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ARTICLE INFO ABSTRACT

KeyWOFdS'J‘ The characterisation of vertices in a network, in relation to other peers, has been
RE{SOI"ab‘hty used as a primitive in many computational procedures, such as node localisation and
Privacy (de-)anonymisation. This article focuses on a characterisation type known as the multiset

Resolving set

Multiset resolving set metric representation. Formally, given a graph G and a subset of vertices S = {wy,...,w;} C
Metric dimension V(G), the multiset representationof a vertex ue V(G) with respect to S is the multiset
Outer multiset dimension m(ulS) = {d¢(u, wy), ..., dg(u, w)}. A subset of vertices S such that m(u|S) = m(v|S) <

u=v for every u,v e V(G) \ S is said to be a multiset resolving set, and the cardinality of
the smallest such set is the outer multiset dimension. We study the general behaviour of
the outer multiset dimension, and determine its exact value for several graph families. We
also show that computing the outer multiset dimension of arbitrary graphs is NP-hard, and
provide methods for efficiently handling particular cases.

© 2019 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license.
(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

The characterisation of vertices in a graph by means of unique features, known as distinguishability or resolvability, has
found applications in computer networks where nodes ought to be localised based on their properties rather than on identi-
fiers [6], or to determine the social role of an actor in society in comparison to other peers with similar structural properties
[7]. In fact, simple structural properties of vertices, such as their degree or the subgraphs induced by their neighbours, have
been successfully used to re-identify (supposedly) anonymous users in social graphs [8,17,18].

This article focuses on vertex characterisations that are defined in relation to a subset of vertices of the graph. The
earliest of such characterisations is known as metric representation, introduced independently by Slater [15] in 1975 and
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Harary and Melter [3] in 1976. Formally, given an ordered set of vertices S = {wy,...,w;} CV in a graph G = (V,E), the
metric representation of a vertex u e V with respect to S is the t-vector r(u|S) = (dg(u, wy), ..., dg(u, wy)), where the metric
dg(u,v) is computed as the length of a shortest u — v path in G. An ordered subset S satisfying that every two distinct
vertices u and v in the graph have different metric representation, i.e. r(u|S) # r(v|S), is said to be a resolving set. The
minimum cardinality amongst the resolving sets in a graph G is known as the metric dimension of G, and denoted as dim(G).
The metric dimension of graphs has been extensively studied in literature since the 70s. Issues that are relevant to the
present day, such as privacy in online social networks, are still benefiting from such research effort [9-12,16].

The assumption that resolvability requires an order to exist (or be imposed) on a set S for obtaining metric representa-
tions remained unchallenged until 2017, when Simanjuntak, Vetrik, and Mulia introduced the notion of multiset representa-
tion [14] by looking at the multiset of distances rather than at the standard vector of distances.

For a vertex u <V and a vertex set SV, the multiset representation of u with respect to S, denoted m(u|S), is defined by

m(u|S) = {dg(u,wy), ..., dc(u, w)},

where {.} denotes a multiset.

Using this definition, the notions of resolvability in terms of the metric representation were straightforwardly extended
to consider resolvability in terms of the multiset representation [5,14|. Our main observation in this article is that these
straightforward extensions are in fact an oversimplification of the problem of distinguishing vertices in a graph based on
the multiset representation. We argue that this problem has two flavours, one of which has been neglected in literature.

Contributions. This article makes the following contributions.

« We generalise the metric dimension of graphs to accommodate different characterisations of their vertices, such as
the metric and multiset representations. We show that the metric dimension problem with respect to the multiset
representation admits two interpretations: one that can be found in the literature [5,14]| and is known as the multiset
dimension, and another one that we call the outer multiset dimension. The latter is well-defined, whereas the multiset
dimension is undefined for an infinite number of graphs [5,14]. We also show that the outer multiset dimension finds
applications on measuring the re-identification risk of users in a social graph.

+ We characterise several graph families for which the outer multiset dimension can be easily determined, or bounded
by the metric dimension.

+ We prove that the problem of computing the outer multiset dimension in a graph is NP-Hard.

« We provide a polynomial computational procedure to calculate the outer multiset dimension of full 2-ary trees, and
a parallelisable algorithm for the general case of full 5-ary trees.

Structure of the article. In Section 2, we discuss the generalisation of the notion of metric dimension, focusing on vector
and multiset metric representations as particular cases of interest. From Section 3 onwards, the paper focuses on the outer
multiset dimension. Section 3 is devoted to the basic properties of this parameter, whereas Section 4 discusses the com-
plexity of its computation. Finally, Section 5 studies the behaviour of the outer multiset dimension in the particular case of
trees.

2. A generalisation of the metric dimension

We consider a simple and connected graph G = (V,E) where V is a set of vertices and E a set of edges. The distance
dc (v, u) between two vertices v and u in G is the number of edges in a shortest path connecting them. If there is no
ambiguity, we will simply write d(v, u).

