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Abstract
1. To understand the function of colour signals in nature, we require robust quantita-

tive analytical frameworks to enable us to estimate how animal and plant colour 
patterns appear against their natural background as viewed by ecologically relevant 
species. Due to the quantitative limitations of existing methods, colour and pattern 
are rarely analysed in conjunction with one another, despite a large body of litera-
ture and decades of research on the importance of spatio-chromatic colour pattern 
analyses. Furthermore, key physiological limitations of animal visual systems such as 
spatial acuity, spectral sensitivities, photoreceptor abundances and receptor noise 
levels are rarely considered together in colour pattern analyses.

2. Here, we present a novel analytical framework, called the Quantitative Colour 
Pattern Analysis (QCPA). We have overcome many quantitative and qualita-
tive limitations of existing colour pattern analyses by combining calibrated digi-
tal photography and visual modelling. We have integrated and updated existing 
spatio-chromatic colour pattern analyses, including adjacency, visual contrast and 
boundary strength analysis, to be implemented using calibrated digital photogra-
phy through the Multispectral Image Analysis and Calibration (MICA) Toolbox.

3. This combination of calibrated photography and spatio-chromatic colour pattern 
analyses is enabled by the inclusion of psychophysical colour and luminance dis-
crimination thresholds for image segmentation, which we call ‘Receptor Noise 
Limited Clustering’, used here for the first time. Furthermore, QCPA provides a 
novel psycho-physiological approach to the modelling of spatial acuity using con-
volution in the spatial or frequency domains, followed by ‘Receptor Noise Limited 
Ranked Filtering’ to eliminate intermediate edge artefacts and recover sharp 
boundaries following smoothing. We also present a new type of colour pattern 
analysis, the ‘local edge intensity analysis’ as well as a range of novel psycho-phys-
iological approaches to the visualization of spatio-chromatic data.

4. QCPA combines novel and existing pattern analysis frameworks into what we hope 
is a unified, free and open source toolbox and introduces a range of novel analytical 
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1  | INTRODUC TION

Animal colour patterns are complex traits which serve a multitude of 
purposes, including defence against predators (such as camouflage 
and aposematism), social signalling and thermoregulation (Cott, 1940). 
How colour patterns are perceived by animals is unique to a given vi-
sual system in a specific context. It depends on the visual background 
against which they are viewed, the visual capabilities of the signal re-
ceiver, the distance from which the pattern is viewed and the ambient 
light environment (Cuthill et al., 2017; Endler, 1978, 1990; Lythgoe, 
1979; Merilaita, Lyytinen, & Mappes, 2001). Animal visual systems are 
diverse, and vary in eye shape and size, visual pigment number and 
absorbance maxima, photoreceptor type and number, and retinal and 
post-retinal processing (Cronin, Johnsen, Marshall, & Warrant, 2014; 
Lythgoe, 1979). When determining the perception of colour patterns 
in other animals, it is therefore essential to consider spatial acuity (and 
viewing distance) as well as colour and luminance discrimination abil-
ities (Endler, 1978). Humans have greater spatial acuity and contrast 
sensitivity than most vertebrates, except for some birds (Caves, Frank, 
& Johnsen, 2016; da Silva Souza, Gomes, & Silveira, 2011). We also 
have a different number of receptor classes, and different spectral 
sensitivity ranges compared to many animals (Cronin et al., 2014). For 
example, most other mammals are dichromats (i.e. they have only 2 
compared to our 3 cone types), while most birds, reptiles and some 
amphibians, spiders and fish possess an ultraviolet cone sensitivity and 
are probably tetrachromats (Cronin & Bok, 2016; Osorio & Vorobyev, 
2005, 2008). Among invertebrates, the number of receptor classes 
may exceed 10 (Cronin et al., 2014).

To examine the perception of visual signals by animals, stud-
ies generally measure colour, luminance and pattern characteris-
tics (e.g. Allen & Higham, 2013; Cortesi & Cheney, 2010; Marshall, 
Vorobyev, & Siebeck, 2006; Xiao & Cuthill, 2016; Zylinski, How, 
Osorio, Hanlon, & Marshall, 2011). For example, colour (chromatic) 
and luminance (achromatic) contrast is measured between colour 
patches within an animal, or between an animal and its background, 
and is calculated in terms of perceptual distances in colour space 
often using the Receptor Noise Limited Model (RNL) (Vorobyev 
& Osorio, 1998). This model assumes that the noise inside a given 
class of photoreceptors, in combination with their relative abun-
dance and opponent colour processing mechanisms, are the fun-
damental limits of colour and luminance contrast perception. The 
relative stimulation of photoreceptors can then be used to map the 
perceptual distances between colour patches in colour space (re-
viewed by Renoult, Kelber, & Schaefer, 2017). These Euclidean, or 

geometric distances, are expressed in terms of ΔS values (Siddiqi, 
Cronin, Loew, Vorobyev, & Summers, 2004; Vorobyev, Brandt, 
Peitsch, Laughlin, & Menzel, 2001). The model predicts that a 
‘Just Noticeable Difference’ (JND) should be equivalent to ΔS = 1 
if model conditions and assumptions are met (Vorobyev & Osorio, 
1998). For quantifying the spatial properties of patterns, Fast 
Fourier Transform (FFT) analyses of pixel intensity in digital images 
(Switkes, Mayer, & Sloan, 1978), pixel or location dependent transi-
tion matrices (Endler, 2012) or landmark based pattern metrics are 
often used (Lowe, 1999; Troscianko, Skelhorn, & Stevens, 2017; Van 
Belleghem et al., 2018).

