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Abstract
1.	 Non‐native	species	can	dominate	plant	communities	by	competitively	displacing	
native	species,	or	because	environmental	 change	creates	conditions	 favourable	
to	non‐native	species	but	unfavourable	to	native	species.	We	need	to	disentangle	
these	mechanisms	so	that	management	can	target	competitively	dominant	spe-
cies	and	reduce	their	impacts.

2.	 Joint‐species	 distribution	models	 (JSDMs)	 can	 potentially	 quantify	 competitive	
impacts	by	simultaneously	modelling	how	species	respond	to	environmental	vari-
ation	and	to	changes	in	community	composition.	We	describe	a	JSDM	to	model	
variation	in	plant	cover	and	show	how	this	can	be	applied	to	compositional	data	to	
detect	dominant	competitors	that	cause	other	species	to	decline	in	abundance.

3.	 We	applied	the	model	to	an	experiment	in	an	invaded	grassy‐woodland	commu-
nity	 in	Australia	where	we	manipulated	biomass	 removal	 (through	 slashing	and	
fencing	 to	 prevent	 grazing	 by	 kangaroos)	 along	 a	 fertility	 gradient.	Non‐native	
species	dominated	plant	cover	at	high	fertility	sites	in	the	absence	of	biomass	re-
moval.	Results	from	the	JSDM	identified	three	of	the	72	non‐native	plant	species	
(Bromus diandrus,	Acetosella vulgaris	and	especially	Avena fatua)	as	having	a	strong	
competitive	impact	on	the	community,	driving	changes	in	composition	and	reduc-
ing	the	cover	of	both	native	and	non‐native	species,	particularly	 in	the	absence	
of	 grazing.	 The	 dominant	 non‐native	 grasses	 Bromus diandrus and Avena fatua 
were	among	the	tallest	species	in	the	community	and	had	the	greatest	impact	on	
shorter‐statured	species,	most	 likely	through	competition	for	 light	under	condi-
tions	of	high	fertility	and	low	grazing.

4. Synthesis.	We	demonstrate	a	method	to	measure	competitive	impact	using	a	joint‐
species	distribution	model,	which	allowed	us	to	identify	the	species	driving	com-
positional	change	through	competitive	displacement,	and	where	on	the	landscape	
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1  | INTRODUC TION

Dominance	 by	 non‐native	 plant	 species	 is	 frequently	 associated	
with	declines	in	the	abundance	and	diversity	of	native	species	(Vilà	
et	al.,	2011).	These	changes	can	occur	if	non‐native	species	are	su-
perior	competitors,	such	that	 increasing	abundance	of	non‐natives	
directly	 drives	 declines	 in	 native	 species	 through	 competitive	 dis-
placement	(Levine	et	al.,	2003;	MacDougall,	Gilbert,	&	Levine,	2009).	
Alternatively,	increasing	dominance	by	non‐native	species	could	be	
a	 consequence	 of	 changing	 environmental	 conditions	 that	 favour	
non‐natives	 over	 natives	 due	 to	 species	 in	 each	 group	 having	 dif-
ferent	environmental	tolerances	(HilleRisLambers,	Yelenik,	Colman,	
&	Levine,	2010;	Shea	&	Chesson,	2002).	As	plant	invasions	are	fre-
quently	accompanied	by	environmental	perturbations	(Pysek	et	al.,	
2010;	 Vellend	 et	 al.,	 2017),	 it	 can	 be	 difficult	 to	 determine	when	
non‐native	 dominance	 is	 driven	 by	 competitive	 impact	 (Godsoe,	
Franklin,	&	Blanchet,	2017;	Soberón,	2010).	 In	 fact,	many	non‐na-
tive	species	appear	to	have	little	impact	on	the	communities	they	in-
vade	(Lai,	Mayfield,	Gay‐des‐combes,	Spiegelberger,	&	Dwyer,	2015;	
Williamson	&	Fitter,	1996).	To	manage	non‐native	species	appropri-
ately,	we	need	ways	to	identify	which	non‐native	species,	if	any,	are	
having	 strong	 competitive	 impacts,	 and	 where	 those	 impacts	 are	
greatest	(Gallien,	Münkemüller,	Albert,	Boulangeat,	&	Thuiller,	2010;	
Ricciardi,	Hoopes,	Marchetti,	&	Lockwood,	2013).

Joint‐species	 distribution	 models	 (JSDM)	 are	 extensions	 of	
standard	 species	 distribution	 models	 that	 have	 the	 potential	 to	
measure	 both	 competitive	 impact	 and	 species	 responses	 to	 en-
vironmental	 conditions	 using	 community	 composition	 data	 from	
sites	 along	known	environmental	 gradients	 (Kissling	et	 al.,	 2012;	
Nieto‐Lugilde,	 Maguire,	 Blois,	 Williams,	 &	 Fitzpatrick,	 2018).	
JSDMs	 use	 data	 on	 species	 composition	 across	multiple	 sites	 to	
jointly	model	individual	species	responses	to	environmental	varia-
tion,	interpreting	residual	among‐species	covariation	as	potentially	
resulting	from	interactions	such	as	competition	(Latimer,	Banerjee,	
Sang,	Mosher,	&	Silander,	2009;	Ovaskainen,	Hottola,	&	Shtonen,	
2010;	Pollock	 et	 al.,	 2014;	Warton	et	 al.,	 2015).	 To	date,	 JSDMs	
have	mostly	 been	 used	 to	model	 presence–absence	 data,	where	
large	negative	residual	covariance	between	two	species	could	be	
interpreted	as	 the	competitive	displacement	of	one	species	 from	
sites	that	both	could	occupy.	However,	presence–absence	data	can	
only	detect	competitive	impacts	that	result	in	complete	exclusion	

from	 a	 site,	 yet	 dominance	 without	 exclusion	 is	 an	 important	
component	 of	 species	 impact	 (Levine	 et	 al.,	 2003;	 Seabloom	 et	
al.,	2013).	Here,	we	use	a	method	proposed	by	Clark,	Nemergut,	
Seyednasrollah,	Turner,	and	Zhang	 (2017)	 to	model	cover	data	 in	
a	JSDM	that	overcomes	the	problem	of	zero	inflation	that	is	typ-
ically	 inherent	 in	these	data	 (see:	Joint‐species	tobit	modelling	 in	
Materials	and	Methods;	Figure	1).	With	this	approach,	we	can	de-
tect	declines	in	species	abundance	associated	with	the	presence	of	
competitors,	which	should	provide	greater	resolution	in	quantify-
ing	competitive	impacts.

