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e First genomic characterization of carbapenem-resistant Klebsiella

pneumoniae from Malaysia
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e The eight sequenced strains exhibited high genetic diversity (six
sequence types identified) despite similar isolation source

e Genomic potential for carbapenem-resistance was due to the presence
of plasmid-localized blanom (blanom-1/blanom-s) or blakec (blakec-2/blakpc-s)
gene that was flanked mostly by repetitive sequences.

e We also report the first assembled genome of blakec.s -harboring K.

pnheumoniae

ABSTRACT

Objectives

Despite the increasing report of carbapenem-resistant Enterobacteriaceae in
Malaysia, genomic resource for carbapenem-resistant clinical strains of
Klebsiella pneumoniae remains unavailable. In this study, we aim to fill in this
gap by sequencing the genomes of multiple carbapenem-resistant K.
pneumoniae strains from Malaysia in addition to identifying the genetic basis

for their resistance.

Methods

Illumina whole-genome sequencing was performed on eight carbapenem-
resistant Klebsiella pneumoniae isolated from a Malaysian hospital. Genetic
diversity was inferred from the assembled genomes based on in-silico multi
locus sequence typing (MLST). In addition, plasmid- and chromosome-derived
contigs were predicted using machine learning approach. After genome
annotation, genes associated with carbapenem resistance were identified based

on similarity search against the ResFinder database.



Results

The eight K. pneumoniae isolates were grouped into six different sequence
types, some of which were only represented by a single isolate in the MLST
database. Genomic potential for carbapenem-resistance was attributed to the
presence of plasmid-localized blanpm (blanom-1/blanpm-s) or blakec (blakpc-
o/blakpc.s) in these sequenced strains. A majority of these carbapenem resistance
genes were flanked by repetitive (transposase or integrase) sequences,
suggesting their potential mobility. We also report the first blakpc.s-harboring
plasmid contig to be assembled for K. pneumoniae, the second for the genus
Klebsiella.

Conclusion

We report the first genomic resources for carbapenem-resistant K. pneumoniae
from Malaysia. The high diversity of carbapenem resistance genes and sequence
types uncovered from only 8 isolates from the same hospital is worrying and
indicates an urgent need to improve the genomic surveillance of clinical K.

pneumoniae in Malaysia.
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INTRODUCTION

Carbapenems remain the first-line therapeutic antimicrobials for severe
infections caused by organisms such as the extended-spectrum B-lactamase
(ESBL)-producing multidrug-resistant Enterobacteriaceae *. Therefore, the
increasing worldwide trend of carbapenem-resistant Enterobacteriaceae (CRE)
represents a formidable threat to modern healthcare and is associated with high



morbidity and mortality 2. In addition to the resistance to beta-lactams, CRES
are frequently resistant to most other classes of antibiotics, diminishing and
even eliminating the efficacy of the available antibiotic armamentarium *.
Amongst the risk factors associated with carbapenem resistance include
previous use of carbapenems, underlying comorbidities, longer hospital stay,
mechanical ventilation, intensive care unit (ICU) stay, surgeries and transfer
from healthcare settings with high rates of carbapenem resistance 2.

Among Enterobacteriaceae, Klebsiella species have emerged as the most
Important pathogens causing a wide range of healthcare related infections
including pneumonia, bacteraemia, urinary tract and wound infections 3. Over
the last decades, carbapenem resistance has been steadily escalating among the
Enterobacteriaceae, especially amongst the Klebsiella species 1. Multiple
carbapenem-resistance mechanisms have been identified, including the
production of carbapenemases with direct carbapenem-hydrolyzing activity,
over-expression of efflux pumps, and reduced permeability of outer membrane
mediated by porin mutations. Three types of carbapenemases (class A: blakpc,
blages; class B: blanpm-1, blaime, and blayiv; class D: blaoxa- 48) hydrolyze
carbapenems at varying degree 3. Carbapenem genes are carried mainly on
plasmids and pose a potential for widespread dissemination of carbapenem
resistance which describes their inclination to cause outbreaks of infection
within and between healthcare facilities 4. Understanding the molecular
epidemiology and genetic characteristics of carbapenem-resistant Klebsiella
strains from hospital environment requires a discriminatory bacterial typing
technique. However, methods widely used such as pulsed-field gel
electrophoresis (PFGE) or multilocus sequence typing (MLST) lack this
discriminatory resolution *.