These types of analyses aim to computationally reproduce the 
retinal processing of visual information, but often investigate colour, 
luminance or pattern contrast in isolation. For example, Cheney et al. 
(2014) quantified the conspicuousness of nudibranch molluscs (ma-
rine gastropods) by measuring pattern contrast against their natural 
backgrounds using FFT on digital images. They then measured chro-
matic contrast (ΔS) between animal and background using point mea-
surements obtained by a spectrophotometer. While useful for many 
studies of animal colouration, these individual analyses ignore the 
interaction of visual information at various perceptual stages (for dis-
cussion see Endler & Mappes, 2017; Ng, Garcia, & Dyer, 2018; Rowe, 
2013; Ruxton, Allen, Sherratt, & Speed, 2018; Stevens & Merilaita, 
2011). However, recent publications continue to highlight the need to 
use an integrated approach to consider visual information when inves-
tigating the perception, and therefore the design, function and evo-
lution, of complex visual signals (Dalziell & Welbergen, 2016; Endler, 
1978, 1984, 2012; Endler, Cole, & Kranz, 2018; Endler & Mappes, 
2017; Hebets & Papaj, 2005; Osorio, Smith, Vorobyev, & Buchanan-
Smith, 2004; Rowe, 1999, 2013; Rowe & Guilford, 1999; Ruxton et 
al., 2018; Shapley & Hawken, 2011; Stevens & Merilaita, 2011). For 
example, not only is the efficiency of visual signals dependent on the 
presence or absence of colours, but also how those colours are ar-
ranged in patterns (e.g. Endler & Houde, 1995; Green, Urquhart, van 
den Berg, Marshall, & Cheney, 2018; Sibeaux, Cole, & Endler, 2019, 
2019; Troscianko et al., 2017).

Existing methods for spatio-chromatic colour pattern analysis 
(Endler, 2012; Endler et al., 2018; Endler & Mielke, 2005), which 
have recently been implemented by PAVO 2 (Maia, Gruson, Endler, 
& White, 2019), parameterize geometric or chromatic properties of 
colour patterns such as geometric complexity, regularity, hue and 
saturation. They also provide parameters which themselves are simul-
taneously shaped by both spatial and chromatic properties of a colour 
pattern, such as abundance weighted chromatic contrast measures. 
However, such analyses require segmented images, meaning images 

and data-visualization approaches. These analyses and tools have been seamlessly 
integrated into the MICA toolbox providing a dynamic and user-friendly workflow.
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in which the individual colour patches are delineated. Therefore, they 
are only suitable for processing colour patterns and visual scenes 
which have very clear colour differences (sharp boundaries with high 
chromatic and/or achromatic contrast), so that spectral data can be 
collected easily from each colour patch. Alternatively, these methods 
would require a prohibitively large number of spectral measurements 
to be made from a scene containing typical levels of natural vari-
ation; even the lowest acuity receivers would require many thou-
sands of points to be measured. Digital imaging is therefore ideally 
suited to this type of analysis, because each image can rapidly and 
non-invasively capture millions of point samples which can provide 
the necessary chromatic and spatial information. However, currently 
available image segmentation and processing techniques do not in-
corporate physiological and cognitive limitations of ecologically rele-
vant viewers. Indeed, many approaches rely on manually drawing the 
outlines of colour pattern elements by a human observer or cluster-
ing algorithms using uninterpreted RGB information inside a digital 
image (Endler & Houde, 1995; Isaac & Gregory, 2013; Winters et 
al., 2017). Such approaches inevitably introduce some degree of an-
thropocentric (qualitative) as well as quantitative bias in interpreting 
animal colouration, unless the colours fall in clear classes and they 
have been checked and calibrated with a spectrometer or calibrated 
digital photography.

In this paper, we introduce a method to overcome these problems 
and present a user-friendly, open-source framework, which we call 
‘Quantitative Colour Pattern Analysis’ (QCPA). QCPA is a comprehen-
sive approach to the study of the design and function of colour patterns 
in nature. It combines calibrated digital photography (Stevens, Parraga, 
Cuthill, Partridge, & Troscianko, 2007), visual modelling and colour pat-
tern analysis into an analytical framework that is seamlessly integrated 
into the ‘Multispectral Image Calibration and Analysis Toolbox’ (MICA) 
(Troscianko & Stevens, 2015). QCPA enables the use of existing, revised 
and newly developed colour pattern analyses on an unprecedented 
quantitative and qualitative scale. This is enabled by image segmenta-
tion using combined colour and luminance discrimination thresholds 
(RNL clustering) or naïve Bayes clustering (Supplemental Material) 
as well as improved modelling of visual acuity (RNL ranked filtering). 
Pattern analyses included in QCPA are colour adjacency analysis, visual 
contrast analysis and boundary strength analysis (Endler, 2012; Endler 
et al., 2018; Endler & Mielke, 2005), which we have expanded, adapted 
and revised. For example, we introduce local edge intensity analysis 
(LEIA), an extension to boundary strength analysis (Endler et al., 2018), 
which allows for colour pattern edge intensity analysis approximat-
ing the scale of receptive fields (Cronin et al., 2014; Marr & Hildreth, 
1980) of a visual system while not requiring a segmented image. QCPA 
provides the user with a freely adjustable network of image process-
ing tools which can convert visual information into a highly descriptive 
array of numbers and representative figures which may be used to ex-
amine a variety of evolutionary, behavioural and ecological questions 
(Figure 1). Potential applications of QCPA include (but are not limited 
to): background matching, disruptive colouration, polymorphism, mim-
icry, aposematism, sexual signalling, territorial signalling, thermoregula-
tion and landscape analysis.

2  | MATERIAL S AND METHODS

We first provide a brief description of the acquisition of calibrated 
digital images and theoretical visual modelling of the viewer and 
then describe individual tools of the QCPA in more detail, including:

• Modelling of spatial acuity: using an adaptation of Fast Fourier 
transform or Gaussian filters;

• Image smoothing and edge reconstruction: using the receptor 
noise limited ranked filter;

• Image segmentation: using receptor noise limited clustering and 
naïve Bayes clustering;

• Pattern analysis: using adjacency, boundary strength, visual con-
trast analysis, local edge intensity analysis and particle analysis;

• Data visualization: using ΔS edge intensity images, XYZ chro-
maticity images, RNL saturation images and colour maps in RNL 
chromaticity space.

Finally, we describe how the rich numerical output of QCPA can be 
used to investigate the design, function and evolution of colour pat-
terns in nature. We also provide extensive additional technical details, 
a glossary and worked examples in the Supplemental Material.