Even	with	 these	 improvements	 to	 JSDMs,	 separating	 environ-
mental	 responses	 from	 competitive	 impacts	 is	 challenging	 (Adler	

competitive	impacts	were	greatest.	This	information	is	central	to	managing	plant	
invasions:	 by	 targeting	 dominant	 non‐native	 species	with	 large	 competitive	 im-
pacts,	 management	 can	 reduce	 impacts	 where	 they	 are	 greatest.	 We	 provide	
details	of	 the	modelling	procedure	and	 reproducible	 code	 to	encourage	 further	
application.

K E Y W O R D S

grasslands,	grazing,	impact,	invasive	species,	joint‐species	distribution	model	(JSDM),	light	
competition,	nutrient	addition,	tobit	regression

F I G U R E  1  A	simulated	example	of	tobit	regression.	Black	circles	
show	observed	cover	for	a	species	measured	at	points	along	an	
environmental	gradient.	Cover	declines	as	environmental	suitability	
decreases,	eventually	reaching	a	point	where	the	environment	is	
unsuitable	for	the	species	and	cover	is	zero.	Beyond	that	point,	
environmental	suitability	continues	to	decline	but	cover	remains	
at	zero.	These	zero	values	are	censored	in	that	zero	cover	provides	
partial	information	about	the	latent	suitability	(open	circles):	it	tells	
us	a	site	is	unsuitable	but,	beyond	that,	does	not	measure	how	
unsuitable.	Tobit	regression	aims	to	estimate	latent	suitability	(the	
open	circles,	which	are	uncensored)	by	fitting	a	regression	line	(red)	
to	the	cover	data,	treating	the	zero	values	as	censored
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et	al.,	2018),	suggesting	we	should	apply	JSDMs	to	systems	where	
the	 primary	 environmental	 drivers	 of	 species	 abundances	 are	
well	 understood	 (Giannini,	 Chapman,	 Saraiva,	 Alves‐dos‐Santos,	
&	 Biesmeijer,	 2013;	 Wisz	 et	 al.,	 2013;	 Zurell,	 Pollock,	 &	 Thuiller,	
2018).	 In	 grasslands	 around	 the	 world,	 non‐native	 plant	 species	
often	increase	in	dominance	at	higher	fertility	sites	and	when	graz-
ing	is	excluded	(Seabloom	et	al.,	2015).	This	shift	in	dominance	has	
been	attributed	 to	 the	competitive	displacement	of	native	species	
by	non‐native	species	that	are	competitively	superior	under	condi-
tions	of	high	resource	availability	and	low	grazing.	This	competitive	
superiority	arises	because,	relative	to	native	species,	many	non‐na-
tive	grassland	species	have	traits	associated	with	rapid	growth	and	
high	biomass	(Ordonez,	Wright,	&	Olff,	2010;	Van	Kleunen,	Weber,	
&	 Fischer,	 2010),	 traits	 that	 are	 likely	 beneficial	when	 there	 is	 lit-
tle	 aboveground	 disturbance	 and	 competition	 for	 light	 is	 intense	
(Borer	 et	 al.,	 2014;	 Hautier,	 Niklaus,	 &	Hector,	 2009).	 These	 trait	
differences	between	native	and	non‐native	 species	 should	be	 less	
important	under	herbivory	where	biomass	removal	may	reduce	any	
competitive	advantage	of	fast	growth	(Lind	et	al.,	2013).

We	aim	to	test	these	ideas	using	data	from	a	7‐year	experiment	
that	tracked	changes	 in	plant	cover	over	time	following	herbivore	
exclusion	 (Driscoll,	2017).	Sites	were	arrayed	along	a	fertility	gra-
dient	 and	 we	 predicted	 that	 non‐native	 species	 would	 dominate	
under	 high	 fertility	 and	 would	 increase	 in	 dominance	 following	
herbivore	exclusion.	We	used	JSDMs	to	model	how	species	cover	
varied	with	fertility,	grazing	and	rainfall,	and	identified	species	with	
strong	negative	residual	covariances,	suggestive	of	strong	compet-
itive	impacts	on	the	community.	We	predicted	that	(a)	competitive	
impacts,	and	hence	the	magnitude	of	negative	residual	covariances,	
would	 increase	 in	 the	 absence	 of	 grazing	 where	 competition	 for	
light	would	be	most	intense	and	(b)	if	competition	for	light	caused	
competitive	displacement,	the	strength	of	negative	covariances	be-
tween	species	(reflecting	the	strength	of	competitive	interactions)	
should	correlate	with	trait	differences	associated	with	growth	and	
light	capture.

