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Mitochondria provide the main source of energy for eukaryotic cells, oxidizing

fatty acids and sugars to generate ATP. Mitochondrial fatty acid b-oxidation
(FAO) and oxidative phosphorylation (OXPHOS) are two key pathways

involved in this process. Disruption of FAO can cause human disease, with

patients commonly presenting with liver failure, hypoketotic glycaemia and

rhabdomyolysis. However, patients with deficiencies in the FAO enzyme

short-chain enoyl-CoA hydratase 1 (ECHS1) are typically diagnosed with

Leigh syndrome, a lethal form of subacute necrotizing encephalomyelopathy

that is normally associated with OXPHOS dysfunction. Furthermore, some

ECHS1-deficient patients also exhibit secondary OXPHOS defects. This

sequela of FAO disorders has long been thought to be caused by the accumula-

tion of inhibitory fatty acid intermediates. However, new evidence suggests

that the mechanisms involved are more complex, and that disruption of

OXPHOS protein complex biogenesis and/or stability is also involved. In this

review, we examine the clinical, biochemical and genetic features of all

ECHS1-deficient patients described to date. In particular, we consider the sec-

ondary OXPHOS defects associated with ECHS1 deficiency and discuss their

possible contribution to disease pathogenesis.
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Short-chain enoyl-coA hydratase (ECHS1) is a key

enzyme involved in mitochondrial fatty acid b-oxida-
tion (FAO). Since its initial identification in 2014, 46

patients have been described with ECHS1 deficiency

(ECHS1D) [1–21]. Almost all of these patients have

been diagnosed with Leigh syndrome (LS), a lethal

form of subacute necrotizing encephalomyelopathy.

Intriguingly, this severe disorder is typically associ-

ated with deficiencies in oxidative phosphorylation

(OXPHOS) and has not been described in any other

FAO diseases [22]. In addition, some patients with

ECHS1D also exhibit defects in OXPHOS function,

which appear to be secondary to the primary defi-

ciency in ECHS1 enzymatic activity. The unusual clini-

cal presentation of ECHS1D, in combination with the

identification of secondary OXPHOS defects in some

patients, suggests that the disruption of OXPHOS may

play a role in the pathogenesis of ECHS1D. However,

the mechanisms that are involved in this disease pro-

cess are currently unknown.

Biochemical interactions between the FAO and

OXPHOS pathways have long been recognized, but

more recently physical interactions between the com-

ponents of these two pathways have also been

described [23]. Furthermore, other FAO deficiencies

(apart from ECHS1D) also exhibit secondary

OXPHOS defects, including reduced steady-state levels

of mature OXPHOS complexes [24]. These findings

suggest that certain FAO proteins, including ECHS1,

may not only be involved in FAO but also in main-

taining OXPHOS function, stability and/or biogenesis.

As such, secondary defects in OXPHOS may be con-

tributing to pathogenesis in FAO diseases, and under-

standing the mechanisms involved is critical if we are

to develop new, effective therapies that address this

OXPHOS dysfunction.

In this review, the clinical and biochemical features

of all ECHS1D patients described to date will be dis-

cussed. Correlations between ECHS1 genotype and the

spectrum of LS clinical presentations have also been

explored, with particular examination of the nine

ECHS1D patients with reported defects in OXPHOS.

The potential contribution of these secondary OXPHOS

defects to disease pathogenesis is discussed, as well as

their importance when considering the development of

new treatments for FAO disorders, including ECHS1D.

Mitochondrial metabolism

Mitochondria are organelles responsible for powering

the entire cell, oxidizing fatty acids, amino acids and

the products of glucose (pyruvate and NADH), to

generate adenosine triphosphate (ATP) [25]. ATP

production occurs via oxidative phosphorylation

(OXPHOS), a process performed by the electron trans-

port chain (ETC), which consists of five membrane-

bound complexes: complex I (NADH: ubiquinone oxi-

doreductase), complex II (succinate: ubiquinone oxi-

doreductase), complex III (ubiquinol: ferricytochrome

c oxidoreductase), complex IV (cytochrome c oxidase)

and complex V (F1F0-ATP synthetase) [26] (Fig. 1).

These complexes are comprised of many protein sub-

units that are encoded by the mitochondria’s own gen-

ome, as well as the nuclear genome [26,27].

Oxidative phosphorylation, in combination with gly-

colysis and the tricarboxylic acid (TCA) cycle, generates

approximately 30–38 molecules of ATP per single glu-

cose molecule [28]. Glycolysis produces pyruvate and

NADH, which are imported into the mitochondria.

Pyruvate is oxidized into acetyl-CoA and enters the

TCA cycle within the mitochondrial matrix, where it is

further oxidized into a series of products to generate

NADH and FADH2. For each round of the TCA cycle,

one pyruvate molecule can produce one FADH2, one

GTP and three NADH molecules. NADH and FADH2

act as reducing equivalents, donating their electrons to

OXPHOS complexes I and II, respectively (Fig. 1). The

electrons are shuttled from these OXPHOS complexes

via ubiquinone (Q) (Fig. 1) to complex III, then to cyto-

chrome c. Cytochrome c is finally oxidized by complex

IV with the subsequent reduction of O2 to H2O. This

electron transfer through the OXPHOS complexes facil-

itates the pumping of protons from the mitochondrial

matrix to the intermembrane space by complexes I, III

and IV, generating a mitochondrial membrane potential

(DΨm). DΨm then drives complex V to phosphorylate

ADP to form ATP [26].

While the OXPHOS complexes are pictured individu-

ally in Fig. 1 for simplicity, they also exist in ‘supercom-

plexes’ of more than one of each OXPHOS complex.

These OXPHOS supercomplexes are metabolically

active structures that have been observed in the follow-

ing forms: CI1CIII2, CI1CIII2CIV1 (often termed the

‘respirasome’), CIII2CIV1 and CI2CIII2CIV1–2 (termed

the ‘respiratory megacomplex’) [29]. While the existence

of mitochondrial supercomplexes is now accepted, the

reasons behind why they form are still debated [30]. It

is widely thought that the respirasome supercomplex

enhances electron transfer between the OXPHOS com-

plexes by channelling substrates; however, both struc-

tural information and biophysical information

challenge this view [30]. Other current theories as to the

existence of OXPHOS supercomplexes include the

reduction of reactive oxygen species (ROS) production

[31], the regulation of OXPHOS activity and assembly

of OXPHOS complexes [32] and the prevention of
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protein aggregation at the mitochondrial inner mem-

brane [31]. An alternative theory is that the main pur-

pose of supercomplexes is to allow for tighter packing

of the OXPHOS complexes into the inner membrane

[30]. Interestingly, enzymes involved in mitochondrial

fatty acid b-oxidation can also be associated with

OXPHOS supercomplexes [23], suggesting they provide

both an enzymatic and structural link between the

OXPHOS and FAO pathways (as will be discussed

below).