2.1 | Step 1: Acquisition of calibrated digital images

Acquiring data suitable for analysing the spatio-chromatic properties 
of a scene is the first requirement for implementing QCPA. The open-
source and user-friendly MICA toolbox can be used to generate cali-
brated multispectral images and cone-catch images from almost any 
digital camera (Troscianko & Stevens, 2015). Cone-catch images model 
the photoreceptor stimulation of an animal for every pixel within an 
image, with additional support for ultraviolet (UV)-sensitive cameras 
when modelling the vision of species with UV sensitivity (Figures 1 
and 2) (Troscianko & Stevens, 2015). While hyperspectral cameras are, 
theoretically, also well-suited to this task (e.g. Long & Sweet, 2006; 
Russell & Dierssen, 2015), there are a number of limitations in their 
use including cost and image resolution. However, the QCPA frame-
work can also be used for the analysis of hyperspectral images. Precise 
instructions on how to obtain high quality calibrated image data are 
outlined in Troscianko and Stevens (2015).

The MICA toolbox provides its own growing set of image anal-
ysis tools (e.g. Troscianko et al., 2017) to which QCPA contributes. 
Importantly, MICA allows the user to model cone captures in re-
sponse to any possible light environment. This is very useful as it 
allows one to observe visual scenes in one light environment (e.g. a 
flower in a field at noon on a cloudy day) and translate them to an-
other light environment (e.g. the same flower but under a long-wave-
length enriched clear-sky sunrise light spectrum). MICA also lets the 
user switch between spectral sensitivities and cone channels of dif-
ferent species if that information is available (e.g. the same flower 
observed by a bee in comparison to a bird). This function is increas-
ingly used by a range of researchers to introduce animal colour vision 
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to their colour pattern studies (e.g. Chan, Chang, Huang, & Todd, 
2019). Species-specific information on spectral sensitivities is often 
hard to obtain. However, in many cases, it is possible to overcome 
this by estimating spectral sensitivities using information from close-
ly-related species (Kemp et al., 2015; Olsson, Lind, & Kelber, 2018).

2.2 | Step 2: Defining discrimination thresholds

The chromatic (ΔSC) and achromatic contrast (ΔSL) within an image 
can be calculated as perceptual distance between any two pixels 
in 1 to n-dimensional colour space (Clark, Santer, & Brebner, 2017) 
using the RNL model (Vorobyev & Osorio, 1998) (as per Hempel 
de Ibarra, Giurfa, & Vorobyev, 2001 for chromatic contrast, and 

Siddiqi et al., 2004 for achromatic contrast). In its current state, 
QCPA uses the RNL equations for bright light (photopic) condi-
tions (see discussion section of this paper for variations of the 
RNL). These contrasts can then be used to remove pixel noise 
(fluctuations in pixel intensity due to noise in the camera sensor) 
from a digital image, as well as for its segmentation into colour 
patterns. Species specific data on visual systems (particularly 
 receptor noise) can be difficult to obtain (but see Olsson, Lind, & 
Kelber, 2015). This often results in model parameters being esti-
mated. In combination with deviations from assumptions of the 
RNL model (Vorobyev & Osorio, 1998) this emphasizes the need 
to validate discrimination thresholds and model parameter choices 
using behavioural experiments or choosing conservative thresh-
olds (Olsson et al., 2018).

F I G U R E  1   Schematic of the ‘Quantitative Colour Pattern Analysis’ QCPA framework. Asterisks (*) show steps in the framework which 
are novel or have been heavily adapted for use in this framework, while super-script letters refer to existing techniques. Cone-catch images 
are the input into the framework, which can be generated with the MICA toolbox (aTroscianko & Stevens, 2015). Spatial acuity modelling 
is then used to remove visual information which would not be visible given the acuity and viewing distance (using either AcuityView 2.0, 
bCaves & Johnsen, 2017, or a Gaussian convolution-based approach*). Acuity correction generates blurred images with intermediate colours 
that are not likely to be perceived by the receiver. The RNL ranked filter* is therefore used to recreate sharp boundaries. These images are 
an ideal input for the LEIA*, and for generating colour maps in RNL chromaticity space (*/d, Hempel De Ibarra et al., 2001; Kelber et al., 2003; 
Renoult et al., 2017). RNL clustering* or Naive Bayes clustering (*/c, Koleček et al., 2019) are then used to segment the image prior to colour 
adjacency analysis (eEndler, 2012), boundary strength analysis (fEndler et al., 2018), visual contrast analysis (gEndler, 1991; Endler & Mielke, 
2005) and particle shape analysis*. Numbers (1–7) correspond to the steps listed in section 2
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QCPA tools using the RNL model should be used with caution for 
animals that may lack colour opponent processing (Thoen, How, Chiou, 
& Marshall, 2014) or opponent processing that potentially differs sub-
stantially from RNL model assumptions (e.g. Rocha, Saito, Silveira, De 
Souza, & Ventura, 2008). However, QCPA provides alternative image 
segmentation tools and pattern statistics particularly designed for 
these instances (Supplemental Material).

2.3 | Step 3: Modelling of spatial acuity

The ability of an animal to resolve patterns depends on the spatial 
acuity of its vision, which may be determined through anatomi-
cal, behavioural or physiological measurements (Champ, Wallis, 
Vorobyev, Siebeck, & Marshall, 2014), in addition to the distance at 
which objects are viewed. To understand why animals display par-
ticular colour patterns, it is important to investigate if a colour pat-
tern element is visible to an animal from a certain distance (Endler, 
1978; Marshall, 2000). For example, a worker bee does not perceive 
the intricate UV patterns of a flower that guide the bee to its nec-
tar storage until it is close due to the limitations of its visual acuity 
(Figure 3). QCPA adapts and expands upon existing tools for model-
ling spatial acuity by using an adaptation of AcuityView (Caves & 
Johnsen, 2017) and Gaussian filter mediated blurring.

2.4 | Step 4: Eliminating problems in acuity-related 
processing using the RNL Ranked Filter

As noted by Caves and Johnsen (2017), the blurring of images to 
model visual acuity (Step 3) is not intended to manipulate images 
to represent how the scene would be perceived by the receiver; 
instead, it eliminates details which the specific visual system can-
not resolve (Caves & Johnsen, 2017). It is likely that many animals 
perceive clearly delineated spatial information as the available visual 

information is integrated in retinal or post-retinal processing. Blurred 
edges are also problematic for clustering techniques or boundary 
comparison techniques and may create artefacts of processing that 
are likely irrelevant to the animal. Pixel noise fluctuation in the sen-
sor of a digital camera can also interfere with the clustering process, 
creating false edges, artificial colour pattern elements or influencing 
edge structure of colour pattern elements.