Whole genome sequencing (WGS) elicits a level of discrimination on
genetic relatedness that readily surpasses the previous typing methods *.
However, there is a scarcity of reports on WGS of antibiotic resistant clinical



Enterobactericaea isolated from Malaysia and most have been confined mainly
to genome sequencing of single isolates without in-depth comparative analysis
58 We performed WGS of the 8 carbapenem resistant clinical Klebsiella
pneumoniae strains isolated from a hospital in Malaysia, providing the first
insight into the genetic diversity and antimicrobial resistance mechanisms of
carbapenem-resistant Klebsiella pneumoniae in Malaysia. This data is
especially important, since resistance to imipenem and meropenem is on the rise
in Malaysia; from 2.3% and 2.6% respectively in 2016 to 4.2% and 4.7% in
2017 °. WGS will provide important information to infer the origin and the
spread of Klebsiella pneumoniae strains and their antibiotic resistance genes in
the healthcare setting, facilitating future epidemiological surveillance and

infection control efforts in Malaysia.

MATERIALS AND METHODS

Bacterial isolates and the determination of minimal inhibitory
concentration (MIC)

Eight non-clonal clinical Klebsiella pneumoniae strains isolated from a hospital
in Johor, Malaysia, were revived from -20°C glycerol stock cultures and grown
on nutrient agar plate at 30°C for 48 hours. These isolates were anonymized
prior to DNA extraction and sequencing and no clinical or demographic data
was collected. These strains were sub-cultured onto the same medium and tested
for an expanded range of antimicrobial sensitivities using the VITEK 2 system
(BioMérieux, Marcy I’Etoile, France). Specifically, we used the VITEK 2 AST-
GN87 cards to test for the following beta-lactam antibiotics (concentration
range): ampicillin/sulbactam (2/1-32/16 pg/ml), cefazolin (4-64 pg/ml),
ceftriaxone (1-64 pg/ml), cefepime (1-64 pg/ml), ceftazidime (1-64 pg/ml),
piperacillin/tazobactam (4/4-128/4 ug/ml), imipenem (0.25-16 pg/ml),
meropenem (0.25-16 ug/ml), ertapenem (0.5-8 pg/ml). Susceptibility category



was designated according to the 2017 Clinical and Laboratory Standards
Institute (CLSI) M100-S27 guidelines. Escherichia coli ATCC 25922 was used

as the quality control strain for antibiotic susceptibility testing.

Whole genome sequencing

Five to ten bacterial colonies were scrapped from the 2-day old agar plate
culture with a sterile P200 pipette tip and used for genomic DNA extraction
using a conventional SDS-based extraction method. The purified gDNA was
quantified with Qubit 2 (Invitrogen, Santa Clara, CA), normalized to 0.2 ng/ul
and processed using the Nextera XT library preparation kit (Illumina, San
Diego, CA). Sequencing was performed on the Miseq (run configuration of 2 x

250 bp) located at the Monash University Malaysia Genomics Facility.

Genome assembly and analysis

Raw paired-end reads were adapter-trimmed using Trimmomatic v0.36 *°. Error
correction followed by de novo assembly of the trimmed reads used Unicycler
v0.3.0 1. Genome-based species verification was performed with Jspecies
v1.2.1 using the “mummer” algorithm 2., The average nucleotide identity
matrix produced by Jspecies v.1.2.1 was subsequently inputted into R 3 to
generate a clustered heatmap with the pheatmap package (default setting) 4.
Upon species confirmation, in-silico multi-locus sequence typing were
performed on the assembled genomes using the software mist v2.16
(https://github.com/tseemann/mlst) that scans the assembled contigs against the
Klebsiella pneumoniae PubMLST typing schemes °. Screening of contigs for
antimicrobial resistance genes against the Resfinder database (accessed on 28-
Jul-2018) ¢ used ABRicate v0.8.11 (https://github.com/tseemann/abricate).