Mitochondrial fatty acid b-oxidation

Fatty acid oxidation involves the metabolism of diet-

ary fatty acids to produce energy. Fatty acids are the

preferred substrate for catabolic metabolism in the

liver, skeletal muscle and heart [33], providing 60–70%
of the ATP required for regular heart function [34].

During periods of fasting or high metabolic intensity

(such as endurance exercise), the liver metabolizes fatty

acids to produce ketone bodies as an alternative

energy source for the brain when glucose availability is

limited [35,36]. FAO is also essential in newborns,

where it drives nonshivering thermogenesis in brown

adipose tissue to maintain body temperature [37–39].

Fatty acids are transported through the bloodstream

to their target cells via serum albumin or lipoproteins.

Upon arrival at their destination cells, short- and med-

ium-chain fatty acids (C4–C12) can freely diffuse

across the plasma membrane. However, longer fatty

acids and saturated fatty acids require transport pro-

teins, such as FAT/CD36, to facilitate their import
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Fig. 1. Mitochondrial oxidative phosphorylation. Complex I oxidizes NADH to NAD+ while complex II oxidizes FADH2 to FADH, with the

resulting electrons being transferred through the OXPHOS complexes via ubiquinone (shown as Q, also known as CoQ10) to complex III and

then cytochrome c (Cyt c), which is finally oxidized by complex IV to reduce O2 to H2O. This electron transfer through the OXPHOS

complexes facilitates the pumping of protons (H+) from the mitochondrial matrix to the intermembrane space by complexes I, III and IV,

generating a mitochondrial membrane potential (DΨm). Complex V (ATP synthase) uses the DΨm to power the condensation of ADP + Pi to

generate ATP.
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into the cell [40]. Upon entry into the cytosol, fatty

acids are activated by acyl-CoA synthetases, convert-

ing them to fatty acyl-CoA esters. This activated form

can now be metabolized via FAO, or form the prelimi-

nary substrate for phospholipid, triacylglycerol or

cholesterol synthesis [41].

There are multiple types of FAO: a-FAO, b-FAO and

x-FAO, each occurring at different cellular locations with

different substrate specificity. a-FAO occurs in peroxi-

somes, preparing fatty acids to enter b-FAO by removing

methyl groups that would otherwise block oxidation of

the b-carbon [42]. b-FAO occurs in both peroxisomes and

mitochondria, with peroxisomal b-oxidation shortening

very-long-chain fatty acids (> 22 carbon atoms in length)

for subsequent b-oxidation within mitochondria (see

below). x-FAO is a minor catabolic pathway with broad

substrate specificity, oxidizing the x carbon (or x-1 car-

bon) furthest away from the carboxyl group [43]. Interest-

ingly, peroxisomal x-oxidation of very-long-chain fatty

acids has been suggested as a potential rescue pathway

when b-FAO is disrupted [42,44].

The majority of b-FAO occurs within the matrix of

the mitochondria, breaking down fatty acids < 22 car-

bons in length. Fatty acyl-CoAs are imported into the

mitochondria via the carnitine shuttle system, consist-

ing of carnitine O-palmitoyltransferase I and II (CPT I

and CPT II, respectively) and carnitine-acylcarnitine

translocase (CACT) (Fig. 2). CPT I is the rate-limiting

enzyme for mitochondrial b-FAO as it controls the

import of fatty acyl-CoA molecules into the mitochon-

dria [45]. CPT I catalyses the addition of a carnitine

group to a fatty acyl-CoA ester, forming an acylcar-

nitine, which can be imported by CACT. Upon entry,

the carnitine group is removed by CPT II, allowing

the re-established fatty acyl-CoA ester to enter the

b-FAO spiral, with the carnitine exported back across

the inner mitochondrial membrane via CACT.

b-FAO of the fatty acyl-CoA ester proceeds through

a series of four enzymatic reactions: dehydrogenation,

hydration, a second dehydrogenation and finally thioly-

sis. Fatty acid chain-length specific enzymes are

involved at each of the four steps, beginning with dehy-

drogenation by very-long-chain (C24–12), medium-

chain (C12–C6) or short-chain (C6–C4) acyl-CoA dehy-

drogenases (VLCAD, MCAD and SCAD, respectively).

For very-long-chain and long-chain (C14–24) fatty

acyl-CoA esters, the second, third and fourth steps of

b-FAO are performed by the multi-domain mitochon-

drial trifunctional protein (MTP), which consists of

long-chain 2,3-enoyl-CoA hydratase (LCEH), long-

chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD)

and long-chain 3-ketoacyl-CoA thiolase (LCKAT)

(Fig. 2).

Medium- (C12–C6) and short-chain (C6–C4) fatty

acyl-CoA esters are metabolized via a different set of

enzymes that perform hydration (step 2; short-chain

enoyl-CoA hydratase, ECHS1), dehydrogenation (step

3; hydroxyacyl-CoA dehydrogenase, HADH) and

thiolysis (step 4; 3-ketoacyl-CoA thiolase, KAT)

reactions.

The end product of the four enzymatic reactions of

b-FAO is one acetyl-CoA molecule and a fatty acyl-

CoA ester that is two carbons shorter in length. The

resulting acetyl-CoA can enter the citric acid cycle to

produce NADH and FADH2, which are used by the

ETC complexes to generate ATP. The shortened fatty

acyl-CoA ester is metabolized again (and again) by

b-FAO until only two acetyl-CoA molecules remain.

As such, the b-FAO pathway is often described as an

oxidation ‘spiral’ [46].

In addition, b-FAO also generates FADH2 and

NADH during its two dehydrogenation reactions. In

the first dehydrogenation reaction, electron transfer

flavoprotein (ETF) and ETF dehydrogenase transfer

electrons from FADH2 to ubiquinone, which is subse-

quently oxidized by OXPHOS complex III. Con-

versely, the second dehydrogenation reaction requires

oxidized NAD+ as a cofactor, with its reduction to

NADH completed during hydration of the fatty acyl-

CoA ester.

If the fatty acyl-CoA ester has an odd number of car-

bons, the last molecule cannot be released as acetyl-

CoA, and instead, a three-carbon-long molecule, propa-

noyl-CoA, is the last product of the b-FAO spiral. When

this occurs, propanoyl-CoA is carboxylated by propa-

noyl-CoA carboxylase to form (S)-methylmalonyl-CoA.

(S)-methylmalonyl-CoA is then isomerized to form (R)-

methylmalonyl-CoA by methylmalonyl-CoA epimerase.

Finally, (R)-methylmalonyl-CoA is converted to suc-

cinyl-CoA by methylmalonyl-CoA mutase, which

requires Vitamin B12 as a cofactor. Succinyl-CoA can

then enter the TCA cycle to generate NADH and

FADH2 as reducing equivalents [47].