To overcome these issues, we have developed a filter that can 
be applied to an image prior to clustering, which we call the ‘RNL 
Ranked Filter’. The filter resembles the ‘Smart Blur’ used in photo 
editing software (such as the ‘Adobe Creative Cloud’) and other rank 
selection filters, which rank the pixels in a kernel and modify them 
based on that ranking. However, our custom written algorithm uses 
an estimate of an animal's psychophysical ability (Using the RNL 
model) to discriminate between colours and luminance to recreate 
sharp edges and reduce pixel noise in a cone catch image (Figure 4c, 
Supplemental Material). While the RNL ranked filter provides a pos-
sible solution to reconstruct sharp edges, the extent to which it re-
flects the perception of spatial information in a given species should 
be validated with behavioural experimentation.

2.5 | Step 5: Psychophysical image segmentation 
using RNL Clustering

A range of pattern analyses, including granularity analysis (Stoddard & 
Stevens, 2010) or NaturePatternMatch (Stoddard, Kilner, & Town, 2014) 
can be applied to an unsegmented picture (Steps 1–4). Other pattern 
analyses, such as Patternize (Van Belleghem et al., 2018) or most analy-
ses in QCPA require an image segmented into colour pattern elements. 
However, image segmentation is often created subjectively using human 
perception; for example, a researcher estimating how many colour ele-
ments there are within a pattern. This may be sufficient for simple pat-
terns but is likely to introduce significant anthropocentric bias when 
analysing complex patterns and when the visual system of the animal 

F I G U R E  2   Example of multispectral 
image stacks as an output of Multispectral 
Image Analysis and Calibration. Note 
that each image stack has a designated 
luminance channel layer needed for 
Quantitative Colour Pattern Analysis 
to allow inferences based on luminance 
discrimination thresholds
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differs dramatically from a human visual system. Here, we present an ag-
glomerative hierarchical clustering approach (Day & Edelsbrunner, 1984) 
which uses colour and luminance discrimination thresholds of an animal, 
either in combination with each other or separately. By comparing each 
pixel to its neighbours, we can use the log-transformed RNL model to 
determine whether any two pixels could be discriminated based on 
colour and/or luminance contrast perceived by an animal. Once com-
pleted across an entire sample, this process results in an image that is 
segmented according to an animal's psychophysiological discrimina-
tion thresholds (Figure 4d). This approach shares similarities with image 
segmentation techniques in computer vision such as statistical region 
merging (Nock & Nielsen, 2004). Given the variability in previous inves-
tigations examining the relationship between the perception of spatial, 
chromatic and achromatic information (e.g. Clery et al., 2013; Miquilini 
et al., 2017; Shapley & Hawken, 2011; Shevell & Kingdom, 2008), we 
recommend such combined thresholds be confirmed using contextual-
ized behavioural experiments. For more information on the mechanism 
of the RNL clustering as well as the combination and weighting of chro-
matic and achromatic thresholds see the Supplemental Material.

2.6 | Step 6: Colour pattern analysis

At this point of the QCPA workflow (Figure 1), the user has an image 
which has been filtered and modified according to the physiological 
and psychophysical limitations of an animal visual system, in the con-
text of the physical environment. We can now quantify this information 
to investigate questions on the design and function of a colour pattern.

In this section, we present a range of secondary image statistics 
that can be derived from un-clustered (not using the RNL clustering 

or alternative image segmentation), filtered (using the RNL Rank 
Filter) as well as clustered images. We have, for this purpose, adapted 
and interpreted analytical frameworks such as colour adjacency 
analysis (Endler, 2012), visual contrast analysis (Endler, 1991; Endler 
& Mielke, 2005) and boundary strength analysis (Endler et al., 2018). 
We also present new parameters and alternative outputs of these 
frameworks, new types of pattern analysis as well as various ways 
of visualizing and plotting image and pattern properties (Figure 1).

2.6.1 | Colour adjacency analysis

Colour adjacency analysis (CAA) provides an approach for measuring 
the geometric properties of colour patterns and entire visual scenes 
(Endler, 2012). The concept is based on measuring the frequencies of 
transitions along transects across an image parallel and perpendicu-
lar to an animal's body axis. The information is captured in a transi-
tion matrix which can then be used to derive pattern parameters 
relative to pattern geometry and potential function. While compa-
rably novel to visual ecology, the use of transition matrices for the 
quantification of patterns and their emerging properties is well es-
tablished in landscape ecology (McGarigal & Marks, 1994; Wickham, 
Riitters, O'Neill, Jones, & Wade, 1996). In addition to providing fre-
quently used metrics describing pattern geometry (e.g. aspect ratio 
and patch size), CAA enables the quantification of the specific spatial 
arrangement (adjacency) of colour pattern elements (Figure 5).

Colour adjacency analysis can be used for (but is not limited to) the 
quantification of mimicry and colour pattern polymorphism, aposema-
tism, camouflage, sexual signalling and studies on evolutionary ge-
netics and evolutionary development of colour patterns (see Endler, 

F I G U R E  3   (a) A flower meadow as seen by a human observer. (b) UV intensity as detected by a worker bee with superior spatial acuity, 
which may lead to the false assumption of the UV information being available to the bee from a distance. (c) UV intensity as detected by a 
worker bee with a spatial acuity of 0.5 cycles/degree at 1 m distance. (d) Medium-wavelength-sensitive photoreceptor stimulation (used 
for luminance detection) of a worker bee at 1 m distance. Note that the white standard (bottom left) remains detectable in all pictures. The 
scale in the top right of each image shows the relative stimulation of the given receptor channel. Note that the UV signal contributes to the 
perception of chromaticity as part of a colour opponency channel in the bee's visual system and is not interpreted individually

(a) (b)