2  | MATERIAL S AND METHODS

2.1 | Study system

This	study	was	carried	out	in	a	box‐gum	grassy	woodland	reserve	in	
south‐eastern	Australia	(Pinnacle	Reserve,	ACT.	35°15′S,	149°02′E;	
620–708	m	a.s.l.).	The	vegetation	of	the	reserve	comprised	a	scat-
tered	 overstorey	 of	 trees,	 predominantly	 Eucalyptus blakelyi and 
E. melliodora,	 with	 a	 dense	 understorey	 of	 grasses	 and	 forbs.	 The	
vegetation	has	been	extensively	modified	over	 the	 last	150	years,	
primarily	by	tree	clearance	and	livestock	grazing.	Livestock	grazing	
ceased	 in	 the	 reserve	 in	1993	and	 the	dominant	herbivore	 is	now	
the	 native	 eastern	 grey	 kangaroo	 (Macropus giganteus),	which	was	
at	moderately	high	density	over	 the	course	of	 the	study	 (1.8–2.2/
h1;	 Driscoll	 2017).	 The	 understorey	 vegetation	was	 dominated	 by	
a	mix	of	native	and	non‐native	species,	with	many	non‐native	spe-
cies	introduced	for	pasture	improvement	(e.g.	Dactylis glomerata and 

Trifolium subterraneum)	or	as	pasture	contaminants	(e.g.	Avena fatua 
and Bromus diandrus).	 Mean	 annual	 precipitation	 in	 the	 area	 was	
~660	mm/year	 and	 daily	maximum	 temperatures	 range	 from	 9°C	
to	33°C	during	the	spring	growing	period	and	as	low	as	4°C	in	the	
preceding	winter	months	 (Bureau	of	Meteorology,	2017).	Soils	are	
typically	of	relatively	low	fertility,	shallow	and	rocky,	although	some	
deeper	soils	occur	on	slopes	and	in	depressions.

2.2 | Data collection

We	 used	 data	 from	 an	 experiment	 that	 tested	 whether	 different	
management	 interventions	 can	 increase	 native	 grassland	 species	
richness	(Driscoll,	2017).	In	2010,	10	sites	were	established	in	open,	
unshaded	areas	along	a	natural	 fertility	gradient	 (see	below).	Sites	
ranged	from	relatively	uninvaded	communities	to	communities	dom-
inated	by	non‐native	 species.	Each	 site	 contained	10	permanently	
marked	5	m	×	5	m	plots	separated	by	at	least	1	m.	One	of	10	different	
experimental	treatments	was	applied	to	each	plot,	but	we	use	only	
a	 subset	 of	 the	 treatments	 in	 this	 study	 (see	Appendix	 S1,	 Figure	
S1).	From	2011,	 five	plots	at	each	site	were	 fenced	 in	a	single	en-
closure	to	exclude	mammalian	herbivores	(predominantly	kangaroos	
but	also	rabbits).	One	plot	inside	and	one	plot	outside	the	fence	had	
its	 aboveground	biomass	 removed	each	 year	 by	 slashing,	 and	one	
plot	 inside	and	one	plot	outside	the	fence	was	 left	unmanipulated	
(unslashed).	We	analysed	these	four	treatments	at	each	site	(grazed,	
unslashed;	grazed,	slashed;	fenced,	unslashed;	and	fenced,	slashed),	
allowing	 us	 to	 test	whether	 the	 competitive	 impact	 of	 non‐native	
species	was	stronger	in	the	absence	of	biomass	removal	by	grazing	
and/or	slashing,	and	to	assess	whether	uniform	biomass	removal	by	
slashing	had	similar	effects	to	herbivore	grazing.

Vegetation	 surveys	 were	 conducted	 every	 year	 from	 2010	 to	
2016,	except	for	2014.	In	late	spring	(October)	of	each	year,	the	per	
cent	cover	of	all	vascular	plant	species	was	visually	estimated	in	four	
1	m	×	1	m	quadrats	placed	 in	 the	 corners	of	each	plot	 (only	 three	
quadrats	 per	 plot	were	 surveyed	 in	2013	due	 to	 time	 constraints).	
We	use	plant	cover	as	a	proxy	for	abundance.	Our	dataset	thus	com-
prised	6	years	of	vegetation	cover	data	from	160	quadrats	across	40	
plots.	 In	total,	we	had	920	quadrat	 level	vegetation	measurements,	
comprising	10,780	cover	estimates	for	142	species	(70	native	and	72	
non‐natives;	see	Appendix	S1,	Figure	S2	for	more	detail).	In	2015	and	
2016,	we	measured	the	traits	of	abundant	species,	defined	as	those	
comprising	the	first	80%	of	total	recorded	cover	at	each	site.	At	each	
site,	we	measured	traits	associated	with	growth	rate	and	 light	cap-
ture	on	5–10	adult	individuals	in	each	of	the	unslashed	plots	following	
standard	protocols	(Pérez‐Harguindeguy	et	al.,	2013).	These	traits	in-
cluded	canopy	height	(m),	maximum	height	(m),	canopy	width	(m),	leaf	
length	and	width	(cm)	and	specific	leaf	area	(mm2/mg;	SLA).	To	avoid	
the	influence	of	outliers,	we	used	90th	quantile	values	from	all	mea-
sured	plants	to	estimate	species	maximum	potential	for	each	trait.

Total	 extractable	 nitrogen	 at	 sites	 along	 the	 fertility	 gradient	
ranged	 from	615	ppm	to	2,420	ppm	 (Driscoll	&	Strong,	2017).	Total	
soil	 carbon,	 nitrogen	 and	 phosphorus	 levels,	 as	 well	 as	 extractable	
nitrogen	 and	 phosphorus,	 all	 covaried	 strongly	 across	 the	 10	 sites	
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(Appendix	S1),	and	we	used	total	extractable	nitrogen	as	a	proxy	for	
overall	soil	fertility.	Grasslands	in	this	region	also	respond	strongly	to	
variation	in	annual	rainfall	(Prober,	Thiele,	&	Speijers,	2013;	Figure	S3).	
We	obtained	data	on	total	rainfall	for	the	4	months	prior	to	each	sur-
vey	 (August–November)	from	the	Australian	Bureau	of	Meteorology	
(BOM,	 Appendix	 S1)	 as	 a	 proxy	 for	 water	 availability.	 Total	 rainfall	
during	these	4	months	ranged	from	185	to	414	mm	over	the	7	years	
of	the	study.	Both	total	nitrogen	and	spring	rainfall	were	centred	and	
scaled	prior	to	model	fitting.