Short-chain enoyl-CoA hydratase

Short-chain enoyl-CoA hydratase (also called cro-

tonase; EC 42.1.17) catalyses the second step of

b-FAO and is expressed in most tissues, including

brain, heart, kidney, liver, skeletal muscle and skin

[48,49]. ECHS1 activity was first observed in bovine

heart and liver, with the first ECHS1 cDNA clones

isolated in 1993 [49]. The ECHS1 gene is found on

chromosome 10q26.2-q26.3 and encodes eight exons,

with the 50 and 30 UTRs contained within exons I and

VIII, respectively [50]. ECHS1 mRNA is transcribed

593FEBS Letters 594 (2020) 590–610 ª 2020 Federation of European Biochemical Societies

H. J. Burgin and M. McKenzie Secondary OXPHOS defects in ECHS1 deficiency

http://www.chem.qmul.ac.uk/iubmb/enzyme/EC42/1/17.html


as a single 1.4 kb transcript, which encodes a 290

amino acid precursor protein containing a 27-amino

acid N-terminal mitochondrial targeting sequence

that is cleaved upon entry into the mitochondria

[51]. The resulting 28.3 kDa mature protein forms an

active 188 kDa homohexamer ‘dimer of trimers’

[52,53].

ECHS1 has multiple functions in both amino acid

and fatty acid metabolism. ECHS1 has affinity for

intermediates in the isoleucine, leucine and valine path-

ways, with varying degrees of activity (Fig. 3). ECHS1

has very low affinity for tiglyl-CoA (isoleucine path-

way), with increasing affinities for methacrylyl-CoA

(valine pathway), 3-methylcrotonyl-CoA (leucine
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Fig. 2. Fatty acid b-oxidation. Fatty acyl-CoA esters are imported into the mitochondrial matrix as acylcarnitines by the carnitine shuttle

system, which consists of CPT I, CACT and CPT II. Once inside the mitochondrial matrix, the carnitine is removed from the fatty acyl-CoA

ester by CPT II. Four reactions occur in each round of b-FAO, catalysed by a group of enzymes with differing specificities based on the length

of the carbon chain of the fatty acyl-CoA. The first reaction is dehydrogenation of fatty acyl-CoA esters by very-long-chain (VLCAD), medium-

chain (MCAD) and short-chain (SCAD) acyl-CoA dehydrogenases to form enoyl-CoA and FADH2. The second reaction is hydration of enoyl-CoA

by the MTP, or ECHS1, to form 3-hydroxyacyl-CoA. The third reaction is dehydrogenation of 3-hydroxyacyl-CoA by MTP or HADH to form

3-ketoacyl-CoA and NADH. Finally, thiolysis of 3-ketoacyl-CoA by MTP or 3-ketoacyl-CoA thiolase (KAT) yields a fatty acyl-CoA (shortened by

two carbon atoms) and acetyl-CoA. Acetyl-CoA enters the TCA cycle to generate more NADH and FADH2, which is then utilized by OXPHOS

for ATP production, while the shortened acyl-CoA molecule re-enters b-FAO until only two acetyl-CoA molecules remain.

594 FEBS Letters 594 (2020) 590–610 ª 2020 Federation of European Biochemical Societies

Secondary OXPHOS defects in ECHS1 deficiency H. J. Burgin and M. McKenzie



pathway) and crotonyl-CoA (b-FAO) [9,21]. ECHS1

does have a higher Vmax for 3-methylcrotonyl-CoA

than methacrylyl-CoA; however, it has been suggested

that ECHS1 is nonessential for leucine metabolism [6].

As only a small amount of tiglyl-CoA is hydrated by

ECHS1, it is also suggested that ECHS1 is not essential

for isoleucine metabolism [21].

In b-FAO, ECHS1 catalyses the hydration of trans-

D2-enoyl-CoA thioesters to 3-L-hydroxyacyl-CoA

thioesters [54]. ECHS1 has strongest substrate affinity

for the 4-carbon crotonyl-CoA but can bind enoyl-

CoA chains up to ten carbon atoms in length [52,55].

Mitochondrial b-FAO disorders

Mitochondrial disease affects approximately 1 in 4300

people and causes significant morbidity and mortality

[56]. Patients commonly suffer from debilitating multi-

systemic metabolic disorders, including brain, heart

and skeletal muscle dysfunction [27]. Mitochondrial

Vmax 
= 6.66 Vmax 

= 49.02Vmax 
= 16.16 Vmax 

= 54.16

Isoleucine

tiglyl-CoA

2-methyl-3-hydroxybutyryl-CoA

α-keto-β-methylvalerate

α-methylbutyry-CoA

propionyl-CoA + acetyl-CoA

2-methylacetoacetyl-CoA

Leucine

3-methylcrotonyl-CoA

3-methylglutaconyl-CoA

α-ketoisocaproate

isovaleryl-CoA

3-hydroxy-3-methylglutaryl-CoA

acetoacetate + acetyl-CoA

crotonyl-CoA

3-hydroxybutyryl-CoA

FAO pathway

3-ketoacyl-CoA

fatty acyl-CoA (-2C) 
+ acetyl-CoA

fatty acyl-CoA

BCATBCAT BCAT

BCKDBCKD BCKD

SBCAD IVD IBD

ECHS1ECHS1

HADH

KAT

Acyl-CoA
dehydroganse

MGHHIBCH

HIBDH

MHBD

β-ketothiolase
HMG-CoA 

lysase

MMSDH

3-hydroxyisobutyryl-CoA

Valine

methacrylyl-CoA

α-ketoisolvalerate

isobutyryl-CoA

methylmalonic semialdehyde

propionyl-CoA 

3-hydroxyisobutiric acid

ECHS1ECHS1ECHS1ECHS1ECHS1ECHS1
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for crotonyl-CoA in mitochondrial b-FAO. BCAT, branched-chain aminotransferase; BCKD, branched-chain a-keto acid dehydrogenase

complex; SBCAD, short/branched-chain acyl-CoA dehydrogenase; IVD, isovaleryl-CoA dehydrogenase; IBD, isobutyryl-CoA dehydrogenase;
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disease is commonly associated with OXPHOS defi-

ciencies; however, mitochondrial b-FAO deficiencies

can also cause human disease [23]. The first b-FAO

deficiencies were described in 1973 in CPT I [57], with

the first b-FAO pathogenic mutations identified in

ACADM (MCAD) in 1990 [58–60].

b-FAO disorders affect as many as 1 in 10 000 peo-

ple in certain populations [61]. These diseases are typi-

cally inherited in an autosomal recessive manner, with

at least 21 disease-causing b-FAO genes identified.