Identification and visualization of plasmid-derived contigs



MIplasmids was used to accurately predict plasmid- and chromosomal-derived
sequences in the genome assemblies based on pentamer frequency and machine
learning approach ¥’. More specifically, mlplasmids used the support-vector
machine models that have been trained on various complete Klebsiella
pneumoniae genomes to classify the origin of contigs, enabling accurate in-
silico localization of antibiotic resistance genes to the plasmid or chromosome
of Klebsiella pneumoniae isolates. Visualization and alignment of the plasmid-
derived contigs used BRIG v0.95 and EasyFig v2.1 1819,

RESULTS

Genome Assembly and statistics:

The assembled genome size ranges from 5.23 Mb to 5.64 Mb (GC content of
57.14 — 57.57%) (See Supplemental Table 1 for NCBI accession codes). Each
strain exhibited more than 98% pairwise average nucleotide identity (ANI) to
the currently described type strains of K. pneumoniae subspecies with
consistently less than 95% pairwise ANI to K. quasipneumoniae subsp.
similipneumoniae 07A044™ and K. quasipneumoniae subsp. quasipneumoniae
01A030T % (Figure 1). Within the ANI heatmap, minor clustering could be
observed for isolates that exhibit strikingly high pairwise ANI (>99.8%) for
example MGF001 and MGF018 as well as MGF002 and MGF009. Although a
relatively high pairwise ANI (>99%) was observed among K. pneumoniae subp.
pneumoniae DSM 301047, K. pneumoniae subp. ozaenae DSM 16358 and K.
pneumoniae subp. rhinoscleromatis DSM 162317, this is not the case for K.
quasipneumoniae subsp. similipneumoniae 07A044" and K. quasipneumoniae

subsp. quasipneumoniae 01A030" (pairwise ANI <96%) (Figure 1).

Multiple genetic origins of Klebsiella pneumoniae isolates as revealed by in-
silico MLST



All Klebsiella pneumoniae-MLST housekeeping genes (rpoB, gapA, mdh, pagi,
phoE, infB and tonB) 2! are complete and present as a single-copy in the
assembled Klebsiella pneumoniae genomes. Although we did not uncover any
novel sequence type which is somewhat unsual given the paucity of Malaysian
K. pneumoniae strain representation in the MLST database, we found a high
diversity of sequence types among the 8 carbapenem-resistant strains. A total of
5 sequence types (ST) e.g. ST11 (MGF001 and MGF018), ST258 (MGF011),
ST530 (MGF004), ST584 (MGF020), and ST3157 (MGF002 and MGF009)
were identified and strains forming minor clusters in the ANI heatmap were
classified to the same ST consistent with their high genomic relatedness (Table
1). It is also worth noting that strains sharing the same ST also share the same
isolation source. For example, all strains from ST11, ST530, ST3157 and
ST3414 were isolated from urine samples while strains belonging to ST258 and

ST584 were isolated from body fluid samples.

Evidence of genomic potential for carbapenamase production in the
sequenced isolates

VITEKS2 assessment indicates that all isolates were highly resistant to the 3
carbapenems tested namely ertapenem, imipenem and meropenem (Table 1). In
addition to carbapenems, the isolates were also highly resistant to
cephalosporins (cefazolin, ceftazidime, ceftriaxone, cefepime) and beta-lactam/
beta-lactamase inhibitor combination (ampicillin-sulbactam, piperacillin-
tazobactam). Genome mining for antibiotic resistance genes revealed that each
strain harbours one of the two main classes of carbapenem resistance gene
namely blanpm and blakec in addition to some ESBL genes (Table 1). Two
known genetic variants were found for each of the carbapenemase genes. Based
on currently sampling, the blanpom-1 gene is the most commonly found followed
by blanpm-s. The distribution of blanpm and blakec variants is not random and
appears to be sequence type-specific. It is also worth noting that, despite sharing



the identical blanpm-1 gene sequence with MGF004 and MGF019 belonging to
ST530 and ST3414, respectively, MGF001 and MGFO018 (both assigned to
ST11) exhibited a substantially lower resistance (<16 pg/ml) to the carbapenem

drug, meropenem (Table 1).