(c) (d)
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2012 for detailed discussion). For example, in many cases of mimicry, 
the mimic only replicates the presence or absence of model colours 
in their patterning, without precisely matching the model's spatial 

arrangement (e.g. Winters et al., 2018). To human observers, this im-
perfect mimicry might be immediately apparent, but the intended re-
ceiver is unable to distinguish between model and mimic (Chittka & 

F I G U R E  4   (a) Reconstructed RGB image of a daisy using cone stimulation of the short, medium and long-wavelength sensitive 
photoreceptor channels of a blue tit Cyanistes caeruleus. The UV photoreceptor is not shown for simplicity. (b) The image after Fast Fourier 
Transform filtering using a spatial acuity of 4.8 cycles/degree and a viewing distance of 2 m. (c) Recreation of sharp edges using RNL ranked 
filtering. (d) Clustering the image into colour pattern elements with Receptor Noise Limited Model (RNL) clustering. (c) and (d) assume a 
conservative cone receptor noise of 0.05 and a cone ratio of 1:2:3:3 (Hart, Partridge, Cuthill, & Bennett, 2000). Clustered using a colour 
discrimination threshold of 3 ΔS and a luminance discrimination threshold of 4 ΔS. See Step 1 (Figure 1) for details on multispectral imaging. 
(e) UV information without acuity modelling as perceived by a worker bee Apis melifera. (f) Acuity modelled at 15 cm viewing distance 
and 0.5 cycles/degree. (g) RNL ranked filtered as per 15 cm viewing distance and receptor noise of 0.13 (Vorobyev & Osorio, 1998). (h) 
RNL clustered UV layer using a chromatic threshold of 3 ΔS and an achromatic threshold of 4 ΔS. The scale on the top right of the images 
indicates the stimulation of the UV receptor channel

(a) (b)

(e) (f) (g) (h)

(c) (d)

F I G U R E  5   (a) Ophrys ciliata, a bee mimicking orchid (Vereecken, 2008). (b) Measuring colour pattern complexity as the proportion of off-
diagonal transitions in the transition matrix resulting from horizontal and vertical transects (red dotted lines) across the segmented central 
flower pattern as seen in (a). The diagonal transitions (synonymous) are proportional to the relative size of the colour pattern elements 
whereas the off-diagonals are proportional to the amount of border colour pattern elements share. (c) Measuring colour pattern complexity 
of a hypothetical mimic. While the transition matrix clearly captures the difference between colour pattern (b) and (c), the complexity of the 
two patterns is identical. Image credit Figure 5a: Nicolas Vereecken

(a) (b) (c)
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Osorio, 2007; Dalziell & Welbergen, 2016; Mallet & Joron, 1999). In 
a hypothetical case, CAA could be used to quantify imperfect sexual 
mimicry of orchids (Figure 5) where the plant mimics the visual and 
chemical appearance of a potential mate (e.g. Gaskett & Herberstein, 
2010; Vereecken, 2008). For further discussion of the biological rele-
vance, worked examples, potential future investigations, and guidance 
on parameter choices see Endler (2012), Rojas, Devillechabrolle, and 
Endler (2014), Ligon et al., (2018) and Winters et al. (2018). For details 
on CAA parameters available in QCPA see the Supplemental Material.

2.6.2 | Visual contrast analysis

Visual contrast analysis (VCA) is designed to investigate colour, 
pattern and luminance simultaneously by providing pattern statis-
tics which combine spatial and chromatic properties of colour pat-
terns such as abundance weighted chromaticity measures (Endler 

& Mielke, 2005, Supplemental Material). The perception of visual 
contrast is a combination of spatial (relative size and position of col-
our pattern elements), chromatic (hue and saturation), and achro-
matic (luminance) properties of a colour pattern due to lower and 
higher level neuronal processing of visual information (e.g. Pearson 
& Kingdom, 2002; Shapley & Hawken, 2011; Simmons & Kingdom, 
2002; White et al., 2017; Willis & Anderson, 2002). Furthermore, 
interactions between the absolute and relative size of colour pattern 
elements and their chromatic and achromatic properties includes si-
multaneous colour contrast and colour constancy mechanisms that 
are understood in very few visual systems (e.g. Simpson, Marshall, 
& Cheney, 2016). VCA provides a set of metrics that are designed 
to capture some of these effects. We have adapted some of these 
metrics to use known or assumed colour opponency mechanisms 
to measure chromaticity (Supplemental Material). Using the previ-
ous orchid example, VCA could be used to investigate how poly-
morphism in our hypothetical population interacts with pollinator 

F I G U R E  6   Using visual contrast analysis to quantify differences in appearance of a hypothetical polymorphism in Ophrys ciliata (Figure 
5a). Average saturation (distance from the achromatic point in the log-transformed RNL colour space, ΔSsat) in the colour pattern can be 
expressed as an abundance weighted mean. The relative abundance of each colour pattern element can be calculated as the proportion 
of diagonal transitions compared to the sum of all diagonal transitions (fi). (a,b) Note how the off-diagonal transitions between morphs 
change marginally in comparison to Figure 5, however, the level of overall colour pattern saturation for this kind of polymorphism differs 
substantially due to the increased relative abundance of saturated yellow, calculated as the relative abundance of yellow - yellow transitions 
in the diagonal of the transition matrix (fyellow)

F I G U R E  7   (a) The RNL filtered flower from Figure 4c. (b) Edge intensities of chromatic ΔS contrast. Different colours indicate different 
angles of hypothetical edge detecting receptive fields, the intensity reflects the contrast. (c) Edge intensities of achromatic (luminance) ΔS 
contrast. Colours show edge angle whereas intensity shows edge strength

(a) (b) (c)
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learning or differences in attractiveness to pollinators (Figure 6). 
See the Supplemental Material, original publications (Endler, 1991; 
Endler & Mielke, 2005) and empirical studies (Endler & Houde, 1995; 
Sibeaux, Cole, et al., 2019, 2019) for further information.