Common symptoms of b-FAO disease include liver

defects, hypoglycaemia and cardiac abnormalities such

as dilated hypertrophic cardiomyopathy and arrhyth-

mias [62] (Table 1). Milder forms of b-FAO disease

can present with symptoms such as exercise-induced

myopathy and rhabdomyolysis (the breakdown of

muscle fibres) [63]. Disease presentation is not

persistent, with some patients remaining asymptomatic

until an episode of metabolic crisis, such as fasting,

exercise or a fat-rich diet [64–66]. In infants, b-FAO is

the primary pathway for generating ATP as metabolic

rates are high, and stored glycogen levels are low

[67,68]. As such, deficiencies in b-FAO are often more

severe in younger patients, causing build-up of excess

metabolites and fatty acid intermediates that result in

toxicity and neonatal death in some cases [69,70].

b-FAO deficiencies have also been linked to sudden

infant death syndrome [71], with deficiencies in

MCAD and LCHAD attributed to 1–3% of sudden

infant deaths [72]. As many patients die during their

first episode of metabolic crisis, early detection of

b-FAO deficiency is critical. Consequently, newborn

screening (NBS) for b-FAO deficiencies using mass

spectroscopy has been implemented in numerous

Table 1. FAO genes associated with diseases and their common symptoms. SBCAD, short/branched-chain specific acyl-CoA

dehydrogenase; PCC, propionyl-CoA carboxylase.

Enzyme Gene Clinical phenotype

Primary tissue(s)

effected OMIM

CPT I CPT1A Metabolic acidosis, hypoglycaemia, liver dysfunction, coma,

seizures

Liver 600528

CPT1C 608846

CPT II CPT2 Rhabdomyolysis, late-onset myopathies Skeletal muscle 255110

CACT SLC25A20 Neurologic abnormalities, cardiomyopathy, arrhythmias, skeletal

muscle damage, liver dysfunction

Brain, liver, heart,

skeletal muscle

613698

Organic cation/

carnitine translocase

SLC22A5 Hypoketotic hypoglycaemia, skeletal myopathy, cardiomyopathy Kidney, skeletal muscle,

heart, pancreas

603377

VLCAD ACADVL Hypoketotic hypoglycaemia, cardiomyopathy, myoglobinuria,

rhabdomyolysis

Liver, skeletal muscle 201475

MCAD ACADM Hypoglycaemia coma, impaired ketogenesis, low plasma and

tissue carnitine levels

Skeletal muscle 201450

SCAD ACADS Acidosis, neurological impairment, myopathy, developmental

delay

Skeletal muscle 201470

SBCAD ACADSB Asymptomatic, impaired isoleucine dehydration observed Asymptomatic 600301

HADH HADH Recurrent myoglobinuria, hypoketotic hypoglycaemic

encephalopathy, hypertrophic/dilated cardiomyopathy

Skeletal muscle 231530

MTP HADHA Neonatal dilated cardiomyopathy or progressive neuromyopathy,

hypoglycaemia

Brain, skeletal muscle 600890

HADHB Hypoketotic hypoglycaemia, episodic myoglobinuria Liver 143450

ACAD9 ACAD9 Cardiorespiratory depression, hypertrophic cardiomyopathy,

encephalopathy and severe lactic acidosis

Brain, skeletal muscle 611126

ETF ETFA Nonketotic hypoglycaemia, metabolic acidosis, large amounts of

fatty acid and amino acid-derived metabolites excreted

Multi-systemic 608053

ETFB 130410

ETFDH 231675

ECHS1 ECHS1 Delayed psychomotor development, neurodegeneration,

increased lactic acid, brain lesions in the basal ganglia

Brain, liver, skeletal

muscle

616277

PCC PCCA Propionic academia, episodic vomiting, lethargy and ketosis,

neutropenia, periodic thrombocytopenia,

hypogammaglobulinemia

Liver, skeletal muscle 232000

PCCB 232050

Methylmalonyl-CoA

epimerase

MCCE Severe metabolic acidosis, dehydration, tachypnoea, retarded

motor development, spasticity

Skeletal muscle, brain 251120

Methylmalonyl-CoA

mutase

MUT Developmental retardation, chronic metabolic acidosis, lethargy,

failure to thrive, recurrent vomiting, dehydration, respiratory

distress, hypotonia

Brain 251000
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countries, reducing b-FAO-related mortalities [73].

Screening for MCAD deficiency is common across

many countries [74], including the Netherlands, where

it has a relatively high prevalence of 1 in 8300 [75].

NBS can also include CPT I, CPT II, CACT,

VLCAD, LCHAD, TFP and MCKAT [76,77], with

some countries, including the USA and Japan, also

screening for SCAD and M/SCHAD [74,77].

Treatment options for b-FAO disease remain limited,

and no cure is presently available. Dietary interventions

aimed at regulating fatty acid levels have been trialled,

but have had limited success [78]. For defects such as

VLCAD deficiency, where the metabolism of longer

chain fatty acids is disrupted, supplementation with

medium-chain fatty acids is thought to be a potential

treatment option [69]. Clinical trials of triheptanoin, an

artificially produced triglyceride consisting of medium-

chain fatty acids, have been shown to improve cardiac

structure and function, both at rest and during exercise,

in patients with LCHAD, VLCAD and CPT II defi-

ciencies [79]. Maintaining constant high blood glucose

levels has also been trialled in some patients to reduce

the effects of fasting; however, this does not address the

underlying aetiology [78].

Emerging links between b-FAO and
OXPHOS in pathophysiology

It is clear that the b-FAO and OXPHOS pathways are

tightly linked biochemically. However, there is increas-

ing evidence that physical interactions between the

components of the b-FAO and OXPHOS pathways

also exist, and that these physical interactions are

important for protein activity and stability in both

pathways. The first interactions between b-FAO and

OXPHOS proteins were shown to involve hydroxya-

cyl-CoA dehydrogenase (HADH) and OXPHOS com-

plex I [80]. Similarly, the electron transfer flavoprotein

(ETF) was purified in a protein complex with

OXPHOS complex III, where it can donate electrons

directly to this OXPHOS complex [81].

More recently, several b-FAO enzymes have been

shown to comigrate with OXPHOS supercomplexes by

native gel electrophoresis, including VLCAD, LCAD,

MCAD, ETF and MTP [23]. Furthermore, isolated

fractions containing the OXPHOS supercomplex can

directly oxidize palmitoyl-CoA and octanoyl-CoA,

suggesting the OXPHOS supercomplex harbours b-
FAO activity [23]. Taken together, these findings sug-

gest that a metabolically active superstructure com-

prised of both b-FAO and OXPHOS complexes

(potentially in the form of an OXPHOS supercomplex)

exists within the mitochondria.

Interestingly, patients with primary b-FAO deficien-

cies can also exhibit significant secondary OXPHOS

enzyme defects. As early as 1996, it was noted that

patients with LCHAD deficiency also exhibit defects in

OXPHOS complex I activity [82–85]. Historically, it

has been thought that these secondary OXPHOS

defects are due to the accumulation of fatty acyl-CoA

intermediates that inhibit normal OXPHOS function.