Gene synteny in the neighbourhood of carbapenemase genes
Plasmid-derived contigs were identified in all 8 strains with cumulative length
ranging from 226kb to 580kb (Supplemental Table 2). The contigs containing
blanpm Or blakpc were all classified as “plasmid” by miplasmids. Five out of
eight of the blanpm/blakpc-containing contigs are more than 15 kb with the
longest one being the blakpc.s-containing contig (83kb) from strain MGF020
(Figures 2 and 3). The three remaining plasmid contigs are only less than 3,200
bp in length and consist of a blaypom gene and three upstream genes (nagA, trpF
and ble) (Figure 2). The gene cluster nagA-trpF-ble that encodes for alpha-N-
acetylgalactosaminidase, anthranilate isomerase and bleomycin-binding protein
Is consistently found upstream of blanpwm in the longer blanom-containing
contigs. In two of the blanpm-containing contigs e.g. contig36mcroos and
contig37mcro19, tWo genes both coding for integrase were located downstream of
blanpm and arranged in tandem. On the contrary, blaxec was immediately

flanked by transposase-coding genes transcribed in opposite orientation.

The first K. pneumoniae plasmid-derived contig harbouring the blakrc.s
variant

Using the entire contig25 from the KPC-6-producing MGFO020 isolate as the
query to search against the NCBI non-redundant nucleotide database (NCBI nt
database, accessed on 27" February 2019), significant matches with high query
coverage (>90% of query length) were found for a few blakpc-o-containing
complete InA/C plasmid sequences. Interestingly, BLASTN search using only
the annotated blakpc.s gene in contig25merozo as the query against the NCBI
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non-redundant nucleotide database (accessed on 27" Feb 2019) returned only
the reference CDS of blakpc.s (GenBank Accession Number: EU555534.1) with
exact match (100% identity) followed by several 99.887% identity hits
representing a single mismatch to the 882 bp blakpc-s gene to some blagpc.-2-
containing plasmids. Within the Enterobacteriaceae whole genome shotgun
sequence database, we only found exact match of the blakpc.s gene to two
contigs, JRTV01000008 and JRTV01000009, both from the genome assembly
of K. variicola strain 223/14 also isolated from Malaysia.

Using the plasmid-derived contigs from MGFO020 as the query
(Supplemental Table 2), we observed a significant nucleotide alignment (>90%
nucleotide identity) across the entire plasmid KP1766 p1 of K. pneumoniae
strain KP1766 (GenBank Accession : CP025147.1) except for the region
ranging from 15 kb to 40 kb that consists of phage-protein coding genes (purple
outer arrows in Figure 3). This region was similarly absent from the complete
pKPC_CAV1344 plasmid of K. pneumoniae strain CAV1344 (GenBank
Accession: CP011622.1). Contig25ucro20 covered approximately 30% length
fraction of plasmid KP1766_p1 and contained the typical plasmid conjugation
tra genes (red outer arrows in Figure 3). Interestingly, despite harbouring the
blakecs gene, very little significant sequence match to the reference IncA/C
plasmid was observed when the whole genome assembly of Malaysian blaxpcs-

producing K. variicola was used as the query (Figure 3).