2.3 | Analyses

2.3.1 | Relative dominance of non‐native species

We	examined	how	the	dominance	of	non‐native	species	changed	over	
time,	in	relation	to	soil	fertility	and	rainfall,	and	in	response	to	the	ex-
perimental	 treatments	 (fencing	 and	 slashing).	Our	 response	 variable	
was	the	proportion	of	non‐native	species	cover	 in	each	plot	 in	each	
year.	This	was	calculated	by	taking	the	average	cover	of	each	species	
across	quadrats	in	each	plot	in	each	year,	summing	these	averages	to	
get	the	total	average	cover	of	all	species	in	each	plot	in	each	year,	and	
calculating	 the	proportion	of	 total	cover	comprising	non‐native	spe-
cies.	We	logit‐transformed	this	proportion	and	modelled	it	as	a	linear	
function	of	soil	fertility,	fitting	a	separate	intercept	and	slope	for	each	
experimental	 treatment	 (grazed/fenced	 and	 slashed/unslashed)	 and	
for	each	year.	We	included	rainfall	by	specifying	a	single	coefficient	for	
the	effect	of	inter‐annual	rainfall	variation	on	the	proportion	of	non‐
native	cover.	The	model	structure	is	described	in	detail	in	Appendix	S2.

2.3.2 | Joint‐species tobit modelling

To	 test	 whether	 dominance	 by	 non‐native	 species	 was	 a	 conse-
quence	of	environmental	responses	or	competitive	displacement,	we	

specified	a	JSDM	that	modelled	the	cover	of	each	species	in	response	
to	 variation	 in	 soil	 fertility,	 rainfall	 and	 experimental	 treatment	
(JSDM1).	This	model	 included	a	single	covariance	matrix	to	capture	
unexplained	 residual	 variation,	 with	 negative	 residual	 covariances	
potentially	indicating	competitive	impacts.	We	fitted	a	second	model	
(JSDM2)	to	test	whether	competitive	impacts	varied	with	grazing	and	
slashing	treatments.	JSDM2	had	the	same	structure	as	JSDM1,	but	
we	fitted	separate	residual	covariance	matrices	for	each	experimental	
treatment,	which	allowed	us	to	test	whether	the	magnitude	of	nega-
tive	residual	covariances	was	greater	 in	the	absence	of	biomass	re-
moval	where	light	competition	should	be	most	intense.	We	analysed	
data	 for	 the	years	2013–2016,	which	were	 the	years	during	which	
the	experimental	treatments	showed	clear	effects	(see:	Figure	2	and	
Figure	S4b),	and	restricted	our	analyses	to	species	present	in	>20%	
of	plots	measured	between	2013	and	2016	(N	=	30,	14	native	and	16	
non‐native	species;	Figure	S2).	These	species	were	present	at	>50%	
of	sites	in	each	year	and	were	thus	sufficiently	widespread	that	ab-
sences	were	more	likely	due	to	unsuitable	environmental	conditions	
or	competitive	displacement	rather	than	dispersal	limitation.	We	ana-
lysed	cover	data	at	the	quadrat	 level	because	we	expected	species	
interactions	to	be	most	evident	at	this	scale.	Zero	cover	was	recorded	
when	a	species	was	absent	from	a	quadrat.	Even	after	restricting	our	
analysis	to	the	30	most	common	species,	most	of	our	data	comprised	
zero	values	(~69%;	4,396	cover	estimates,	10,004	absences).

We	 used	 tobit	 regression	 to	 accommodate	 zero	 inflation	 by	
treating	absences	as	censored	data	(Clark	et	al.,	2017;	Tobin,	1958).	
Censored	data	occur	when	it	is	not	possible	to	observe	a	value	be-
yond	some	limit.	In	this	case,	we	assume	there	is	an	unobserved	la-
tent	variable	that	measures	the	‘suitability’	of	each	quadrat	for	each	
species,	where	suitability	encompasses	all	biotic	and	abiotic	factors	
that	might	 influence	species	cover.	When	a	species	 is	present	 in	a	
quadrat,	we	equate	the	 latent	suitability	with	cover,	assuming	that	
higher	cover	indicates	higher	suitability	(Figure	1).	Quadrats	where	

F I G U R E  2  Proportional	cover	of	non‐native	species	(logit‐transformed)	as	a	function	of	soil	fertility	at	10	sites	measured	over	7	years	
(2010–2016	with	no	measurement	in	2014).	There	were	four	treatments	at	each	site,	which	are	plotted	separately.	Slashed	plots	are	shown	
on	the	top	line	and	unslashed	plots	on	the	lower	line,	with	filled	circles	and	solid	lines	for	fenced	plots,	and	open	circles	and	dashed	lines	for	
grazed	plots.	Fertility	is	scaled	and	standardized	as	described	in	Appendix	S1
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species	are	absent	can	be	thought	of	as	sufficiently	 low	suitability	
that	a	species	cannot	persist	but	quadrats	with	zero	cover	can	still	
vary	 in	their	underlying	suitability.	We	model	observations	of	zero	
cover	as	censored	data	arising	 from	 this	 latent	 suitability	distribu-
tion,	which	can	take	values	less	than	zero:

where	y	 is	 the	observed	 cover	 and	y*	 is	 the	 corresponding	 la-
tent	 suitability	 value.	 To	 complete	 the	model,	we	 need	 to	 specify	
a	 distribution	 for	 the	 underlying	 latent	 variable.	We	 specified	 the	
underlying	distribution	as	multivariate	normal	with	30	dimensions,	
one	for	each	species.

