential in valine metabolism,
but not isoleucine or leucine metabolism [7].

Secondary OXPHOS defects in
ECHS1D

ECHSID patients can exhibit a wide range of
OXPHOS dysfunction, with decreased activity of com-
plex IV detected in three patients [9,13,16]. Two of
these patients have the same ECHSI mutations,
p.Phe33Ser and p.Asn59Ser, suggesting a possible
genotype/phenotype correlation between these muta-
tions and complex IV dysfunction. Interestingly, the
third patient, who has p.MetlArg and p.Ala2Val
ECHSI1 mutations, exhibits a combined complex IV,
complex I and complex III deficiency in muscle [16].
While the p.Ala2Val mutation is not predicted to
impact the mitochondrial targeting signal (as described
above), the p.MetlArg mutation substitutes a
hydrophobic side chain for a positively charged side
chain, potentially disrupting an important hydrophobic
region of the targeting peptide [104]. Consequently, the
p-MetlArg mutation would be highly pathogenic,
causing secondary OXPHOS dysfunction due to the
lack of mature ECHS1 protein within the mitochon-
dria. Immortalized myoblasts derived from this third
patient also exhibited a combined complexes I, IV and
V deficiency, with the expression of exogenous wild-
type ECHSI restoring OXPHOS activities to normal
levels [16]. This finding highlights the importance of
ECHSI expression within the mitochondrial matrix for
maintaining normal OXPHOS function.

Complex I and complex III defects have also been
observed independently in two other patients [7,13].
Reduced complex I activity was found in a patient
with p.Ala2Val and p.Asn59Ser mutations, whereas
reduced complex III activity was detected in muscle in
a patient homozygous for the p.Thri80Ala mutation
[9]. Notably, a patient with p.Thri80ala and p.Gly195-
Ser mutations also exhibited complex III deficiency in
muscle (as well as a complex I defect), suggesting a
potential correlation between the p.Thr180Ala muta-
tion and secondary muscle complex III defects.

While there is some correlation between ECHSI
genotype and OXPHOS dysfunction (as described
above), this is not the case for all of the ECHSI muta-
tions that have been identified. For example, patients
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Pt1135 and Pt1038 have the same ECHSI genotype
(p.-Ala2Val; p.Asn59Ser) but exhibit either decreased
complex I activity (Pt1135), or reduced O, consump-
tion with normal complex I activity (Pt1038) [13]. This
could be indicative of other unknown susceptibility
factors that are modulating the effect of ECHS1 defi-
ciency on OXPHOS function, such as genetic polymor-
phism of transcription factors or post-translational
modification sites, or epigenetic regulation of ECHSI
expression.

Interestingly, one study has shown a reduction in
the steady-state levels of OXPHOS complex IV in
ECHSID patient fibroblasts using blue native (BN)-
PAGE [19]. Only one other study to date has investi-
gated OXPHOS complex levels in ECHS1D, with no
changes reported [16]. It is currently unclear why the
levels of complex IV were reduced in the patient
reported by Tetreault et al., but it can be hypothesized
that ECHS1 may play some role in maintaining
OXPHOS complex stability in a similar fashion to
other FAO proteins such as MCAD and ACAD?9
[24,91]. As such, the loss of ECHSI expression may
result in the degradation of OXPHOS complex IV due
to the loss of stabilizing physical interactions. How-
ever, further research is required to elucidate if (and
how) ECHSI is involved in OXPHOS protein complex
biogenesis.

Overall, these secondary OXPHOS defects may play
an important role in ECHSID pathogenesis; indeed,
the LS or LLS presentation of ECHSID is more
commonly associated with OXPHOS defects than with
B-FAO deficiencies. However, we need to develop a
better understanding of how the OXPHOS and
B-FAO pathways interact (in particular the interac-
tions involving ECHS1), before we can determine how
these secondary OXPHOS defects impact the pathol-
ogy, clinical presentation and prognosis of ECHSID.

Treatment of mitochondrial disease
and ECHS1D

The phenotypic diversity of ECHSID, in addition to
the multiple enzymatic roles that ECHS1 performs,
has resulted in difficulty in both diagnosing and treat-
ing ECHSID [21]. No two ECHSID patients, includ-
ing siblings, have presented with the exact same set of
clinical symptoms. Many patients with ECHS1D are
initially diagnosed by their clinical presentation of LS
or LLS, and do not undergo molecular diagnosis until
later in life, or in some cases posthumously [1,2,8,12].
As such, they receive standard treatments that are used
for LS, LLS and other mitochondrial disorders. These
treatments are mostly nonspecific and include dietary
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changes, exercise-related therapies or mitochondrial
‘cocktails’ that contain CoQ, vitamins C and E, ribo-
flavine, creatine monohydrate and other antioxidants
[108]. These treatments can help alleviate disease
symptoms; however, only anecdotal evidence currently
exists to support their use [11,15,109,110], with a
Cochrane review finding no clear evidence to support
the use of any current mitochondrial disease treat-
ments [111].

