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is a key process determining population connectivity, metapo-
cs and community structure in benthic marine ecosystems, yet
omplexity of dispersal is not well understood. In this study, we
teraction between disperser phenotype and hydrodynamics
sal pathways, using a temperate reef fish species, Trachinops
e assessed the influence of larval traits on depth distribution

utcomes by: (i) using 24-h depth-stratified ichthyoplankton
antifying individual phenotypes using larval growth histories
he sagittal otoliths of individual larvae; and (iii) simulating
sal outcomes based on the empirical distribution of larval
an advanced biological-physical ocean model. We found

s larvae were vertically stratified with respect to phenotype,
y phenotypes found in the bottom two depth strata, and
notypes found primarily at the surface. Our model showed
e-quality larvae experienced significantly higher local reten-
double) and self-recruitment, and travelled shorter distances
-quality larvae. As populations are only connected when
e long enough to reproduce, determining how larval pheno-
dispersal outcomes will be important for improving our
f marine population connectivity and persistence.

are networks of discrete populations distributed across
scapes, connected through the migration or dispersal of
ispersal—the movement of individuals or propagules across
gene flow between local populations [2] and are fundamental
gy and evolution, from structuring local population demo-
nabling adaptation and speciation [4]. Understanding the
determine dispersal outcomes is therefore critical for predict-
nnectivity and metapopulation dynamics, and the ability of a
to environmental change [5,6].
taxa and systems, growing evidence has suggested that
ndom, and successful dispersers are often not a random draw
[5,7]. Instead, an individual’s decision or ability to disperse

nteraction between its phenotype and its environment [8,9].
ersal does not evolve independently of other traits; it has
vary with suites of ecologically important phenotypic traits
al, physiological, behavioural and life-history)—creating dis-
s, or predictable disperser syndromes both within and among
1]). This non-randomness in trait distribution across a popu-
ts in strong phenotypic differences between individuals that
e that stay [8,9].
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Dispersal syndromes have been examined extensively in
terrestrial ecosystems (e.g. [12,13]). However, in marine sys-
tems, where dispersal during a species’ pelagic larval stage
plays a critical role in connecting geographically separated
(i.e. benthic or demersal) adult populations (e.g. [14]), dispersal
syndromes have not been widely studied. In a marine context,
research has focused on how larval condition or phenotype can
influence success in subsequent life stages, with the fitness and
survival in the post-settlement environment strongly linked to
phenotypic traits of dispersers for many marine organisms
(e.g. size-at-hatch [15,16], larval growth (e.g. [17,18]), and over-
all ‘quality’ of larvae at settlement [19]). Despite growing
research interest in phenotypic links across life stages in
marine systems, we have little knowledge of how phenotypic
traits of dispersers interact with their environment to influence
dispersal outcomes, or their ability or decision to disperse in
the first place.

In the open ocean, it is well known that many marine
larvae are capable of substantially modifying their horizontal
dispersal trajectory by altering their vertical position in the
water column (e.g. [20,21]). Due to differences in the strength
of ocean currents from the surface to the ocean floor, even
small differences in vertical position can have large effects on
the distance an individual can disperse [22]. It was first
suggested by Blaxter & Ehrlich [23] that larval condition
could influence an individual’s vertical movement or posi-
tioning in the water column, though this has never been
empirically tested.

In this study, we investigate the influence of disperser
phenotypes on larval dispersal pathways in a population
of southern hulafish (Trachinops caudimaculatus), a temperate
reef fish. Specifically, we assessed the influence of larval
traits, including size and growth attributes, on vertical distri-
bution throughout the water column and dispersal outcomes
by (i) using 24-h depth-stratified ichthyoplankton sampl-
ing to determine the depth distribution patterns of larval
T. caudimaculatus; (ii) quantifying individual phenotypes
using larval growth histories extracted from the sagittal
otoliths of individual larvae; and (iii) simulating dispersal out-
comes based on the observed distribution of larval phenotypes
and an advanced biophysical larval dispersal model. We
hypothesized that larval phenotype will influence the position
of a larva in the water column, and ultimately influence the
dispersal outcome of the individual. Understanding the com-
plex interactions between phenotypic traits and environment,
and the influence of disperser phenotypes on population
connectivity, is critical for developing effective conservation
strategies and for managing spatially structured marine
populations in a changing environment [8,14,16,24].