We	 regressed	 latent	 suitability	 (y*)	 against	 the	 environmental	
variables	soil	fertility	and	rainfall,	with	residual	variation	captured	in	
a	single	covariance	matrix	 (JSDM1).	We	specified	different	regres-
sion	coefficients	for	each	experimental	treatment,	modelled	hierar-
chically	and	included	normally	distributed	random	effects	to	account	
for	repeated	measurements	of	plots	nested	within	sites.	The	struc-
ture	of	JSDM1	is	as	follows:

JSDM 1

where	y∗
[ijkl]

 is an N‐length	vector	of	latent	suitability	values	in	year	

i	(1–3),	under	treatment	j	(1–4),	at	site	k	(1–10)	in	quadrat	l	(1–4).	s 
indexes	species	(s = 1 … N)	with	intercept	terms	measuring	average	
site	suitability	for	each	species	 in	each	treatment,	and	slope	and	
rain	terms	measuring	how	site	suitability	varied	with	soil	fertility	
and	rainfall	for	each	species	in	each	treatment.	Σ is an N	×	N cova-
riance	matrix	with	the	diagonal	containing	the	residual	variances	in	
suitability	 for	 each	 species,	 σ2,	 and	 the	 off‐diagonals	 containing	
the	residual	covariances	between	each	species	pair,	conditional	on	
the	value	of	�[ijkl].	This	matrix	has	N	*	(N	–	1)/2	=	435	unique	ele-
ments,	 with	 the	 covariance	 between	 two	 species	 defined	 as:	
Σ12 = σ1 σ2 ρ12 = Σ21.

The	covariances	describe	how	residual	variation	in	the	cover	of	
one	species	is	related	to	residual	variation	in	the	cover	of	a	second	
species.	If,	having	accounted	for	environmental	effects,	the	cover	
of	one	species	declined	 in	quadrats	when	 the	cover	of	a	 second	
species	increased,	the	residuals	of	the	two	species	would	covary	
negatively.	We	 interpreted	 negative	 covariances	 as	 due	 to	 com-
petition	on	the	grounds	that	we	had	modelled	species	responses	
to	the	major	environmental	gradients	in	these	grasslands	(fertility	
and	water	availability;	Leishman	&	Thomson,	2005;	Morgan	et	al.,	
2016;	Prober,	Thiele,	&	Speijers,	2016).	Large	negative	covariances	
imply	 potentially	 strong	 competitive	 impacts	while	 species	with	
low	cover,	or	where	cover	is	well	explained	by	environment	vari-
ables,	 will	 have	 smaller	 covariances	 because	 there	 is	 less	 resid-
ual	variation	 that	could	be	associated	with	co‐occurring	species.	
Moreover,	if	a	dominant	species	caused	several	species	to	decline	
in	cover,	 resulting	 in	strong	negative	covariances,	this	 is	 likely	to	
induce	a	pattern	of	positive	covariances	among	the	impacted	spe-
cies	because	they	would	all	tend	to	have	lower	cover	at	sites	where	
the	dominant	species	was	present	and	higher	cover	at	sites	where	
it	was	absent.

2.3.3 | Change in species covariances by treatment

Specifying	a	single	covariance	matrix	in	JSDM1	meant	the	covariances	
were	estimated	from	the	data	in	all	treatments.	In	JSDM2,	we	speci-
fied	a	separate	covariance	matrix	for	each	of	the	four	treatments:

JSDM2

where	both	 the	 coefficients	 for	 species	 s	 and	 the	 covariances	Σ 
varied	with	treatment	 j	(1–4).	Comparing	the	covariance	matrices	
for	different	treatments	in	JSDM2	allowed	us	to	evaluate	whether	
competitive	 interactions	were	 stronger	 in	plots	without	 slashing	
or	grazing.

2.3.4 | Predicting competitive impact from 
functional traits

We	predicted	that	competitive	impacts,	measured	as	the	magnitude	of	
negative	covariance	between	species,	should	be	linked	to	differences	
in	traits	associated	with	growth	and	light	capture.	To	test	this,	we	re-
gressed	 the	 posterior	 mean	 of	 the	 negative	 covariance	 parameters	
estimated	in	JSDM2	against	the	absolute	difference	in	measured	trait	
values	for	each	species	pair.	Trait	values	were	normalized	prior	to	anal-
ysis	so	that	traits	measured	using	different	units	could	be	compared	
directly.	 For	 the	 regression	models,	we	 specified	 separate	 intercept	
and	 slope	 coefficients	 for	 the	 covariance–trait	 relationships	 in	 each	
experimental	 treatment,	with	 the	 slopes	and	 intercepts	modelled	as	
drawn	from	normal	distributions	for	each	trait.

y=

⎧
⎪⎨⎪⎩

y∗, if y∗>0

0, if y∗≤0

y∗
[ijkl]

∼MultiNormal
(
�[ijkl],�

)

�[ijkl] =

⎛⎜⎜⎜⎜⎜⎜⎝

�1[ijkl]

�2[ijkl]

⋮

�N[ijkl]

⎞⎟⎟⎟⎟⎟⎟⎠

�s[ijkl]
=�interceptS[j] +�slopeS[j] ⋅ fertility[jk] +�rainS[j] ⋅rainfall[i] +�plot[jk]

�plot[jk]
∼Normal

(
�site[k]

, �2
plot

)

�site[k]
∼Normal

(
0, �2

site

)

y∗
[ijkl]

∼MultiNormal
(
�[ijkl],𝚺[j]

)

�s[ijkl]
=�interceptS[j] +�slopeS[j] ⋅ fertility[jk] +�rainS[j] ⋅rainfall[i] +�plot[jk]
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All	models	were	fitted	to	the	data	in	a	Bayesian	framework	using	
adaptive	Hamiltonian	Monte	Carlo	with	the	probabilistic	program-
ming	language	Stan	(Carpenter	et	al.,	2017)	and	the	rstan	interface	
(Guo	et	al.,	2016)	 in	R,	version	3.4	(R	Core	Team,	2016).	Details	of	
model	fitting	and	prior	specification	are	in	Appendix	S2	and	online	
at	https	://github.com/aornu	gent/impact2.	We	 took	a	conservative	
approach	 to	 identifying	 interactions	 in	 the	data	by	specifying	 that	
we	a	priori	expected	covariances	to	be	weak	(see	prior	specification	
in	Appendix	S2),	meaning	that	strong	residual	covariances	required	
strong	support	from	the	data.