However, the identification of physical b-FAO-

OXPHOS interactions (as described above) suggests

that more complex mechanisms are involved.

Recently, secondary OXPHOS defects were

described in patients with MCAD deficiency [24].

MCAD deficiency is one of the most common b-FAO

disorders, presenting with hypoketotic hypoglycaemia,

vomiting and lethargy [62]. Fibroblasts from MCAD-

deficient patients exhibit reduced carbohydrate oxida-

tion, as well as decreased steady-state levels of

OXPHOS complexes I, III, IV and the OXPHOS

supercomplex [24]. In addition, assembly of OXPHOS

subunits into de novo OXPHOS complexes was also

disrupted in cells lacking MCAD expression [24].

These findings highlight that the loss of MCAD is

associated with a disruption of both OXPHOS com-

plex assembly and stability, which subsequently con-

tributes to defects in OXPHOS function.

Interestingly, the normalization of blood glucose

levels can be used to alleviate symptoms following epi-

sodes of encephalopathy in MCAD-deficient patients

[78]. However, this form of treatment is not always suc-

cessful, potentially due to the disruption of carbohy-

drate metabolism caused by the secondary OXPHOS

defects in these patients. Furthermore, increased oxida-

tive stress, due to the disruption of OXPHOS, may also

be contributing to MCAD deficiency disease pathogen-

esis. Increased ROS production has been reported in

patients with MCAD deficiency [86,87], while cells lack-

ing MCAD expression exhibit elevated ROS generation

associated with increased sensitivity to OXPHOS com-

plex III inhibition [24].

Further links between b-FAO and OXPHOS have

been uncovered through studies examining the biogen-

esis of OXPHOS complex I. Complex I is the largest

of the OXPHOS complexes, assembled from 45 sub-

units that are encoded by both nuclear and mitochon-

drial DNA [88,89]. Proper assembly of complex I

requires the assistance of multiple assembly factors,

including acyl-CoA dehydrogenase 9 (ACAD9) [90,91].

ACAD9 was initially identified as an acyl-CoA dehy-

drogenase with activity for C16:0 and C18:0 saturated

fatty acids, with activity for C16:1, C18:1, C18:2 and

C22:6 unsaturated fatty acids also described [92–94].

However, ACAD9 was subsequently shown to interact
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with the bona fide complex I assembly factors NDU-

FAF1 and Ecsit, with ACAD9 knockdown resulting in

complex I deficiencies [90,91]. Further studies have

shown that mutations in ACAD9 cause defects in both

OXPHOS and b-FAO, suggesting ACAD9 plays an

important role in both complex I assembly and as a

fatty acyl-CoA dehydrogenase [91].

Additionally, the b-FAO proteins HADH and

enoyl-CoA delta isomerase 1 (ECI1) are predicted to

be involved in complex I biogenesis. Phylogenetic com-

parison of species with, or without, complex I has been

used to generate a complex I phylogenetic profile

(COPP) gene list of putative complex I assembly fac-

tors [95,96]. While HADH and ECI1 are both parts of

the COPP list, they are yet to be experimentally con-

firmed as complex I assembly factors in the same way

that other proteins such as NDUFAF5/C20orf7 [97],

FOXRED1 [98], NDUFAF6/C8orf38 [99] and NDU-

FAF3/C3orf60 [100] have been.

ECHS1 deficiency

ECHS1D onset generally occurs during early infancy,

often at birth. The median lifespan is 2 years; how-

ever, death can occur within the first 2 days of life

in severe cases [1,6,8]. ECHS1D patients typically

present with Leigh syndrome (subacute necrotizing

encephalomyelopathy; LS) or Leigh-like syndrome

(LLS), with symptoms including developmental delay,

dystonia, cardiomyopathy, bilateral symmetric brain

lesions, metabolic acidosis and apnoea [15,22,101].

Leigh syndrome is a neurodegenerative disease that is

not typically observed in other b-FAO disorders, and

is more commonly associated with primary OXPHOS

deficiencies. Over 75 genes have been associated with

LS/LLS, including those that encode OXPHOS com-

plex subunits as well as genes involved in OXPHOS

protein biogenesis and assembly [22].

Almost all reported cases of ECHS1D present with

T2 bilateral hyperintensities, a hallmark of LS. In fact,

it has been proposed that ECHS1D is a distinct form

of LS, associated with progressive encephalopathy,

mitochondrial dysfunction and bilateral brain lesions

[9]. While LS and LLS are common in ECHS1D

patients, other symptoms, including exercise-induced

metabolic stress and growth deficiency, or mitochon-

drial encephalopathy with cardiac involvement, have

also been reported [9,102]. In addition, two patients

have presented with paroxysmal exercise-induced dysk-

inesia (PED), which is a milder form of ECHS1D with

a more positive prognosis [11,14].

All currently identified ECHS1D patients have

mutations in both ECHS1 alleles, indicating autosomal

recessive inheritance, with many different mutations

identified [1–21] (Table 2). Patients who are homozy-

gous for mutations in ECHS1 have all been offspring

of consanguineous relationships, resulting in two

copies of the same rare mutation [1,6,7,9,12]. These

mutations can affect the mitochondrial targeting

sequence, intro/exon boundaries, splice sites, potential

protein–protein interaction sites or encode premature

stop codons that lead to non-sense-mediated decay of

the mRNA [9,14,102]. Interestingly, two possible

ECHS1 founder mutations have been identified;

p.Asn59Ser, which is present in multiple patients of

Japanese descent [9,13,20,21], and p.Thr180Ala, identi-

fied in an Irish traveller family and in French–Cana-
dian patients [7,19]. In addition, p.Gln159Arg has also

been suggested as a founder mutation of Pakistani ori-

gin [7], although this mutation has also been identified

in patients of German, Japanese and North American

ancestry [9,19].

ECHS1 activity has found to be reduced whenever it

has been measured in patients with confirmed patho-

genic ECHS1 mutations [4,6,9,10,15,16,20,21]. Interest-

ingly, certain mutations appear to cause a more severe

reduction in ECHS1 activity than others. Yamada

et al. [21] explored this idea by expressing the p.Asn59-

Ser and p.Ala138Val variants of ECHS1 and measur-

ing their activity compared to wild-type ECHS1. The

p.Asn59Ser variant had almost no detectable ECHS1

activity, whereas the p.Ala138Val variant had approx.