Restricting the consumption of specific fatty acids
has been trialled in several FAO disorders [112-114],
aiming to reduce the build-up of potentially toxic
intermediates [115]. In a similar fashion, ketogenic
(keto) diets are designed to decrease the amount of
long-chain fatty acids, reducing the burden on med-
ium-chain and short-chain acyl-CoA dehydrogenases
to limit the build-up of fatty acyl-CoA intermediates
[116,117]. While keto diets may provide some benefit
for patients with milder forms of ECHSI1D, they were
ineffective in improving symptoms in severe cases [4,6].

New treatment strategies, including the use of
antioxidants, mitochondrial biogenesis stimulators and
metabolic analogues, are now being developed for LS
and could also prove effective for treating ECHS1D
patients [118,119]. Idebenone, a CoQ, derivative, can
be taken up by cells and cross the blood—brain barrier
more effectively than CoQqq [120]. Initially used as a
treatment for Leber Hereditary Optic Neuropathy, ide-
benone has also been investigated for treating LS,
exhibiting improved mitochondrial uptake and
increased mitochondrial ATP production, as well as
increased abdominal and ribcage movement in a LS
patient [120]. However, more studies are required to
determine the efficacy of idebenone as a therapeutic
for LS or ECHSID [118].

EPI-473, a synthetic derivative of CoQ;q that can
easily cross the blood-brain barrier, has also been tri-
alled in patients with a range of mitochondrial dis-
eases, including LS. While its exact mechanism of
action is unclear, EPI-743 appears to target the reple-
tion of reduced intracellular glutathione [121]. Initial
results showed clinical improvements in all patients
(except one whom died during the course of the trial
due to natural disease progression) with no severe side
effects observed [122]. A follow-up trial of EPI-743 in
another ten LS patients resulted in improved clinical
symptoms and reversal of disease progression in nine
patients [123]. As EPI-743 is showing promise for
treating multiple mitochondrial diseases, including LS,
it may also be beneficial for ECHS1D patients.

Pyruvate therapy is another treatment that has been
trialled in LS patients [124]. Pyruvate treatment reduces
the cytoplasmic NADH/NAD" ratio, stimulating

Secondary OXPHOS defects in ECHS1 deficiency

glycolysis to reduce the burden on OXPHOS to gener-
ate ATP [125]. LS patients treated with pyruvate
show decreased lactate levels in blood and cerebrospinal
fluid, as well as improved clinical symptoms (however,
neurological symptoms did not improve in one patient)
[124].

Pyruvate has also been shown to stimulate the PDC
via its inhibition of pyruvate dehydrogenase kinase
[125]. Apart from increasing glycolytic ATP produc-
tion, this effect of pyruvate may provide additional
benefit for the ECHS1D patients who display reduced
PDC activity (Table 2). However, as the molecular
basis for PDC deficiency in ECHS1D is unknown, fur-
ther investigation is required before pyruvate therapy
can be considered, as it may prove toxic if PDC activ-
ity is completely absent and cannot be restored in
ECHSI1D patients.

Rapamycin, an inhibitor of the mammalian target
of rapamycin (mTOR), is another compound with
therapeutic potential for treating mitochondrial disor-
ders. Modelling in mitochondria-defective yeast
showed that inhibition of mTOR via caloric restriction
was sufficient to rescue lifespan [126]. Subsequent
rapamycin treatment of NDUFS4 knockout mice,
which model human LS, also exhibited increased lifes-
pan with no development of LS-associated neurologi-
cal lesions [127]. Interestingly, reduced ECHSI
expression in various cancer cell models results in the
accumulation of branched-chain amino acids and fatty
acids that activate mTOR signalling to induce apopto-
sis [128]. As such, rapamycin inhibition of mMTOR may
prove beneficial in ECHS1D patients, where a similar
reduction in ECHSI1 expression may also activate
mTOR signalling. However, rapamycin treatment can
cause serious side effects, such as immune suppression
and hyperlipidaemia, which need to be addressed
before it is suitable for any therapeutic use [129].

S-Aminolevulinic acid (5-ALA), in combination with
sodium ferrous citrate, has also been proposed as a
potential therapy for mitochondrial disease. 5-ALA is
a precursor of haem, an important prosthetic group of
OXPHOS complexes II, III and IV, as well as cyto-
chrome c¢. 5-ALA has been trialled in LS patients
under the age of 2 years, with ongoing clinical trials
currently evaluating its efficacy [130].