3  | RESULTS

3.1 | Relative dominance of non‐native species

Overall,	 the	proportion	of	 total	cover	 that	comprised	non‐native	
species	 increased	 with	 increasing	 soil	 fertility	 (Figure	 2,	 Figure	
S4a).	Prior	to	and	immediately	after	fencing	(2010	and	2011),	the	
relationship	between	fertility	and	proportion	of	non‐native	cover	
was	similar	 in	the	fenced	and	grazed,	and	 in	the	slashed	and	un-
slashed	 treatments.	 However,	 from	 2012	 onwards,	 the	 propor-
tion	of	non‐native	cover	increased	substantially	at	higher	fertility	
sites	in	the	fenced,	unslashed	plots	(i.e.	in	the	absence	of	biomass	
removal).	There	was	no	clear	change	over	time	in	the	proportion	
of	non‐native	cover	along	the	fertility	gradient	in	plots	that	were	
grazed,	slashed	or	both	(Figure	2,	Figure	S4b).	The	proportion	of	

non‐native	 cover	was	 higher	 in	 years	with	 higher	 spring	 rainfall	
(Figure	S3a).

3.2 | Joint‐species tobit modelling

Species	responded	differently	to	changes	in	soil	fertility,	with	la-
tent	site	suitability	increasing	strongly	with	higher	soil	fertility	(i.e.	
total	extractable	nitrogen)	for	two	native	and	five	non‐native	spe-
cies	(95%	credible	intervals	above	zero	in	at	least	one	treatment;	
Figure	3).	The	remaining	species,	both	native	and	non‐native,	de-
clined	 in	 cover	 with	 increasing	 fertility.	 Relationships	 between	
cover	 and	 fertility	 did	 not	 vary	 much	 between	 experimental	
treatments	with	 three	 exceptions:	 relative	 to	 other	 species,	 the	
cover	of	the	non‐native	species	Avena fatua, Bromus diandrus and 
Acetosella vulgaris	 increased	 more	 strongly	 with	 fertility	 in	 the	
fenced,	unslashed	treatment.	At	high	fertility,	several	fenced,	un-
slashed	plots	were	 completely	 dominated	 by	 one	or	more	 these	
species.	For	most	species,	cover	was	positively	related	to	rainfall	
across	years	(Figure	S3b).

Figure	4	shows	the	species’	residual	covariances	from	JSDM1	as	
a	pairwise	covariance	matrix	(Figure	4a)	along	with	the	median	co-
variance	for	each	species	across	all	pairwise	interactions	(Figure	4b).	
We	report	the	median	covariance	because	covariance	values	could	
be	 highly	 skewed.	 One	 species,	Avena fatua,	 stood	 out	 as	 having	
strong	 negative	 covariances,	with	 high	 cover	 of	A. fatua	 often	 as-
sociated	with	 reduced	 cover	 of	 other	 species.	Median	 covariance	

F I G U R E  3  Latent	suitability	with	
respect	to	soil	fertility	for	30	species	
estimated	using	a	joint‐species	
distribution	model	and	tobit	regression	
(see	text).	Separate	relationships	were	
fitted	for	each	species	in	each	of	four	
treatments,	shown	as	different	panels.	
Native	species	are	drawn	with	dashed	
lines	(n	=	14)	and	non‐native	species	with	
solid	lines	(n	=	16).	Lines	are	coloured	from	
dark	blue	to	light	yellow	corresponding	to	
a	shift	from	negative	to	positive	slopes,	
respectively

https://github.com/aornugent/impact2
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for	the	native	grass	Themeda triandra	was	the	second	most	negative	
but	of	much	smaller	magnitude	than	A. fatua.	Moreover,	T. triandra 
covaried	negatively	with	A. fatua	 (Figure	4a),	 such	 that	high	 cover	
of	A. fatua	was	associated	with	low	cover	T. triandra and vice versa. 
Small‐statured	species,	such	as	those	in	the	genera	Aira,	Vulpia and 
Hypochaeris,	tended	to	covary	positively.

3.3 | Change in species covariances by treatment

JSDM2	revealed	that	species’	residual	covariances	varied	by	grazing	
and	slashing	treatment	(Figure	5),	suggesting	that	competitive	inter-
actions	were	altered	by	biomass	removal.	Covariances	were	weakest	
in	the	grazed,	slashed	treatment	with	the	median	close	to	zero	for	
most	species	(mean	median	covariance	with	95%	confidence	inter-
vals	=	−0.4,	CI	−2.2	to	1.3),	implying	weak	interactions.	Covariances	
were	larger	but	still	relatively	weak	in	the	fenced,	slashed	treatment	
(mean	=	0.2,	CI	−1.5	to	2).	Median	covariances	were	most	negative	
in	the	grazed,	unslashed	treatment	(mean	=	−1.3,	CI	−3	to	0.5)	and	
especially	the	fenced,	unslashed	treatment	(mean	=	−3.2,	CI	=	−4.9	
to	−1.5),	suggesting	stronger	competitive	interactions	in	the	absence	
of	slashing,	and	especially	in	the	absence	of	both	grazing	and	slash-
ing.	Relative	to	the	natural	situation	in	these	grasslands	(the	grazed,	
unslashed	treatment),	the	three	species	whose	cover	increased	most	

strongly	with	 fertility	 in	 the	 fenced,	 unslashed	 plots	 (Avena fatua, 
Bromus diandrus and Acetosella vulgaris)	 showed	 a	marked	 shift	 to	
more	negative	covariances	in	the	same	treatment,	especially	A. fatua 
(Figure	5).	This	implies	these	species	had	a	greater	competitive	im-
pact	on	other	species	in	the	absence	of	biomass	removal.