2. Methods
(a) Study location and species
This study was conducted in Port Phillip Bay (PPB, surface area:
1930 km2; mean depth: 12.8 m) [25], a semi-enclosed embayment
on the southeast coast of Australia. Semi-diurnal tides dominate
the hydrodynamics of PPB, though tidal currents decrease with
distance from the ocean, peaking at 1 ms−1 at the Southern
Ocean entrance and only 0.02 ms−1 in the north of the Bay [26].
Vertical stratification of temperature and salinity in PPB is rela-
tively rare, though vertical shear is always present, with
currents near the surface varying in magnitude and direction

to currents at middle or bottom depths [25].

RSPB20191104—10/8/19—17:08–Copy Edited by: Not Mentioned
Trachinops caudimaculatus is a small-bodied (less than 150 mm),
short-lived (1–5 years) zooplanktivorous demersal fish found in
high abundance on reefs throughout Southern Australia [27].
Throughout the study site of PPB, juvenile and adult populations
of T. caudimaculatus inhabit discrete patches of rocky reef sur-
rounded by soft sediment. Rocky reef in PPB is sparse and
patchily distributed mainly along the coastal fringes (less than
8 m depth), comprising only 0.5% of the Bay [26]. As the most
abundant reef fish in PPB, occupying 89% of the reefs in the shal-
low rocky reef system [28], T. caudimaculatus is an ideal model
species for gathering empirical data on larval dispersal and conse-
quences for population connectivity in this semi-enclosed system.
Trachinops caudimaculatus hatch from demersal eggs, and once
hatched, larvae remain in the plankton for 30–50 days before
settling back to rocky reef habitat [28]. As adults are highly
reef-attached, dispersal only occurs in the pelagic larval life stage.

(b) Sampling protocol
Depth-stratified sampling of T. caudimaculatus larvae was
undertaken during the austral summers of 2012/13 and 2013/14
at Schnapper Point, Mornington (38°120 S, 145°010 E) on the
southeastern coast of PPB. The location and depth (approx. 10 m
bottom depth) of sampling was chosen based on proximity to
one of the largest T. caudimaculatus populations in the Bay. The
24-h sampling events were initiated after T. caudimaculatus larvae
were found during preliminary surveys, and continued through
the T. caudimaculatus dispersal period. Ichthyoplankton samples
were collected at four depth strata: surface (top 0–1 m of the
water column), 3 m, 6 m, and bottom (approx. 10 m) using
a 500 µm mesh plankton net with a circular mouth of 80 cm-
diameter (surface and mid-water samples), and a 500 µm mesh
benthic sled with a rectangular mouth (60 cm× 125 cm; benthic
samples). Ichthyoplankton samples were collected continuously Q
for a 24-h period. See electronic supplementary material 1 for
sampling dates and detailed sampling protocol.

In the laboratory, T. caudimaculatus larvae were identified and
counted. Larval abundances were standardized to number of fish
per 100 m3 based on flow-meter determinations of the volume of
water filtered per tow.