30% activity compared to the control. Interestingly,

when both mutations were expressed (as in patients

III-2 and III-3), ECHS1 activity was 15% of wild-type

levels [21]. Alternatively, other patients with the

p.Ala158Asp mutation, in conjunction with a mutation

affecting the splicing of ECHS1, had no detectable

ECHS1 activity compared to controls [15]. These

patients died within 8 months of birth, suggesting a

correlation between disease severity and loss of

ECHS1 activity [15]. However, as ECHS1 activity has

not been reported for every patient with confirmed

pathogenic ECHS1 mutations, a definitive correlation

between residual ECHS1 activity and clinical presenta-

tion remains elusive.

Similarly, attempts to correlate specific ECHS1D

genotypes and phenotypes have proved difficult, and it

is currently unclear what influences disease severity in

ECHS1D patients. Notably, none of the identified

pathogenic ECHS1 mutations impact the key residues

of Gly141 (substrate binding) or Glu164 (catalytic

activity) (Table 2) [16]. Some genotypes have been

linked to a more severe phenotype, such as p.Ala31-

Glufs*23 [1]. This mutation causes a frameshift and

premature stop codon early in the ECHS1 gene, with
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homozygous patients dying within 48 h of life [1]

(Table 2).

Similarly, the p.Gln159Arg mutation appears to cor-

relate with a severe disease phenotype [6,7,9,19]. Two

patients homozygous for this mutation both died at

3 years of age [7,9], with a heterozygous patient

(p.Asn59Ser; p.Gln159Arg) dying at 4 months of age

[9]. The p.Gln159Arg mutation is highly conserved in

vertebrates, with the resulting substitution from a polar,

uncharged residue to a positively charged residue pre-

dicted to be ‘possibly damaging’ [103] and disease-caus-

ing [9,19]. However, other patients heterozygous for the

p.Gln159Arg mutation have less severe clinical progres-

sion and remain alive at 4.5 years (p.Thre180Ala;

p.Gln159Arg), 7 years (p.Leu145Phe; p.Gln159Arg),

12 years (p.Thre180Ala; p.Gln159Arg) and 31 years

(p.Glu77Gln; p.Gln159Arg) of age at the time of

reporting [6,7,9,19]. These findings suggest that the cor-

responding heterozygous mutations may be less patho-

genic than the p.Gln159Arg mutation; however, it

should be noted that all of these mutations are associ-

ated with LS (which in itself is a severe disorder)

and that they are all predicted to be disease-causing

[9,19].

Conversely, both reported PED patients share the

p.Ala173Val mutation, suggesting that this mutation is

associated with milder clinical symptoms [14]. In fact,

alanine at residue 173 is not completely conserved,

with valine (as well as other amino acids) present at

this position in other species. However, the p.Ala173-

Val mutation is predicted to be ‘possibly damaging’

[103], and it should be noted that a sibling of one of

the PED patients suffered from Leigh-like symptoms

[14]. This discrepancy further highlights the clinical

heterogeneity associated with specific mutations, as

well as the difficulty in assigning genotype/phenotype

correlations in ECHS1 deficiency.

Different genotype combinations may also influence

biochemical dysfunction and clinical presentation. For

example, Pt536 (p.Ala2Val; p.Met1Val) has a normal

maximal respiration rate, whereas Pt1038’s (p.Ala2Val;

p.Asn59Ser) maximal respiration rate is reduced to

only 51% of control levels [13]. This suggests that the

p.Asn59Ser mutation in the aforementioned patient is

the primary pathogenic contributor. Indeed, this muta-

tion is predicted to be ‘probably damaging’ with a

maximum score of 1.0 [103] and is also associated with

early lethality in other patients (Patient F1, II:2) [9].

Conversely, the p.Met1Val and p.Ala2Val mutations

may only be mildly pathogenic, which could be due to

their location within the first 27 residues that form the

mitochondrial targeting signal of ECHS1. Neither

mutation is predicted to alter the amphipathic status

of the targeting signal [104] and would therefore not

disrupt its localization to the mitochondrial matrix (or

the function of the mature ECHS1 protein once it has

been processed). Conversely, some patients with muta-

tions in this region (p.Ala3Asp) appear to have a more

severe phenotype with early death [4,8]. This

p.Ala3Asp mutation substitutes a hydrophobic side

chain for a much larger uncharged polar side chain,

which could impact mitochondrial import and subse-

quently ECHS1 expression within the mitochondria

[104].

Biochemical and metabolic
characterization of ECHS1D

While the clinical presentation of ECHS1D can vary,

there are often common underlying biochemical and/

or metabolic defects. Urinalysis frequently reveals ele-

vated levels of S-(2-carboxypropyl) cysteine and N-

acetyl-S-(2-carboxypropyl) cysteine, even in milder

cases [21]. More severe cases also include the detection

of methacrylate and 2-methyl-2,3-dihydroxybutyric

metabolites [4,7,8,15]. Interestingly, only patients with

severe clinical presentation have high acylcarnitine

levels (C4 and C6 lengths) [12].

These findings support the use of urinary metabolite

analysis for the diagnosis and prognosis of ECHS1D.

Early diagnosis could be achieved through the detec-

tion of S-(2-carboxypropyl) cysteine and N-acetyl-S-(2-

carboxypropyl) cysteine, while acylcarnitine profiling

may serve as an indicator of ECHS1 disease severity.

ECHS1 is important in valine metabolism, where is

converts methacrylyl-CoA and acryloyl-CoA to (S)-3-

hydroxyisobutyryl-CoA and 3-hydroxypropionyl-CoA,

respectively [105,106]. Loss of ECHS1 activity results

in the accumulation of these highly reactive intermedi-

ates, which can become toxic via spontaneous reac-

tions with sulphydryl groups, causing impairment of

ATP production and metabolic acidosis [107] [reaction

with free cysteine produces the S-(2-carboxypropyl)

cysteine detected in ECHS1D patient urine]. Further-

more, methacrylyl-CoA and acryloyl-CoA can inhibit

the function of the pyruvate dehydrogenase complex

(PDC) by reacting with the E2 subunit’s lipoyl

domains [6]. This inhibition appears to be specific to

the PDC, as no other lipoyl domain-containing

enzymes within the mitochondria are reported to show

inhibition due to methacrylyl-CoA and acryloyl-CoA

accumulation [6].

Interestingly, there may be a correlation between

ECHS1 phenotypic severity and PDC activity. Patients

with low PDC activity also have high lactate levels,

with several of these patients presenting with more
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severe prognosis [7,9,15,19], including death within

48 h of birth [1,6]. In contrast, milder cases of

ECHS1D do not exhibit reduced PDC activity or lac-

tic acidosis [11,14,21].

Methacrylyl-CoA and acryloyl-CoA are the only

metabolites identified to accumulate in ECHS1D, sug-

gesting that ECHS1 is essential in valine metabolism,

but not isoleucine or leucine metabolism [7].