3.4 | Predicting impact from functional traits

In	 the	 fenced,	unslashed	 treatment,	 stronger	negative	covariances	
between	species	were	associated	with	greater	differences	 in	plant	
height	 (Figure	6).	This	 relationship	was	evident,	 though	weaker,	 in	
the	grazed,	unslashed	treatment	but	largely	absent	in	both	slashed	
treatments.	 Covariances	were	 less	 negative	 between	 species	 that	
had	greater	differences	in	SLA	in	all	treatments,	but	the	strength	of	
this	relationship	was	much	weaker	than	for	height.	None	of	the	re-
maining	trait	differences	(canopy	width	and	leaf	dimensions)	showed	
strong	relationships	with	covariances.

4  | DISCUSSION

Measuring	 the	 strength	 of	 species	 interactions	 when	 these	 are	
confounded	with	environmental	variation	remains	a	major	obstacle	

F I G U R E  4   (a)	The	full	residual	covariance	matrix	for	joint‐species	distribution	model	1	(JSDM1)	and	(b)	the	median	residual	covariance	
from	all	pairwise	interactions	for	each	species,	with	negative	covariances	indicative	of	competitive	displacement	(see	text).	The	full	matrix	
shows	mean	covariances	from	the	posterior	distributions	shaded	by	magnitude	and	direction,	ranging	from	large	negative	covariances	(deep	
red)	to	large	positive	covariances	(blue).	A	black	dot	indicates	the	95%	credible	intervals	for	a	covariance	did	not	include	zero.	Non‐native	
species	are	marked	with	asterisks
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to	studying	the	impact	of	non‐native	species	in	plant	communities	
(HilleRisLambers	et	 al.,	 2010;	 Levine	et	 al.,	 2003;	MacDougall	&	
Turkington,	2005).	We	have	shown	how	a	JSDM	can	be	adapted	
to	model	plant	cover	and,	when	applied	to	our	case	study,	could	
identify	the	non‐native	species	having	 large	competitive	 impacts	
on	 the	community,	along	with	 the	conditions	under	which	 those	
impacts	 were	 greatest.	 Globally,	 non‐native	 species	 frequently	
dominate	grasslands	under	 conditions	of	high	 fertility	 in	 the	ab-
sence	of	grazing	(Seabloom	et	al.,	2013,	2015).	Our	findings	show	
this	can	result	from	displacement	of	native	species	by	one	or	more	

competitively	dominant	non‐native	species.	 In	our	study,	greater	
cover	of	three	non‐native	species	(Bromus diandrus,	Acetosella vul‐
garis	and	especially	the	annual	grass	Avena fatua)	was	associated	
with	strong	declines	in	the	cover	of	native	species	after	account-
ing	 for	 differences	 in	 environmental	 responses.	 This	 outcome	 is	
consistent	with	previous	 studies	 that	have	measured	 the	 impact	
of	non‐native	species	in	Australian	temperate	grasslands	(Driscoll	
&	Strong,	2017;	Prober,	Thiele,	Lunt,	&	Koen,	2005)	and	in	grass-
lands	globally	(Chang	&	Smith,	2014;	Flores‐Moreno	et	al.,	2016;	
Harpole	et	al.,	2016).

F I G U R E  5  The	median	residual	
covariance	from	all	pairwise	interactions	
for	each	species	from	joint‐species	
distribution	model	2	(JSDM2),	where	
a	separate	covariance	matrix	was	
fitted	for	each	treatment	(shown	as	
separate	panels).	The	median	covariance	
summarizes	the	magnitude	of	competitive	
displacement	between	a	single	species	
and	the	rest	of	the	community.	Names	of	
non‐native	species	are	shown	in	black	and	
native	species	in	grey.	Non‐native	species	
are	marked	with	asterisks

F I G U R E  6  Mean	(circles)	and	95%	
credible	intervals	for	the	slope	of	
the	relationship	between	covariance	
and	trait	differences	among	species.	
Negative	values	indicate	that	competitive	
displacement	is	associated	with	greater	
difference	in	trait	values	between	species.	
The	relationships	are	plotted	separately	
for	the	four	treatments,	with	filled	circles	
for	fenced	plots,	open	circles	for	grazed	
plots,	and	slashed	and	unslashed	plots	in	
different	panels.	Trait	differences	were	
normalized	before	analysis	to	allow	direct	
comparison	of	slope	estimates	for	traits	
measured	in	different	units
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Our	 results	 support	 the	 predictions	 outlined	 in	 the	 Introduction.	
First,	 competitive	 impacts,	 as	 revealed	 by	 the	 strength	 of	 negative	
covariances,	were	much	stronger	 in	 the	absence	of	biomass	 removal	
(Figure	5).	Second,	under	low	or	no	biomass	removal,	the	strength	of	
negative	covariances	was	 linked	to	differences	 in	plant	height:	 in	un-
slashed	 plots,	 taller	 species	 had	 greater	 impact	 on	 shorter	 species,	
implying	a	strong	competitive	advantage	associated	with	plant	height	
under	these	conditions	(Figure	6).	This	outcome	most	likely	results	from	
competition	for	 light,	which	should	favour	taller,	higher	biomass	spe-
cies	(Borer	et	al.,	2014;	Hautier	et	al.,	2009).	While	negative	covariances	
were	linked	most	strongly	to	height	differences,	negative	covariances	
were	 smaller	 among	 species	with	 greater	 differences	 in	 specific	 leaf	
area	(Figure	6).	This	implies	that,	while	competitive	dominance	was	due	
primarily	to	a	trait	advantage	in	height,	this	was	partly	offset	by	trait	dis-
similarity	in	SLA,	potentially	indicative	of	reduced	competitive	impact	
through	niche	differentiation	(Gross,	Börger,	Duncan,	&	Hulme,	2013).