An interesting therapeutic approach that targets over-
all mitochondrial function, rather than the underlying
defect of disease, is the stimulation of mitochondrial
biogenesis. Stimulating mitochondrial biogenesis aims
to increase mitochondrial mass, allowing for the meta-
bolic needs of the cell to be met. This technique has
been tested in mice using compounds such as 5-
aminoimidazole-4-carboxamide ribonucleotide (AICAR)
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[132], in human fibroblasts using resveratrol [132] and
in mitochondrial disease patients using bezafibrate
[133]. AICAR stimulates mitochondrial biogenesis by
activating the ‘master regulator’ of mitochondrial bio-
genesis, PGC-1a [131]. When trialled in a COX-defec-
tive mouse myopathy model, AICAR was shown to
result in improving motor function and increased
expression of OXPHOS and FAO genes [131]. Resvera-
trol is a naturally occurring compound found in red
wine and has been shown to improve mitochondrial
function via the stimulation of PGC-la; however, the
exact mechanism involved is unclear [134]. Resveratrol
prevents lactate build-up and increases OXPHOS com-
plex subunit levels and mitochondrial respiration in
complex I or complex IV deficient fibroblasts [132].
These effects of resveratrol make it an interesting com-
pound for potentially treating patients with LS and
ECHSI1D, where lactate levels can be elevated.

Bezafibrate has also been investigated for its poten-
tial to stimulate mitochondrial biogenesis via increased
PPAR-y expression. An initial trial of patients with
CTP II and VLCAD deficiencies found that bezafi-
brate was unable to improve symptoms or FAO func-
tion during exercise, suggesting that previous in vitro
findings would not translate to a clinical setting [135].
However, more recent in vitro and in vivo studies have
shown greater therapeutic potential [133,136]. Bezafi-
brate treatment increased PGC-lo expression in
human induced pluripotent stem cells, resulting in
increased cell number and SDHA (OXPHOS complex
IT subunit) and COX-1 (OXPHOS complex IV sub-
unit) levels [133]. MtDNA copy number, indicative of
the amount of mitochondria present within the cell,
was also increased in bezafibrate treated cells [133].
Interestingly, a follow-up study of patients with
VLCAD or CPT Il deficiencies treated with bezafi-
brate resulted in improved quality of life as well as
increased physical functioning, confirming bezafibrate’s
therapeutic potential [136].

Stimulating mitochondrial biogenesis may prove
effective for patients with residual ECHSI1 activity, for
example 15% of normal levels [21], which could be ele-
vated to meet the requirements of the cell. However, it
may not be appropriate for patients who are com-
pletely deficient in ECHSI, as activity cannot be
increased in these cases. On the other hand, increasing
mitochondrial mass would increase the MTP, which
has some redundancy for ECHSI, providing enoyl-
CoA hydratase activity for C6 fatty acids [137].
Increasing MTP levels would also allow for more C8-
C16 fatty acyl-CoA esters to be metabolized, releasing
NADH and FADH, for oxidation by the respiratory
chain to create ATP. Additionally, if an OXPHOS

H. J. Burgin and M. McKenzie

defect is present, increasing mitochondrial mass may
also help to alleviate the pressure on individual
OXPHOS systems by increasing the amount of
OXPHOS proteins able to produce ATP. As such,
stimulating mitochondrial biogenesis may be able to
increase ATP production in ECHSID patients to alle-
viate disease symptoms, particularly if defects in both
FAO and OXPHOS are present.

Concluding remarks and perspectives

Forty-six patients have been described with pathogenic
mutations in ECHSI since the first identification of
ECHSID in 2014 [15]. Importantly, many ECHS1D
patients present with Leigh syndrome (LS), a severe
disorder traditionally associated with deficiencies of
the OXPHOS system. While loss of ECHS1 function
disrupts both B-FAO and valine metabolism, it has
also been shown to cause secondary OXPHOS defects
in some patients. These secondary defects may be
linked to a more severe clinical ECHS1D phenotype;
however, our understanding of how they contribute to
ECHSID pathogenesis is lacking.

While secondary OXPHOS defects can occur in part
due to an accumulation of inhibitory fatty acid inter-
mediates in B-FAO disorders, it is now evident that
other mechanisms are also involved. Primary defects in
B-FAO proteins may disrupt the activity, biogenesis
and/or stability of the OXPHOS complexes, particu-
larly via interaction with the OXPHOS supercomplex.
As such, further research is required to improve our
understanding of the mechanisms that cause secondary
OXPHOS dysfunction in primary B-FAO deficiencies
if we are to develop novel, targeted therapies to treat
disorders such as ECHSI1D.
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