(c) Vertical distribution patterns
To evaluate patterns of vertical distribution in relation to tides, diel
cycle and date, the package ‘glmmADMB’ [29] was used in R, with
function glmmadmb to fit a zero-inflated generalized linear mixed
model (GLMM) to larval density. A negative binomial distribution
was used to account for the detected over-dispersion. Depth
(4 levels: 0 m (surface), 3 m, 6 m, 10 m (bottom)), tide (2 levels:
ebb, flood), and time of day (3 levels: day, night, crepuscular
periods) were included as fixed factors, and collection date as a
random factor to account for variation in larval abundance result-
ing from seasonality in spawning. To test for the effects of the fixed
factors on T. caudimaculatus larval density, a series of increasingly
complex models were compared using Akaike Information
Criterion for small sample sizes (AICc) for selection of the model
of best fit. These values were rescaled as the difference between
each model and the model with the lowest AICc (ΔAICc) to evalu-
ate model performance, along with the Akaike weights for each
model. This analysis was conducted in the statistical software R
[30] using the packages ‘AICcmodavg’ [31] with function AICctab
and ‘MuMIn’ [32]. We inferred statistical significance of the main
effects that were included in the best-fit model, and assessed the
strength of the retained parameter estimates through inference
tests (Wald statistic, glmmADMB package).

(d) Quantifying larval quality
Otoliths were extracted from 291 T. caudimaculatus larvae, by

randomly sub-sampling fish from each plankton sample



(10 individuals per sample depth, block and collection date, or all
individuals if sample had less than 10). Details on otolith prep-
aration and imaging can be found in electronic supplementary
material 1.

For each otolith, hatch checkswere identified, generally charac-
terized by an abrupt decrease in incrementwidths, which typically
coincidedwith a change in the optical density of the otolith. Larval
age based on number of post-hatch daily increments was also
recorded. Three phenotypic variables were estimated from the
daily increments formed during the pelagic larval stage, and
used to characterize individual larval phenotype: (i) size-at-
hatch, estimated as the postrostral radius from the core to the

pressure, tides, and solar radiation forcing [37], combined with
high-resolution rocky reef habitat data for PPB [38] to represent
the physical domain of the model. Detailed descriptions of the
hydrodynamic model can be found in [39] and [40]. A particle-
tracking model [35] was then used to simulate the dispersal and
settlement of larvae throughout PPB, with empirically-derived
biological and behavioural parameters (described in electronic
supplementary material 2; table S1). Dispersal ensembles were
completed for each suite of biological parameters matching
known and hypothesized values for three different disperser phe-
notypes: (i) poor quality (i.e. small size at hatch, slow growing);
(ii) average quality (i.e. mean size at hatch, mean growth); and
(iii) high quality (i.e. large size at hatch, fast growing).

Within each ensemble, simulated larvae were released from
34 reef habitat patches around PPB (electronic supplementary
material 2; figure S2); 1000 larvae were released within the
bottom 5% of the water column, hourly from 19.00 to 01.00 daily
from 1 October to 30 October 2009 (total of approx. 7.4 M
larvae), a year for which we have a well-validated hydrodynamic
model (e.g. [35]). The spawning window, location and timing of
larval release were chosen to reflect reality, as T. caudimaculatus
larvae typically spawn continuously (electronic supplementary
material 2; figure S3) from late September to November immedi-
ately above the rocky reef substrate [28]. The maximum pelagic
larval duration (PLD) was set for 50 days, after which any larvae
that had not yet settled to a reef were considered dead. All individ-
uals that survived the dispersal phase and reached competency
had the capacity to sense and swim (at speed Sp) towards
nearby habitat patches, at a given homing distance from reef habi-
tat, and settle. The total settlement of larvae to all reef patches
following spawning at each unique source was quantified. From
these settlement patterns, the probability of movement between
each set of reefs was calculated [35]. The migration matrix was
derived by multiplying these settlement likelihoods with the
source patch strength (i.e. reproductive output) to quantify the pro-
portional settlement to each destination patch that came from each
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hatch check; (ii) early larval growth, estimated as the mean incre-
ment width across the first 5 days of larval growth following
hatching; and (iii) instantaneous larval growth rate (IGR), esti-
mated from plotting individual otolith growth increments from
the dispersal period (post-hatch), and using the linear model
Lt =mt + b, where Lt is the otolith size (μm) at age t (day), b is the
otolith size at t = 0, and mt is the instantaneous growth rate (i.e.
the slope of the line of best fit, or the ‘per μm, per day’ rate of
increase). A linear growth model was used to determine IGR
because at such small larval sizes the growth relationship was
observed to be linear. These three measures of larval phenotype
provide complimentary information and were not independent
(size-at-hatch versus early larval growth: r = 0.30; p < 0.0001; size-
at-hatch versus IGR: r = 0.39; p < 0.0001; early larval growth
versus IGR: r = 0.74, p < 0.0001). Therefore, we used a principal
component analysis (PCA) to generate a composite measure of
larval phenotype, estimated as the first principal component
score (PC1 explained 66% of overall variation) for each fish [16].
An underlying assumption of this analysis is that otolith growth
rate is correlatedwith somatic growth rate of the larva; for individ-
uals in our study where otolith radius and larval standard length
(SL) data existed (n = 277), otolith size did correlate with SL
(Pearson’s r = 0.86).