2.6.3 | Boundary strength analysis

Boundary strength analysis (BSA, Endler et al., 2018) is an exten-
sion of CAA (Endler, 2012). The transition matrices generated in the 
process of adjacency analysis can be used to measure properties 

of boundaries between colour pattern elements. The underlying 
argument for this type of analysis is that the relative size, abun-
dance, colour, brightness and adjacency of the patches within a 
colour pattern, and the chromatic or achromatic contrast of the 
boundaries between adjacent patches, influence its signalling prop-
erties (Endler et al., 2018; Green et al., 2018; Shapley & Hawken, 
2011). These  parameters also define the properties of the edges 
between and within parts of visual scenes and textures. BSA (as 
well as CAA and VCA) is also capable of quantifying possible ef-
fects of viewer perspective and movement (Endler et al., 2018). For 
a detailed introduction to BSA, possible future research and guid-
ance on parameter choices, please refer to the original publication 
(Endler et al., 2018) and empirical studies using BSA (e.g. Sibeaux, 
Cole, et al., 2019, 2019). For detailed equations and information 
on modifications of parameters since original publication, see the 
Supplemental Material.

2.6.4 | Local edge intensity analysis and ΔS 
edge maps

Boundary strength analysis depends on a segmented image with 
clearly delineated (clustered) colour pattern elements (Endler et 
al., 2018). However, the segmentation process removes a large de-
gree of subthreshold information, particularly smooth gradients of 
brightness and colour which the viewer may perceive. For this pur-
pose, we provide LEIA, as a way of quantifying edge properties in an 
image or ROI (Region of interest) that does not rely on a segmented 
input. By comparing each pixel to its horizontal, vertical and diagonal 
neighbours LEIA quantifies edge intensities in terms of colour and 
luminance contrast in log-linear RNL opponent space (Renoult et al., 
2017). The result can be visualized as ‘ΔS Edge Images’ (Figure 7). 
BSA weights the strength of boundary classes according to their 
global (across an entire image or ROI) relative abundance, whereas 
LEIA provides a local measurement of edge intensity on roughly 
the scale of an edge detecting receptive field. This approach allows 
one to consider edge contrast at the scale of the functional units 
(receptive fields) at which low level edge and feature detection are 
thought to take place (Marr, 2010; Marr & Hildreth, 1980). While 
LEIA is suited to the investigation of similar aspects of colour pat-
tern design and function as BSA, it can do this without the need for 
clustering an image, while using a more neurophysiological approach 
than BSA. We recommend that LEIA should be used on images which 
have first been controlled for acuity (to remove imperceptible edge/
gradient information) and images which have also been through the 
RNL ranked filter, so that local chromatic and luminance edges have 
been reconstructed to their maximal values. LEIA also provides nu-
merical output describing the distribution of edge intensities across 
an image. These parameters are specifically designed to be robust 
in the case of non-normally distributed edge intensities in an image 
(e.g. a small conspicuous object on a homogeneous background). 
Local edge contrast can be visualized as ΔS edge intensity images 
(Figure 7b,c).

F I G U R E  8   Colour map in a log-transformed Receptor Noise 
Limited Model (RNL) chromaticity space of the non-UV information 
in Figure 5c. The axes are automatically labelled based on the 
names of the receptor channels used to create each dimension of 
colour, for example the X-axis (RNL X dimension) is mw:lw, showing 
that mw-dominant colours are on the left, and lw-dominant 
colours are on the right of the plot. X and Y are defined in equation 
4 of Hempel de Ibarra et al. (2001). Darker parts of the cloud 
indicate more pixels in that ROI are located at that coordinate. The 
boundary around each ROI pixel cloud reflects 1 ΔS. In this case, 
the flower and its background do not overlap. For tetra-chromatic 
colour maps, the Z-axis is represented as a stack of X&Y maps (see 
Supplemental Material)
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2.7 | Step 7: Data visualization

We provide a range of novel approaches for data visualization. 
Calibrated digital photography and the coupled transformation 
of image data into psychophysical colour spaces provides a chal-
lenge but also an opportunity for visualization. We have already 
introduced the ΔS edge intensity images and extend that selec-
tion with colour maps, XYZ opponency images and saturation 
images.

2.7.1 | ‘Colour maps’ and ‘XYZ chromaticity and 
saturation images’

The representation of chromatic information in colour spaces is a use-
ful tool for data visualization in visual ecology (Endler & Mielke, 2005; 
Gawryszewski, 2018; Maia, Eliason, Bitton, Doucet, & Shawkey, 2013; 
Renoult et al., 2017). To date, most studies present their data as a scat-
tering of points, which are either discrete measurements taken with 
spectrometers, or the mean centroids of image ROI cone-catch values. 
Techniques such as area or volume overlap between point clouds, or 
permutation analysis are then used to determine how dissimilar two 
colour patches are (e.g. Endler & Mielke, 2005; Kemp et al., 2015; Maia 
& White, 2018; Stoddard & Prum, 2008).

Colour space data visualizations generally do not incorporate any 
spatial (colour pattern) information. The use of calibrated digital im-
aging provides thousands, or even millions of colour measurements 
within each ROI, capturing the entire range of chromatic gradients 
present in any natural pattern. Using the log transformed oppo-
nent colour space (Hempel de Ibarra et al., 2001; Kelber, Vorobyev, 
& Osorio, 2003; Renoult et al., 2017), we provide representations 
of spatio-chromatic information in a perceptually calibrated colour 
space. ‘Colour Maps’ allow for the representation of entire visual 
scenes in a chromaticity diagram, in addition to the abundance of 
colours across part of the image (Figure 8). Among other purposes, 
colour maps may be used for visualizations and investigations of 
chromatic background matching. The overlap of ROIs in colour space 
can be expressed as an abundance weighted percentage. QCPA in-
tegrates tools which enable colour maps to be flexibly combined and 

compared between image sections, or measurements taken from 
multiple images.

We also introduce the ability to convert cone-catch images to 
RNL XYZ chromaticity and saturation images, allowing visualization 
and measurement of the independent axes of colour in a di- tri- or 
tetra-chromatic image (showing the Euclidean distance of each pixel's 
RNL XYZ axes coordinates), in addition to generating a saturation image 
(Euclidean distance of each pixel to the achromatic point) (Figure 9).