DISCUSSION

We assembled the genomes of 8 K. pneumoniae isolates from a
Malaysian hospital. The genomes represent a 100% increase in the number of
publicly available Malaysian K. pneumoniae genomes (NCBI Assembly
database as of 27" February 2019), underscoring the paucity of genomic
representation of this clinically important bacterial species from Malaysia. In

addition, these genomes are first carbapenem-resistant K. pneumoniae genomes



11

reported from Malaysia although it is worth mentioning that the genomes of
carbapenem-resistant K. variicola and K. quasipneumoniae isolated from
Malaysia have been also recently published °®. The high genetic diversity of K.
pneumoniae in this current genomic sampling as indicated by the number of
different STs recovered from this sampling is unexpected given their identical
sampling site, suggesting multiple introduction/origin of carbapenem-producing
strains in the hospital during the strain isolation period. While some of the STs
identified were common clinically important STs such as ST11 and ST258 22-24,
some STs are rare with only a few representative strains reported worldwide.
For example, ST3157 and ST3414 was only reported once in Australia (id 6751;
isolate DMG1800058) and China (id 7803; isolate 42182), respectively ©°. It is
also worth noting that the genomic relatedness among the subspecies of K.
pneumoniae type strains is substantially higher than that among K.
guasipneumoniae subspecies, indicating the lack of standardized subspecies
delineation criteria among Klebsiella spp.

Despite being categorized as carbapenem-resistant, the K. pneumoniae
strains belonging to ST11 in this study exhibited a lower resistance to the
meropenem drug compared to other blaypm-harboring strains from different
STs. It is possible the strains from ST11 have a genetic makeup that increases
their baseline sensitivity towards meropenem. For example, variations in the
gene coding for porin channel have been associated with decreased
susceptibility to meropenem drug given the direct involvement of such protein
in the permeation of carbapenem drug #. Transposon mutagenesis of these
strains followed by selection on higher concentration of meropenem will be
instructive to identify genes that are associated with increased sensitivity to the
carbapenem drug 2%2’. Alternatively, it is also possible that the novel blasyy
variants that are present in all other blaypm-containing strains may be

contributing to the increased resistance towards carbapenem 2,
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Most reported carbapenem-resistant Malaysian K. pneumoniae strains
harbour the blanpmi, blaoxa-as or blaymps gene variant 220, Isolate MGF020
represents the first blakpc.s harbouring K. pneumoniae strain to be isolated from
Malaysia. More intriguingly, despite the abundance of K. pneumoniae genome
assemblies in the NCBI database, contig25 from strain MGF020 is the first K.
pneumoniae plasmid contig containing the blakpc-s gene. In addition, its
significant coverage to the 205 Kb incA/C plasmid KP1766 p1 suggests that
the blakpcs gene in MGFO020 is harboured on a large incA/C plasmid. The
putative plasmid length is relatively large compared to most plasmids found in
clinical Enterobactericeae that are usually less than 100 Kb 3. Although a large
plasmid can carry more virulence and resistance genes, it also represents a
significant burden to the host’s metabolism and need to be maintained in low
copy number. The persistence of large plasmid among Klebsiella strains as well
as other gram-negative bacterial genera 323 despite the lack of constant
selection in the environment is largely attributed to the presence of elaborate
plasmid-encoded maintenance system 33,

The high prevalence of repetitive elements observed in the vicinity of
carbapenem resistance genes is the most plausible explanation for the recovery
of mostly short bla gene-containing contigs from our short-read only assemblies
37_Such elements are known to break short-read assembly graphs thus
preventing complete assembly of circular plasmid *. The complete assembly of
clinically important Klebsiella plasmids is highly valuable as it can provide
novel insights into plasmid dynamics and facilitate the tracking of plasmid
transmission during outbreaks *°. Future sequencing work incorporating long
reads that can span long repeats such as those generated by PacBio and
Nanopore technology will be instructive. Nanopore sequencing in particular is
now commonly used among researchers to close microbial genome assembly

gaps %4 due to its ease of use, low capital cost and wide community support.
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CONCLUSIONS