(e) Analysis of variation in larval quality

As there was no evidence of vertical migration by T. caudimacula-

tus larvae (see Results), a reduced model with greater relevance
to our research questions was used for all further analyses. To
evaluate whether phenotypic traits of T. caudimaculatus larvae
varied as a function of depth, we used the lme4 package [33]
in R to fit a linear mixed effects model with the first principal
component score resulting from a PCA on the three larval pheno-
typic traits (described above) as the response variable, depth as a
fixed factor, and collection date as a random factor. In addition,
we used lme4 to fit a linear mixed effects model to larval age,
with depth as a fixed factor and collection date as a random
factor, to assess whether larval age varied as a function of
depth. We used the same method to fit a linear mixed effects
model to larval otolith size at age, with depth as a fixed factor
and collection date as a random factor, to examine the growth
trajectories of larvae at different depths. P-values were obtained
by likelihood ratio tests of the full model with the effect in ques-
tion against the model without the effect in question. Where full
models were significant, post hoc pairwise comparisons of signifi-
cant terms were conducted using Tukey’s honestly significant
difference (HSD) test, using the glht function in the ‘multcomp’
package [34].

( f ) Dispersal model
A biophysical dispersal model was used to simulate potential
dispersal outcomes based on the observed larval phenotypes
[35]. The model uses a three-dimensional hydrodynamic model
(400 m horizontal resolution, 8 vertical layers, and hourly time-
steps [36]) of PPB, incorporating wind, sea level, temperature, air
RSPB20191104—10/8/19—17:08–Copy Edited by: Not Mentioned
source population [35,41].
The three phenotype-based dispersal ensembles were inte-

grated to create a migration matrix representing the mixed
quality larval cohort and settlement patterns. Using the PC1
scores as a proxy for larval quality, we calculated the relative pro-
portion of each phenotype within a dispersing larval cohort from
each source patch. If larvaewith a score less than−1 are considered
‘poor quality’ and those greater than 1 are considered ‘high qual-
ity’ then the following represents the proportion of each larval
phenotype dispersing from a given patch: 23.4% low-quality
larvae, 55.6% medium-quality and 21.0% high-quality larvae.
These proportions where used to estimate the reproductive
output of the three larval phenotypes from each source patch, in
calculating the flow of individuals to destination patches. These
three dispersal ensembleswere then integrated to yield amigration
matrix based on the mixed cohort settlement patterns.

The proportion of individuals that were released from a site
and recruited back to their natal habitat patch, termed local reten-
tion (LR), and the proportion of all arriving individuals originating
from the focal patch, or self-recruitment (SR), were calculated from
the model output and the migration matrix. In addition, we quan-
tified the mean relative geographical distance (GD) displaced by
individuals, a distance-basedmeasure of connectivity, and the pro-
portion of individuals lost (PL) in the plankton (i.e. did not settle)
from the model output. To assess whether these dispersal out-
comes varied as a function of larval quality, we used the lme4
package in R to fit separate linear mixed effects models with
mean LR, mean SR, mean GD, and PL as the response variables,
larval quality as a fixed factor and reef ID as a random factor.
Mean LR andmean SRwas examined fromboth individual disper-
sal ensembles and from the integrated migration matrix. p-values
were obtained by likelihood ratio tests of the full model with the



effect in question against the model without the effect in question.
Where full models were significant, post hoc pairwise comparisons
of significant termswere conducted using Tukey’s HSD test, using
the glht function in the multcomp package. Data were checked for
conformity to assumptions of normality by visual examination of
residual plots (lattice package) [42], and box cox transformations
were used for non-normal residuals.