2.7.2 | Step 8: Interpreting QCPA output

Quantitative Colour Pattern Analysis provides a huge range of met-
rics from each image (currently 181 parameters). Some of these 
parameters likely correlate well with aspects of animal evolution, 
behaviour and neurophysiology, while others are likely to show no 
signal. Likewise, some parameters will operate synergistically with 
each other, while others are independent or antagonistic. Moreover, 
these relationships could be fundamentally different between taxa, 
meaning caution should be used when comparing results between 
highly divergent taxa (such as vertebrate vs. invertebrate systems). 
QCPA can be used to address specific hypotheses linking one or a 
small subset of parameters (e.g. mean animal vs. background lumi-
nance contrast) to a response variable (e.g. predator attack rates) 
based on the context of the task. Such experiments require highly cal-
ibrated environments and stimuli where confounding influences on 
the perception of specific spatial, chromatic or temporal properties 
of a visual stimulus are controlled for (reviewed in Shapley & Hawken, 
2011). However, colour patterns can be quantified in a great number 
of parameters, all of them capturing different aspects of chromatic, 
achromatic and spatial properties or combinations thereof (of which 
QCPA only captures a few).

Commonly used terms such as ‘Complexity’, ‘Conspicuousness’ 
or ‘Similarity’ should be considered as umbrella terms describing per-
ceptual consequences caused by the variation of physical properties 
of colour patterns and their visual backgrounds (which often cannot 
be described by a single parameter). The lack of empirical testing of 
many QCPA parameters (and those of most other pattern analyses) 
makes it hard to offer broad recommendations for parameter choice 

F I G U R E  9   An example of the red-
green (lw:mw) opponent channel (X), blue-
yellow ((lw + mw):sw) channel (Y) and the 
UV channel (Z) where the colour indicates 
the position of a pixel along that axis. 
The saturation map shows the Euclidean 
distance of each pixel to the achromatic 
point
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across the huge diversity of possible contexts, especially when mak-
ing observations in natural or nature-like levels of spatio-chromatic 
complexity. The ‘simpler’ the research question and the more con-
trolled the experiment, the more adequate it is to consider one or a 
few pattern parameters in isolation.

Therefore, when there is no a priori reason to choose specific pa-
rameters, we recommend the use of multidimensional data analyses, 
such as principal component analysis (PCA), metric- and non-met-
ric multidimensional scaling (MMDS/NMDS) or similar multivariate 
approaches such as factor analysis to identify correlations between 
pattern analysis output and animal behaviour (e.g. Sibeaux, Cole, et 
al., 2019, 2019) or to distinguish between taxa (e.g. Chan et al., 2019; 
Ligon et al., 2018; Winters et al., 2018). Doing so can be thought of 
as operating in a multidimensional pattern space (for discussion see 
Cuthill, 2019 and Stoddard & Osorio, 2019). Such a pattern space 
can include categorical data (e.g. presence/absence), data from other 
pattern analyses (Table 1) as well as environmental data.

Reducing the dimensionality of such data comes with consider-
able statistical challenges. However, it is possible to avoid many is-
sues such as bias from the structure of datasets or false positives (e.g. 
Benjamini & Hochberg, 1995; Osborne, Osborne, Costello, & Kellow, 
2011). While obvious for the use of QCPA, interpreting many po-
tentially interacting pattern parameters is of increasing importance 
given a steadily growing diversity of analytical methods (Table 1) and 
the desire to incorporate effects of higher-level processing of visual 
information into the analysis of visual signals.

3  | DISCUSSION

Quantitative Colour Pattern Analysis is a framework for the analysis 
of colour patterns in nature at an unprecedented quantitative and 
qualitative level. At its core, QCPA uses the advantages  offered 
by calibrated digital photography to enable the use of existing 

TA B L E  1   A comparison of the Quantitative Colour Pattern Analysis framework to other existing pattern analyses and frameworks. 
For patternize see van Belleghem et al. (2018). For PAT-GEOM see Chan, Stevens, and Todd (2018). For PAVO see Maia et al. (2019). For 
NaturePatternMatch see Stoddard et al. (2014). For Colourvision see Gawryszewski (2018). We would also like to point out an approach by 
Pike (2018) which shares similarities with NaturePatternMatch



12  |    Methods in Ecology and Evoluon van den BeRG et al.

spatio-chromatic colour pattern analyses (Figure 1). It also improves 
existing methodologies used in visual ecology by introducing a user-
friendly and open-source framework which incorporates the ability 
to contextualize visual scenes according to photoreceptor spectral 
sensitivities, receptor noise levels and abundances, natural light en-
vironments, complex natural backgrounds, spatial acuity and view-
ing distance (Table 1).

The individual modelling components of QCPA rely on approx-
imations and assumptions, which are based on our best current 
understanding of the underlying biological processes. As such, 
it is important to be aware of the limitations and underlying as-
sumptions of the individual components of QCPA, some of which 
we discuss. QCPA makes extensive use of the receptor noise lim-
ited model (RNL) which has been behaviourally validated in var-
ious species including: humans, honeybees, birds, lizards, reef 
fish and freshwater fish (e.g. Champ, Vorobyev, & Marshall, 2016; 
Escobar-Camacho, Marshall, & Carleton, 2017; Vorobyev et al., 
2001; Vorobyev & Osorio, 1998). However, the RNL model and 
RNL colour space is one of various available visual models and co-
lour spaces that have also considered behavioural context to some 
degree and which may be considered as alternatives (reviewed in 
Gawryszewski, 2018; Renoult et al., 2017).