Results	 from	 the	 JSDMs	 provide	 additional	 insights	 into	 inter-
actions	 in	 these	 grasslands.	 For	 example,	 negative	 covariances,	 and	
hence	 competitive	 interactions,	 were	 weaker	 in	 the	 slashing	 treat-
ments	 (Figure	 5).	 Annual	 biomass	 removal	 by	 slashing	may	 prevent	
species	from	attaining	cover	sufficient	to	have	a	strong	competitive	
impact	(Mortensen	et	al.,	2018).	Grazing	may	also	prevent	competitive	
dominance,	although	interactions	were	stronger	under	grazing	alone	
than	when	plots	were	slashed	(Figure	5),	suggesting	grazing	removes	
less	biomass	than	slashing,	or	selectively	removes	certain	species	al-
lowing	 others	 to	 attain	 cover	 sufficient	 to	 have	measurable	 impact	
(Evju,	Austrheim,	Halvorsen,	&	Mysterud,	2009).	The	most	dominant	
species,	Avena fatua,	 had	 the	 greatest	 competitive	 impact	 but	 also	
covaried	 negatively	with	 two	 other	 species	 that	 had	 relatively	 high	
impact	overall:	the	native	grass	Themeda triandra	and	non‐native	forb	
Acetosella vulgaris	(Figure	4).	Avena fatua and A. vulgaris	both	increased	
in	cover	at	higher	fertility	in	the	absence	of	biomass	removal,	suggest-
ing	 these	 species	 competed	 for	 site	 occupancy	 under	 those	 condi-
tions.	The	ability	of	A. vulgaris	to	form	dense	rhizomatous	mats	may	
have	excluded	A. fatua	from	some	sites	(Fan	&	Harris,	1996).	Themeda 
triandra,	 in	contrast,	had	higher	cover	at	 lower	fertility.	Themeda tri‐
andra	 is	known	to	dominate	more	intact	native	grasslands	(Prober	&	
Lunt,	2009),	suggesting	that	A. fatua	may	be	displacing	an	otherwise	
competitively	dominant	native	grass	at	higher	fertility	sites.

Other	non‐native	species	were	abundant	in	these	grasslands	but	
had	little	or	no	competitive	impact.	Short‐statured	annual	grasses	in	
the	genera	Aira and Vulpia,	for	example,	were	widespread	(Figure	S2)	
and	had	high	average	cover	where	they	occurred	(15%	and	24%	for	
Aira and Vulpia,	 respectively,	 compared	with	30%	 for	Avena fatua).	
Both	Aira and Vulpia	strongly	negatively	covaried	with	A. fatua and B. 
diandrus,	and	both	covaried	positively	with	other,	typically	short‐stat-
ured,	species	that	were	also	impacted	by	the	competitive	dominants.	
Hence,	 in	addition	to	identifying	the	drivers	of	change	in	this	com-
munity,	we	can	identify	non‐native	species	that	achieve	moderate	to	
large	cover	without	 impacting	 the	community,	most	 likely	because	
they	are	ruderal‐like	species	that	exploit	more	marginal	habitats.

We	have	demonstrated	how	a	JSDM	can	be	applied	to	field	data	
to	measure	 impact	 and	 identify	 the	 species	 driving	 compositional	

change	in	a	plant	community.	We	emphasize	that	interpreting	neg-
ative	 residual	 covariation	 as	 due	 to	 species	 interactions	 relies	 on	
having	 measured	 and	 correctly	 modelled	 the	 major	 environmen-
tal	 variables,	 fertility	 and	 rainfall	 in	 our	 case,	 that	 control	 species	
abundances	 (Hui,	Taskinen,	Pledger,	Foster,	&	Warton,	2015).	Our	
approach	of	 crossing	a	natural	 fertility	gradient	with	manipulation	
of	 biomass	 removal	 no	 doubt	 helped	 to	 disentangle	 competitive	
from	environmental	effects	 in	 this	system,	as	 it	meant	differences	
between	the	biomass	treatments	at	each	site	were	not	confounded	
with	 environmental	 variation.	 Nevertheless,	 the	 model	 appeared	
successful	in	identifying	species	having	impact	in	the	unmanipulated	
treatment	alone	(grazed,	unslashed;	Figure	5),	suggesting	JSDMs	can	
detect	 interactions	 in	 systems	without	 experimental	manipulation	
where	the	environmental	drivers	are	well	understood.

5  | CONCLUSION

Quantifying	the	importance	of	competitive	interactions	is	difficult	
when	species	abundance	is	confounded	with	environmental	varia-
tion	(Adler	et	al.,	2018).	We	approached	the	problem	using	a	JSDM	
to	model	 changes	 in	 the	 cover	 of	Australian	 temperate	 grassland	
species	 in	 response	 to	 gradients	 of	 fertility	 and	 rainfall,	 biomass	
removal	treatments	and	variation	in	community	composition.	This	
identified	 the	 dominant	 non‐native	 species	 driving	 compositional	
change	through	competitive	displacement	in	this	community,	high-
lighting	the	utility	of	JSDMs	in	studies	of	plant	invasion	where	it	is	
often	unclear	which	non‐native	species,	if	any,	are	directly	impact-
ing	 invaded	 communities	 (HilleRisLambers	 et	 al.,	 2010;	 Lai	 et	 al.,	
2015;	MacDougall	&	Turkington,	2005).	By	experimentally	altering	
grazing,	we	were	able	to	show	that	the	competitive	impact	of	the	
dominant	 non‐native	 species	 increased	 in	 the	 absence	 of	 grazing	
and	 that	 species	 responses	were	mediated	by	 trait	 differences	 in	
height,	consistent	with	the	outcome	we	would	expect	due	to	com-
petition	for	light	(Borer	et	al.,	2014).	Hence,	the	modelling	approach	
provided	 insights	 into	 the	mechanisms	 underlying	 impact,	 paving	
the	way	for	general	tests	of	the	drivers	of	community	structure	in	
other	communities	(Mortensen	et	al.,	2018).	We	have	provided	the	
data	and	code	 in	an	R	package	(https	://github.com/aornu	gent/im-
pact2)	to	reproduce	our	analyses	and	encourage	further	application	
of	the	approach.
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