Additionally, we used the proportions of poor, average and
high-quality larvae from each release site that settled to each
patch reef to create a connectivity matrix, and mapped down-
stream connections to visually assess the influence of larval
phenotype on population connectivity. Lastly, we conducted a

Table 1. Parameter estimates and test statistics forQ11 the selected model describing th

parameter estimate (s.e.) z stat

depth

intercept (surface) 1.246 (0.775) 1.61

3 m 0.716 (0.636) 1.13

6 m 3.040 (0.674) 4.51

10 m (bottom) 3.417 (0.597) 5.72
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 ( 300
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targeted sensitivity analysis of our model (see electronic sup-
plementary material 4 for full details), by varying ‘target depth’
while holding all other model input parameters constant (i.e. aver-
age-quality values), and applying the same statistical analyses
on the focused model outputs as described above. The purpose
of this analysis was to determine if phenotype-dependent effects
on dispersal outcomes still occur when the only difference
among phenotypes is the target depth that the larvae seek
during dispersal. This ‘target depth’ parameter largely determines
their vertical depth distribution (vertical diffusion and currents can
also influence this). All statistical analyses were completed using
the statistical software R [30], and figures were created using the

package ‘ggplot2’ [43].
3. Results
(a) Vertical distribution patterns
Based on AICc criteria, the model of best fit for larval density
included the parameters depth, tide and time of day, but no
interactions terms (electronic supplementary material 3; table
S2). This model suggests the pattern of larval distribution by
depth did not shift with either changes in tide or time, indicat-
ing no diel vertical migration or selective tidal transport was
occurring. A higher abundance of T. caudimaculatus larvae
was caught during crepuscular periods and during flood
tides; however, these changes did not affect the relative depth
distribution of larvae (i.e. there was always a higher density
found in the bottom strata). Therefore, the model retaining
only depth as the best explanatory model was chosen, since
with no apparent vertical migration of T. caudimaculatus
larvae, the additional factors were not relevant to our ensuing
research questions. In comparing the selected model with the
null model, we found that larval density varied significantly
as a function of depth (table 1), with the majority (greater
than 90%) of T. caudimaculatus larvae found in the bottom two
strata (mean density ± s.e.: surface = 5.1 ± 2.4; 3 m = 6.9 ± 2.4;
6 m = 73.3 ± 41.0; bottom= 128.0 ± 59.2; figure 1). Furthermore,
the depth distribution of T. caudimaculatus larvae did not vary
as a function of individual age (electronic supplementary
material 3; figure S4).
RSPB20191104—10/8/19—17:08–Copy Edited by: Not Mentioned
e distribution of T. caudimaculatus larval density as a function of depth.

p-value −CI +CI

0.11 −0.2732 2.7656

0.26 −0.5300 1.9611

<0.0001 1.7191 4.3616

<0.0001 2.2467 4.5882
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400

1250

1000
(b) Quantifying Larval phenotypes
Phenotypic characteristics of larvae (size at hatch, early growth,
instantaneous growth rate) varied among depth strata; larvae
found in the surface stratum were smallest at hatch and grew
slowest, and size at hatch and growth rates increased with
depth (electronic supplementary material 3; table S3). Based
on otolithmeasurements, larvae collected from the surface stra-
tum were on average 5% smaller at hatch than larvae found in
the bottom stratum, and grew on average 15–20% slower than
larvae at the bottom.