Secondary OXPHOS defects in
ECHS1D

ECHS1D patients can exhibit a wide range of

OXPHOS dysfunction, with decreased activity of com-

plex IV detected in three patients [9,13,16]. Two of

these patients have the same ECHS1 mutations,

p.Phe33Ser and p.Asn59Ser, suggesting a possible

genotype/phenotype correlation between these muta-

tions and complex IV dysfunction. Interestingly, the

third patient, who has p.Met1Arg and p.Ala2Val

ECHS1 mutations, exhibits a combined complex IV,

complex I and complex III deficiency in muscle [16].

While the p.Ala2Val mutation is not predicted to

impact the mitochondrial targeting signal (as described

above), the p.Met1Arg mutation substitutes a

hydrophobic side chain for a positively charged side

chain, potentially disrupting an important hydrophobic

region of the targeting peptide [104]. Consequently, the

p.Met1Arg mutation would be highly pathogenic,

causing secondary OXPHOS dysfunction due to the

lack of mature ECHS1 protein within the mitochon-

dria. Immortalized myoblasts derived from this third

patient also exhibited a combined complexes I, IV and

V deficiency, with the expression of exogenous wild-

type ECHS1 restoring OXPHOS activities to normal

levels [16]. This finding highlights the importance of

ECHS1 expression within the mitochondrial matrix for

maintaining normal OXPHOS function.

Complex I and complex III defects have also been

observed independently in two other patients [7,13].

Reduced complex I activity was found in a patient

with p.Ala2Val and p.Asn59Ser mutations, whereas

reduced complex III activity was detected in muscle in

a patient homozygous for the p.Thr180Ala mutation

[9]. Notably, a patient with p.Thr180ala and p.Gly195-

Ser mutations also exhibited complex III deficiency in

muscle (as well as a complex I defect), suggesting a

potential correlation between the p.Thr180Ala muta-

tion and secondary muscle complex III defects.

While there is some correlation between ECHS1

genotype and OXPHOS dysfunction (as described

above), this is not the case for all of the ECHS1 muta-

tions that have been identified. For example, patients

Pt1135 and Pt1038 have the same ECHS1 genotype

(p.Ala2Val; p.Asn59Ser) but exhibit either decreased

complex I activity (Pt1135), or reduced O2 consump-

tion with normal complex I activity (Pt1038) [13]. This

could be indicative of other unknown susceptibility

factors that are modulating the effect of ECHS1 defi-

ciency on OXPHOS function, such as genetic polymor-

phism of transcription factors or post-translational

modification sites, or epigenetic regulation of ECHS1

expression.

Interestingly, one study has shown a reduction in

the steady-state levels of OXPHOS complex IV in

ECHS1D patient fibroblasts using blue native (BN)-

PAGE [19]. Only one other study to date has investi-

gated OXPHOS complex levels in ECHS1D, with no

changes reported [16]. It is currently unclear why the

levels of complex IV were reduced in the patient

reported by Tetreault et al., but it can be hypothesized

that ECHS1 may play some role in maintaining

OXPHOS complex stability in a similar fashion to

other FAO proteins such as MCAD and ACAD9

[24,91]. As such, the loss of ECHS1 expression may

result in the degradation of OXPHOS complex IV due

to the loss of stabilizing physical interactions. How-

ever, further research is required to elucidate if (and

how) ECHS1 is involved in OXPHOS protein complex

biogenesis.

Overall, these secondary OXPHOS defects may play

an important role in ECHS1D pathogenesis; indeed,

the LS or LLS presentation of ECHS1D is more

commonly associated with OXPHOS defects than with

b-FAO deficiencies. However, we need to develop a

better understanding of how the OXPHOS and

b-FAO pathways interact (in particular the interac-

tions involving ECHS1), before we can determine how

these secondary OXPHOS defects impact the pathol-

ogy, clinical presentation and prognosis of ECHS1D.

Treatment of mitochondrial disease
and ECHS1D

The phenotypic diversity of ECHS1D, in addition to

the multiple enzymatic roles that ECHS1 performs,

has resulted in difficulty in both diagnosing and treat-

ing ECHS1D [21]. No two ECHS1D patients, includ-

ing siblings, have presented with the exact same set of

clinical symptoms. Many patients with ECHS1D are

initially diagnosed by their clinical presentation of LS

or LLS, and do not undergo molecular diagnosis until

later in life, or in some cases posthumously [1,2,8,12].

As such, they receive standard treatments that are used

for LS, LLS and other mitochondrial disorders. These

treatments are mostly nonspecific and include dietary
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changes, exercise-related therapies or mitochondrial

‘cocktails’ that contain CoQ10, vitamins C and E, ribo-

flavine, creatine monohydrate and other antioxidants

[108]. These treatments can help alleviate disease

symptoms; however, only anecdotal evidence currently

exists to support their use [11,15,109,110], with a

Cochrane review finding no clear evidence to support

the use of any current mitochondrial disease treat-

ments [111].

Restricting the consumption of specific fatty acids

has been trialled in several FAO disorders [112–114],

aiming to reduce the build-up of potentially toxic

intermediates [115]. In a similar fashion, ketogenic

(keto) diets are designed to decrease the amount of

long-chain fatty acids, reducing the burden on med-

ium-chain and short-chain acyl-CoA dehydrogenases

to limit the build-up of fatty acyl-CoA intermediates

[116,117]. While keto diets may provide some benefit

for patients with milder forms of ECHS1D, they were

ineffective in improving symptoms in severe cases [4,6].

New treatment strategies, including the use of

antioxidants, mitochondrial biogenesis stimulators and

metabolic analogues, are now being developed for LS

and could also prove effective for treating ECHS1D

patients [118,119]. Idebenone, a CoQ10 derivative, can

be taken up by cells and cross the blood–brain barrier

more effectively than CoQ10 [120]. Initially used as a

treatment for Leber Hereditary Optic Neuropathy, ide-

benone has also been investigated for treating LS,

exhibiting improved mitochondrial uptake and

increased mitochondrial ATP production, as well as

increased abdominal and ribcage movement in a LS

patient [120]. However, more studies are required to

determine the efficacy of idebenone as a therapeutic

for LS or ECHS1D [118].

EPI-473, a synthetic derivative of CoQ10 that can

easily cross the blood–brain barrier, has also been tri-

alled in patients with a range of mitochondrial dis-

eases, including LS. While its exact mechanism of

action is unclear, EPI-743 appears to target the reple-

tion of reduced intracellular glutathione [121]. Initial

results showed clinical improvements in all patients

(except one whom died during the course of the trial

due to natural disease progression) with no severe side

effects observed [122]. A follow-up trial of EPI-743 in

another ten LS patients resulted in improved clinical

symptoms and reversal of disease progression in nine

patients [123]. As EPI-743 is showing promise for

treating multiple mitochondrial diseases, including LS,

it may also be beneficial for ECHS1D patients.