We provide a significant genomic resource for clinical carbapenem-resistant K.
pneumoniae isolated from Malaysia. In addition to identifying multiple K.
pneumoniae sequence types, some of which are rarely reported worldwide, we
also uncovered three carbapenem resistance gene variants that are possibly
encoded on different plasmid backbones. Despite the active global genomic
sampling of K. pneumoniae, our study is the first to report a K. pneumoniae
plasmid sequence harbouring the blakpc.s gene. Our findings highlight the need
for increasing the genomic surveillance of clinical K. pneumoniae at the
national level in view of the emergence of carbapenem-resistant K. pneumoniae

in this region.
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Figure legends:

Figurel. A heatmap showing the hierarchical clustering of Klebsiella
pneumoniae and Klebsiella quasipneumoniae strains based on genomic
distance. The sequence types of each isolate reported in this study were
indicated either in brackets or next to the red vertical lines. Values in boxes
indicate pairwise average nucleotide identity (See Supplemental Table 1 for
NCBI accession codes). Kpr, K. pneumoniae subsp. rhinoscleromatis ATCC
13884T; Kpp(D), K. pneumoniae subsp. pneumoniae DSM 30104T; Kpp(A), K.
pneumoniae subsp. pneumoniae ATCC 13883T; Kpo, K. pneumoniae subsp.
ozaene ATCC 112967; Kgs, K. quasipneumoniae subsp. similipneumoniae

07A044T; Kqq, K. quasipneumoniae subsp. quasipneumoniae 01A030".
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Figure 2. The gene neighbourhood of carbapenamase genes. Arrows of similar
colour represent genes predicted to have similar functions. Direction of arrows

indicates transcription orientation and scale bar represents contig length.
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Figure 3. Circular comparison of blaxpc plasmids. Each plasmid is represented
by a colored ring shaded based on nucleotide similarity to the reference plasmid
KP1766 pl (min. 90%; max. 100%). The outermost ring highlights the gene
regions involved in plasmid conjugation (tra), antibiotic resistance (blargv and

blakec) , phage assembly (red arrows) and gene mobility (pink arrows).
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Table 1: Characteristics and susceptibility profiles of carbapenemase-producing isolates

2nd
ol @ generatio 4t
< g £ <  P-Lactamase n generation
2 |Hl 8 18 cephalos | 3" generation |cephalospo
%’ § S ES Beta-lactam | porin | cephalosporin rin Carbapenem
[%2) (<) P +— - -
28 2 2E]]s Ampi [Piperac
G| B |273|Ex|% 2 |FCM0] Wi | opy feaz et | crm o |ETP|iMp| ME
- >| X 5 (0|9 |F sulbac| tazoba M
tam | ctam
MGFO 03/1
01 |11| Urine |5/12| 1 15 >32 | >128 >64 >64 >64 >64 >8 8 4
MGF0O| 31 04/1 181
02 |57 Urine |0/12|5| |15 7*|C| >32 | >128 >64 >64 >64 >64 >8 |>16| >16
MGF0| 53 05/0 18
04 | 0| Urine |2/12|1 15 7> >32 | 2128 >64 >64 >64 >64 >8 |>16| >16
MGFO0| 31 04/0 18| 1
09 |57 Urine |7/15|5| |15 7*|C| >32 | >128 >64 >64 >64 >64 >8 | >16| =16
MGFO0| 25| Body |03/0 18
11 | 8 | fluid |5/15 2 O*| 2* >32 | >128 >64 >64 >64 >64 >8 8 | >16
MGFO 08/1
18 |11| Urine |8/16|1 15 >32 | 2128 >64 >64 >64 >64 >8 |[>16| 8
MGFO0| 34 08/1 18| 1
19 |14 Urine |5/16]1 9% 7*|B| 232 | >128 >64 >64 >64 >64 >8 | >16| >16
MGF0|58 | Body [09/1 1
20 | 4 | Fluid |3/16 6|15 C| >32 | >128 >64 >64 >64 >64 >8 |>16| >16

*less than 98% nucleotide identity to the reference gene
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