For statistical testing, and to account for non-independence,
a composite variable of these three measures of larval pheno-
type was created using PCA. The first principal component
(PC1) accounted for 66% of the overall variation in larval
phenotype data. Size at hatch, early larval growth and instan-
taneous growth rate all loadedpositivelyon PC1 (0.44, 0.62 and
0.64, respectively). Therefore, individuals with high PC1 scores
were a larger size at hatch (indicative as greater development
pre-hatching) and grew more quickly, relative to those with
low PC1 scores.

Larval phenotype (as estimated by PC1) varied as a func-
tion of depth (χ2 = 11.38, d.f. = 3, p = 0.010) and this finding
was not caused by bias in catchability of larvae due to depth
or gear type (see electronic supplementary material 3).
Larvae found in the surface and 3 m stratawere assigned nega-
tive PC1 scores (means: surface =−0.80 ± 0.19; 3 m =−0.06 ±
0.20), indicating that they hatched with small otoliths and
grew at a slow rate, whereas larvae found in the bottom two
strata were assigned more positive PC1 scores (means ± s.e.:
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Figure 1. Density of T. caudimaculatus larvae collected from depth stratified
ichthyoplankton sampling. Densities were calculated as number of larvae per
100 m3 based on flow-meter determinations of the volume of water filtered Q
per tow. Larger black circles represent the mean density at each depth.
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6 m = 0.16 ± 0.14; bottom= 0.18 ± 0.14), indicating that higher
quality T. caudimaculatus phenotypes were mostly found
deep in the water column (figure 2). Furthermore, the size of
T. caudimaculatus larvae at each day during the dispersal
period differed significantly among depth strata (χ2 = 5497.1,
d.f. = 31, p < 0.0001; see electronic supplementary material 3,
table S4 for parameter estimates and pairwise comparisons),
suggesting the growth trajectories of larvae at different
depths diverged shortly after hatch (electronic supplementary
material 3, figure S5).

(d) Modelled dispersal outcomes

however, 56%more poor-quality larvae were lost compared to
high-quality larvae.

Visual assessment of local population connectivity showed
clear differences in the downstream connections resulting
from the dispersal of poor-, average- and high-quality larval
phenotypes (electronic supplementary material 3, figure S6).
Dispersal of poor-quality larvae resulted in a high number
of connections between reef patches and low local retention,
relative to average quality larvae. Dispersal of high-quality
larvae resulted in even fewer downstream connections and
the highest proportion of local retention. Overall, these main
results were qualitatively similar to the targeted sensitivity
analysis quantifying the influence of vertical distribution
(through the ‘target depth’ parameter) on dispersal outcomes.
The larvae’s target depth during dispersal, and therefore the
depth distribution, is clearly important in determining disper-
sal patterns and outcomes (see electronic supplementary
material 4 for full details).