Pyruvate therapy is another treatment that has been

trialled in LS patients [124]. Pyruvate treatment reduces

the cytoplasmic NADH/NAD+ ratio, stimulating

glycolysis to reduce the burden on OXPHOS to gener-

ate ATP [125]. LS patients treated with pyruvate

show decreased lactate levels in blood and cerebrospinal

fluid, as well as improved clinical symptoms (however,

neurological symptoms did not improve in one patient)

[124].

Pyruvate has also been shown to stimulate the PDC

via its inhibition of pyruvate dehydrogenase kinase

[125]. Apart from increasing glycolytic ATP produc-

tion, this effect of pyruvate may provide additional

benefit for the ECHS1D patients who display reduced

PDC activity (Table 2). However, as the molecular

basis for PDC deficiency in ECHS1D is unknown, fur-

ther investigation is required before pyruvate therapy

can be considered, as it may prove toxic if PDC activ-

ity is completely absent and cannot be restored in

ECHS1D patients.

Rapamycin, an inhibitor of the mammalian target

of rapamycin (mTOR), is another compound with

therapeutic potential for treating mitochondrial disor-

ders. Modelling in mitochondria-defective yeast

showed that inhibition of mTOR via caloric restriction

was sufficient to rescue lifespan [126]. Subsequent

rapamycin treatment of NDUFS4 knockout mice,

which model human LS, also exhibited increased lifes-

pan with no development of LS-associated neurologi-

cal lesions [127]. Interestingly, reduced ECHS1

expression in various cancer cell models results in the

accumulation of branched-chain amino acids and fatty

acids that activate mTOR signalling to induce apopto-

sis [128]. As such, rapamycin inhibition of mTOR may

prove beneficial in ECHS1D patients, where a similar

reduction in ECHS1 expression may also activate

mTOR signalling. However, rapamycin treatment can

cause serious side effects, such as immune suppression

and hyperlipidaemia, which need to be addressed

before it is suitable for any therapeutic use [129].

5-Aminolevulinic acid (5-ALA), in combination with

sodium ferrous citrate, has also been proposed as a

potential therapy for mitochondrial disease. 5-ALA is

a precursor of haem, an important prosthetic group of

OXPHOS complexes II, III and IV, as well as cyto-

chrome c. 5-ALA has been trialled in LS patients

under the age of 2 years, with ongoing clinical trials

currently evaluating its efficacy [130].

An interesting therapeutic approach that targets over-

all mitochondrial function, rather than the underlying

defect of disease, is the stimulation of mitochondrial

biogenesis. Stimulating mitochondrial biogenesis aims

to increase mitochondrial mass, allowing for the meta-

bolic needs of the cell to be met. This technique has

been tested in mice using compounds such as 5-

aminoimidazole-4-carboxamide ribonucleotide (AICAR)
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[132], in human fibroblasts using resveratrol [132] and

in mitochondrial disease patients using bezafibrate

[133]. AICAR stimulates mitochondrial biogenesis by

activating the ‘master regulator’ of mitochondrial bio-

genesis, PGC-1a [131]. When trialled in a COX-defec-

tive mouse myopathy model, AICAR was shown to

result in improving motor function and increased

expression of OXPHOS and FAO genes [131]. Resvera-

trol is a naturally occurring compound found in red

wine and has been shown to improve mitochondrial

function via the stimulation of PGC-1a; however, the

exact mechanism involved is unclear [134]. Resveratrol

prevents lactate build-up and increases OXPHOS com-

plex subunit levels and mitochondrial respiration in

complex I or complex IV deficient fibroblasts [132].

These effects of resveratrol make it an interesting com-

pound for potentially treating patients with LS and

ECHS1D, where lactate levels can be elevated.

Bezafibrate has also been investigated for its poten-

tial to stimulate mitochondrial biogenesis via increased

PPAR-c expression. An initial trial of patients with

CTP II and VLCAD deficiencies found that bezafi-

brate was unable to improve symptoms or FAO func-

tion during exercise, suggesting that previous in vitro

findings would not translate to a clinical setting [135].

However, more recent in vitro and in vivo studies have

shown greater therapeutic potential [133,136]. Bezafi-

brate treatment increased PGC-1a expression in

human induced pluripotent stem cells, resulting in

increased cell number and SDHA (OXPHOS complex

II subunit) and COX-1 (OXPHOS complex IV sub-

unit) levels [133]. MtDNA copy number, indicative of

the amount of mitochondria present within the cell,

was also increased in bezafibrate treated cells [133].

Interestingly, a follow-up study of patients with

VLCAD or CPT II deficiencies treated with bezafi-

brate resulted in improved quality of life as well as

increased physical functioning, confirming bezafibrate’s

therapeutic potential [136].

Stimulating mitochondrial biogenesis may prove

effective for patients with residual ECHS1 activity, for

example 15% of normal levels [21], which could be ele-

vated to meet the requirements of the cell. However, it

may not be appropriate for patients who are com-

pletely deficient in ECHS1, as activity cannot be

increased in these cases. On the other hand, increasing

mitochondrial mass would increase the MTP, which

has some redundancy for ECHS1, providing enoyl-

CoA hydratase activity for C6 fatty acids [137].

Increasing MTP levels would also allow for more C8-

C16 fatty acyl-CoA esters to be metabolized, releasing

NADH and FADH2 for oxidation by the respiratory

chain to create ATP. Additionally, if an OXPHOS

defect is present, increasing mitochondrial mass may

also help to alleviate the pressure on individual

OXPHOS systems by increasing the amount of

OXPHOS proteins able to produce ATP. As such,

stimulating mitochondrial biogenesis may be able to

increase ATP production in ECHS1D patients to alle-

viate disease symptoms, particularly if defects in both

FAO and OXPHOS are present.

Concluding remarks and perspectives

Forty-six patients have been described with pathogenic

mutations in ECHS1 since the first identification of

ECHS1D in 2014 [15]. Importantly, many ECHS1D

patients present with Leigh syndrome (LS), a severe

disorder traditionally associated with deficiencies of

the OXPHOS system. While loss of ECHS1 function

disrupts both b-FAO and valine metabolism, it has

also been shown to cause secondary OXPHOS defects

in some patients. These secondary defects may be

linked to a more severe clinical ECHS1D phenotype;

however, our understanding of how they contribute to

ECHS1D pathogenesis is lacking.

While secondary OXPHOS defects can occur in part

due to an accumulation of inhibitory fatty acid inter-

mediates in b-FAO disorders, it is now evident that

other mechanisms are also involved. Primary defects in

b-FAO proteins may disrupt the activity, biogenesis

and/or stability of the OXPHOS complexes, particu-

larly via interaction with the OXPHOS supercomplex.

As such, further research is required to improve our

understanding of the mechanisms that cause secondary

OXPHOS dysfunction in primary b-FAO deficiencies

if we are to develop novel, targeted therapies to treat

disorders such as ECHS1D.
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