The RNL model (or any other visual model) is unlikely to rep-
resent the perceptual complexity of natural visual scenes for all 
species across all light regimes. To avoid making false assumptions, 
it is necessary to consider the perceptual context in which it is ap-
plied and how this context may violate model assumptions (Kelber, 
2019; Lind, 2016; Olsson et al., 2018; Price, Stoddard, Shevell, & 
Bloch, 2019). For example, behavioural experiments have shown 
varying sensitivity to differences in colour in specific quadrants of 
colour space relevant to the behavioural ecology of species (Caves 
et al., 2018; Sibeaux, Cole, & Endler, 2019; Sibeaux, Keser, Cole, 
Kranz, & Endler, 2019). Another aspect that needs further investi-
gation is the question of how distances in RNL colour space scale 
with behavioural thresholds across a wide range of visual systems 
and perceptual contexts (e.g. Fleishman et al., 2016). QCPA ap-
plies the log-transformed RNL colour space to minimize, but not 
remove, the impact of such threshold distortions (Gawryszewski, 
2018; Vorobyev et al., 2001; Vorobyev & Osorio, 1998). Overall, 
the less validated model parameters are and the more profound 
assumption violations may be, the more likely deviations from 
the assumption that 1 ΔS equates to a behavioural threshold 
(e.g. a 75% success rate in a pairwise choice paradigm) will occur. 
Furthermore, the photopic version of the RNL, which is used here 
was developed to model colour discrimination near the achromatic 
point under photopic conditions (Vorobyev et al., 2001; Vorobyev 
& Osorio, 1998). However, when visual systems operate in crepus-
cular or scotopic conditions, the retinal stimulation to visual infor-
mation becomes the result of both cone and rod stimulation or rod 
stimulation only (Kelber, Balkenius, & Warrant, 2002; Olsson et al., 
2015; Osorio et al., 2004; Veilleux & Cummings, 2012; Vorobyev 
& Osorio, 1998). Another example highlighting context-specific 
threshold modelling is the distinction between detection and 

discrimination thresholds which has direct implications on the ap-
plication of the RNL (Lind, 2016; Price et al., 2019).

Quantitative Colour Pattern Analysis enables the application 
of known sensory limitations to filter the information that is sub-
sequently processed by low-level vision. While a range of param-
eters provided by the QCPA have been shown to be of importance 
in some species, many remain to be applied and investigated in a 
broad range of behavioural contexts and visual systems. To what 
extent the observed parameterization of visual information bears 
ecological or behavioural significance subsequently must be in-
ferred and calibrated using behavioural experimentation (Olsson 
et al., 2018). QCPA provides numerous parameters based on con-
cepts shown to be relevant to a range of natural contexts (Endler, 
1991, 2012; Endler et al., 2018; Endler & Houde, 1995; Rojas et 
al., 2014; Rojas & Endler, 2013; Sibeaux, Cole, et al., 2019, 2019; 
Winters et al., 2018). However, it also provides parameters which 
are yet to be validated, particularly on a quantitative scale. This 
provides great potential for future research as well as parameter 
calibration using behavioural experiments and highlights the im-
portance and feasibility of a reductionist approach to the quan-
tification of colour patterns and their function (sensu Stoddard 
& Osorio, 2019). Given the ability to link QCPA parameters and 
animal behaviour, we encourage the use of QCPA to design care-
fully calibrated behavioural experiments in the context of com-
plex colour patterns and visual backgrounds.

There is considerable potential to improve QCPA by continuing to 
refine, test and develop its components. For example, we currently 
have not considered the loss of spatial and chromatic information due 
to light scattering or absorption, particularly in aquatic or dusty envi-
ronments (e.g. Nilsson, Warrant, & Johnsen, 2014). Furthermore, many 
animal eyes do not have uniform retinas which, in combination with 
diversity in eye movements and eye shapes, leads to a little investi-
gated diversity of visual perception in addition to the already discussed 
perceptual diversity in animal visual systems (Daly, How, Partridge, 
& Roberts, 2018; Hughes, 2018; Land, 1999; Land & Nilsson, 2012; 
Sibeaux et al., 2019; Willis & Anderson, 2002). QCPA could also be 
adapted to investigate moving patterns (e.g. Endler, 2012; Endler et 
al., 2018), given recent advances in the understanding of colour pat-
tern functionality in the context of motion (Cuthill, Matchette, & Scott-
Samuel, 2019; Fleishman, 1986; Hughes, Troscianko, & Stevens, 2014; 
Murali, 2018; Nityananda et al., 2018; Ramos & Peters, 2017; Umeton, 
Tarawneh, Fezza, Read, & Rowe, 2019). There are types of visual in-
formation we have barely begun understanding, such as polarization 
vision, the use of fluorescence as well as their interaction with an ani-
mal's perception of colour and brightness (Foster et al., 2018; Marshall, 
Cortesi, de Busserolles, Siebeck, & Cheney, 2019; Marshall & Johnsen, 
2017; Smithers, Roberts, & How, 2019).

Recent years have seen a growing diversity of colour pattern anal-
yses (Table 1). While some use conceptually similar pattern statistics to 
QCPA, others provide alternative approaches such as scale invariant 
feature (SIFT) analysis-based metrics (Lowe, 1999) and combinations 
with models to describe cognitive aspects of attention (Rosenholtz, Li, 
Jin, & Mansfield, 2010). The concept of QCPA-based pattern analysis 
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is entirely compatible with any of these methods. In fact, QCPA does 
not currently include any computer vision-mediated object recognition 
or figure-ground segregation. However, QCPA provides a promising 
platform for future implementations of computational approaches to 
higher level neuronal processing of visual information (e.g. Serre, 2014).

Quantitative Colour Pattern Analysis provides an unprecedented 
level of accessibility and user-friendliness by being free, open-source, 
graphical user interface mediated and accompanied by a vast body of 
support material. QCPA presents a comprehensive, dynamic and co-
herent work process starting with the acquisition of calibrated digital 
images and ending with the extraction of behaviourally and neurophys-
iologically contextualized pattern space. ImageJ has been the software 
platform of choice for image analysis for decades. Its architecture 
minimizes the risk of non-compatibilities due to future patches of 
co-dependent packages (often seen in R or Matlab) making QCPA (and 
MICA) well equipped for the future. ImageJ and MICA provide their 
own, rich, sets of image and pattern analysis and manipulation tools 
that QCPA profits from and can interact with. For example, GabRat 
(Troscianko et al., 2017) can be used in combination with QCPA to in-
vestigate chromatic aspects of disruptive colouration in the context of 
spatial acuity. Furthermore, it is possible to use QCPA and MICA with a 
simple smartphone or cheap digital camera and a colour chart for cali-
bration. While it is advantageous to have access to spectrophotometry 
for comparison of modelling output, this is no longer a requirement and 
reduces the cost for equipment drastically.

In conclusion, there are many theories and predictions regard-
ing the design, function and evolution of colour patterns in nature 
which, if at all, have only been investigated in comparably simplis-
tic or qualitative ways. QCPA provides a powerful framework to 
investigate these theories in a novel quantitative and qualitative 
context.
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