4. Discussion
Many species on land and in water live in discrete habitat
patches across highly fragmented landscapes, and dispersal
is the key process responsible for connecting these local popu-
lations. The connections established by dispersing individuals
have important consequences for local population demo-
graphics and persistence [3], to the extent where local
population extinctions can be ‘rescued’ by recolonization of
dispersers [1]. This study investigated how larval phenotype
can influence dispersal and facilitate population connectivity
in a temperate marine fish. The most striking finding from
this study was that the position of individual larvae in the
water column was strongly related to their phenotypic traits,
with lower quality larvae found near the surface and higher
quality larvae found near the ocean floor. This phenotypically
structured vertical distribution of Trachinops caudimaculatus
larvae suggests that individual phenotype (i.e. quality) can
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Figure 2. PC1 score for larval quality of T. caudimaculatus larvae collected
from depth stratified ichthyoplankton sampling. Positive PC1 scores indicate
larvae that were larger at hatch and grew more quickly (i.e. high quality),
whereas negative PC1 scores indicate larvae that were smaller at hatch
and grew more slowly (i.e. poor quality). Larger black circles represent the
mean PC1 score at each depth. DifferentQ12 letters represent significant differ-
ences determined by Tukey’s HSD post hoc test.
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The biophysical model showed significant differences in three
of the four quantified measures of dispersal between low-,
average- and high-quality larval phenotypes (see electronic
supplementary material 3, table S5 for summary of model
output). Local retention and self-recruitment varied as a
function of larval phenotype (analysed alone, LR: χ2 = 19.43,
d.f. = 2, p < 0.001; SR: χ2 = 16.53, d.f. = 2, p < 0.001; analy-
sed in migration matrix, LR: χ2 = 25.46, d.f. = 2, p < 0.001; SR:
χ2 = 18.22, d.f. = 2, p < 0.001). High-quality and average-quality
larvae exhibited a significantly higher proportion of local
retention (figure 3a) and self-recruitment (figure 3b) than
poor-quality larvae; on average, high-quality larvae were
more than twice as likely to recruit to their natal reef than
poor-quality larvae when analysed alone and within the inte-
grated migration matrix. Mean relative geographical distance
travelled (GD) also differed among all three categories of
larvae (χ2 = 54.02, d.f. = 2, p < 0.001), with poor-quality larval
phenotypes travelling on average 49% further than average-
quality, and 65% further than high-quality phenotypes
(figure 3c). As mortality was not included as a parameter in
the model due to the lack of direct empirical evidence, larvae
that were ‘lost’ represent individuals that were not successful
at finding suitable habitat before they reached their maximum
number of days spent in the plankton (50 days). No significant
differences existed in the proportion of larvae lost during the
pelagic dispersal period (χ2 = 5.62, d.f. = 2, p = 0.06; figure 3d);
RSPB20191104—10/8/19—17:08–Copy Edited by: Not Mentioned
strongly influence the dispersal process, leading to funda-
mentally different dispersal outcomes. The results from our
biophysical model support these predictions, and clearly illus-
trate how disperser phenotype can influence subsequent
population connectivity in a marine metapopulation.

(a) Disperser phenotypes
Our study found evidence for the existence of dispersal syn-
dromes within T. caudimaculatus larvae; larger, faster-growing
larvae were found in the bottom two strata, whereas smaller,
slower-growing larvaewere found at thewater surface. Further-
more, the growth trajectories of larvae at different depths
show dispersal syndromes are strengthened throughout the
dispersal period, as the size difference between individuals in
the surface and bottom strata increased through time (electronic
supplementary material 3, figure S5). As predicted by our bio-
physical model, this trait-dependent distribution of larvae
through the water column creates distinct syndromes that
correlate with dispersal distance—dispersers, the long-distance
travellers found in the surface layers of the water column, and
residents, the self-recruiters found in the bottom layers of the
water column.

Theoretical and empirical studies suggest dispersal syn-
dromes are a reflection of complex trade-offs and covariation
among traits [10,44]. Often, traits that reduce the costs of
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of each

12post ho
movement (energetic, time, risk and opportunity costs) are
expected to covarywith dispersal [5,44], however, dispersal syn-
dromes or phenotypesmay emerge as a response to amultitude
of ecological processes (e.g. competition, predation, reproduc-
tion; [45]). While our study did not address the mechanistic
drivers of the vertical distribution of T. caudimaculatus larval
phenotypes, we can speculate on whether these disperser
types are a result of different adaptive behavioural strategies,
or the outcome of vertical positioning influenced by other
proximate causes.

The decision to move (horizontally or vertically) is gener-
ally the result of balancing trade-offs between the costs
of migration and the potential benefits through reduced preda-
tion risk, increased resource availability, and avoiding adverse
environmental conditions [46], and is dependent on both
extrinsic (e.g. population density, habitat cues, sex ratio and
social interactions; reviewed in [5] and [8]) and intrinsic (e.g.
body condition, sex, development and parental effects, and be-
havioural phenotypes; reviewed in [47] and [24]) drivers. The
skewed distribution in density and the variability in larval
phenotype across depths found in this study are suggestive
of two possible strategies:

(1) Balancing of trade-offs between optimal depth and starvation/pre-
dation risk. Since larval size and growth are known to be

proportion of larvae lost in the dispersal period simulated for poor-, averag
are from an integrated migration matrix, which accounts for the proportion
Different letters represent significant differences determined by Tukey’s HSD
RSPB20191104—10/8/19—17:08–Copy Edited by: Not Mentioned
influenced by parental effects in a number of fish species
(e.g. [48,49]), differences in larval phenotypes could rep-
resent within-population variability in offspring quality.
The partial vertical displacement of the smaller individuals
could reflect a behavioural decision to migrate upwards
within the water column—maximizing current fitness
through greater access to prey (either through higher prey
availability or reduced competition with competitively
superior individuals) or reduced exposure to potential pre-
dators, but a risky strategy for future fitness returns, as the
dispersal pathway will incur greater costs [50].

(2) Balancing of trade-offs between dispersal and retention.Alterna-
tively, the decision to disperse could be advantageous for
an individual in a poor-quality environment, where the
high costs of dispersing away from its natal habitat are
balanced by potential future fitness gains, if higher-quality
habitat is found at settlement. In contrast, individuals
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Qc test.
natal reef. As it is not known what population the
T. caudimaculatus larvae sampled in our study came from,
it is possible that the distinct disperser phenotypes in the
water column represent among-population differences.
For example, the ‘retained’ larval phenotype found in the
bottom depth layers could have been released from
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Schnapper Point (the closest reef)—a high quality habitat
for T. caudimaculatus in PPB—and were recruiting back to
their natal reef, whereas the ‘dispersing’ larval phenotype
at the surface could be dispersing from distant, lower qual-
ity reefs in search of a better environment inwhich to settle.
While we cannot rule out this possibility, we would expect
that the ‘disperser’ phenotype would have fewer young
larvae given the greater distances travelled, which was
not observed (electronic supplementary material 3, figure
S4). Future research comparing the growth histories of
larvae dispersing long distances and those settling close
to or recruiting back to their natal reef is needed to test
this hypothesis.

It is also possible that the vertical distribution of larval
phenotypes is not indicative of a decision to move, but of differ-
ential size-related abilities. A recent study by Nanninga &
Manica [51] found the swimming capacities of larval reef
fishesmaybe apowerful proxy fordispersal distance, evolution-
ary connectivityandgeographical range size in demersalmarine
populations. As swimming performance typically develops
linearly with body size during larval ontogeny (e.g. [52,53]), a
fast-growing individual would develop a greater swimming

capacity than a slow-growing phenotype of the same age, with
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(c) Ecological implications of disperser syndromes
Ourbiophysicalmodel simulations confirmour predictions that
disperser phenotype can influence the number and strength of
connections among local populations. Model simulations
found low-quality larvae (small, slow-growth phenotypes) are
transported further away from their natal reef, travelling greater
distances, whereas high-quality larvae (larger, fast-growth phe-
notypes) remain near their natal reef and exhibit a higher
proportion of self-recruitment and local retention. Not surpris-
ingly, the poor-quality dispersers had a higher number of
potential downstream connections than the average-or high-
quality larvae; however, they were also more likely to be ‘lost’
during the pelagic period, having failed to settle. These results
illustrate an uneven distribution in the quality of successful
dispersers across the dispersal kernel, with the poorest quality
larvae travelling the greatest distance and driving the tail of
the dispersal kernel. Although this pattern was consistent
across the variable oceanographic conditions present in the
year and location modelled in this study, further testing in
other systems with different oceanographic conditions will be
important for establishing the generality of this result.

Dispersal is a risky and costly endeavour [2,50], and long-
distance dispersal often results in reduced larval fitness at

settlement [19]. Furthermore, mounting evidence has shown
greater capacity for self-recruitment by maintaining position
near reef habitat. Similarly, rapid development of swimming
capacity at an earlier age could be critical for a larva’s ability to

that larval experience in the dispersal phase can significantly
influence an individual’s fitness and performance at the time

of settlement [18,61] and in the post-settlement environment
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