The metric dimension of graphs has traditionally been studied based on the so-called metric representation, which is the
vector of distances from a vertex to an ordered subset of vertices of the graph. To accommodate other types of relations
between vertices, we generalise the metric dimension by considering any equivalence relation ~ CV x V over the set of
vertices of the graph. That is, we consider a relation ~ that is reflexive, symmetric, and transitive. We use [u]. to denote the
equivalence class of the vertex u eV with respect to the relation ~, while V/~denotes the partition of V composed of the
equivalence classes induced by ~.

Definition 2.1 (Resolving and outer resolving set). A subset S of vertices in a graph G = (V,E) is said to be resolving (resp.
outer resolving) with respect to ~if all equivalence classes in V[~ (resp. (V —S)/ ~) have cardinality one.

While standard resolving sets distinguish all vertices in a graph, outer resolving sets only look at those vertices that are
not in S, hence the name. We remark that there exist applications working under the assumption that S is given, implying
that vertices in S do not need to be distinguishable. For example, in an active re-identification attack on a social graph
[1,11,16], a malicious agent, the attacker, first inserts a set of fake accounts in the graph, commonly called sybils, and creates
a set of unique connection patterns with a number of legitimate vertices, called victims or targets. After a sanitised version
of the social graph is released, the attacker retrieves the set of sybil nodes by using a pattern matching algorithm, and then
re-identifies the victims by means on their metric representations with respect to the set of sybils.

We use ~ to denote the relation on the set of vertices of a graph defined by u ~5 v <= r(u|S) = r(v|S), where r(v|S)
is the vector of distances from v to vertices in S, and =g to denote the relation u =5 v <= m(u|S) = m(v|S), where m(v|S)
is the multiset of distances from v to vertices in S. These two relations are interconnected in the following way.
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multiset resolvability

outer multiset resolvability

outer resolvability <« resolvability
Fig. 1. Hierarchy of resolvability notions.

Proposition 2.2. For every non-trivial graph G, the following facts hold:

i. Every resolving set of G with respect to =g is an outer resolving set.
ii. Every outer resolving set of G with respect to =g is an outer resolving set of G with respect to ~.
iii. Every outer resolving set of G with respect to ~ s is a resolving set of G, and vice versa.

Proof. Let SCV(G) be a resolving set of G with respect to =. Then, every pair of distinct vertices u,v € V(G) satisfy
m(u|S) # m(v|S). Thus, it trivially follows that the same property holds for every pair of distinct vertices u,v e V(G) \ S.
This completes the proof of (i).

The second property follows straightforwardly from the fact that m(u|S) # m(v|S) = r(u|S) # r(v|S), and (iii) is a well-
known property of resolving sets based on the metric representation. O

Fig. 1 depicts the relations between resolvability notions enunciated in Proposition 2.2 in the form of a hierarchy. In the
figure, every arrow from resolvability notion A to resolvability notion B indicates that a set S which is resolving as defined
by A is also resolving as defined by B. We use the following shorthand notation in Fig. 1 and in the remainder of this article.

« resolving set to denote a resolving set with respect to ~g.

- multiset resolving set to denote a resolving set with respect to =g.

- outer resolving set to denote an outer resolving set with respect to ~g.

- outer multiset resolving set to denote an outer resolving set with respect to =q.

Definition 2.3 (Metric dimension and outer metric dimension). The metric dimension (resp. outer metric dimension) of a
simple connected graph G = (V, E) with respect to a structural relation~is the minimum cardinality amongst a resolving
(resp. outer resolving) set in G with respect to ~. If no resolving (resp. outer resolving) set exists, we say that the metric
dimension (resp. outer metric dimension) is undefined.

An example of a metric dimension definition that is undefined for some graphs is given by Simanjuntak et al. [14]. They
use the multiset representation to distinguish vertices. It is easy to prove that a complete graph has no multiset resolving
set, which leads to indefinition. Conversely, the outer metric dimension with respect to the multiset representation is always
defined, given that for every graph G = (E,V), V is an outer multiset resolving set.

Overall, we highlight the fact that, while the outer metric dimension and the standard metric dimension with respect to
the metric representation are equivalent (see Fig. 1), the use of the multiset representation renders the outer metric dimen-
sion different from the standard metric dimension. In fact, the outer multiset dimension is defined for any graph, whereas
the multiset dimension is not. Furthermore, recent privacy attacks and countermeasures on social networks [1,11,13,16] rely
on the notion of outer resolving set, rather than on the original notion of resolving set. The remainder of this article is thus
dedicated to the study of the outer multiset dimension, that is, the outer metric dimension with respect to =s.

3. Basic results on the outer multiset dimension

In this section we characterise several graph families for which the outer multiset dimension can be easily determined,
or bounded by the metric dimension otherwise. We start by providing notation that we use throughout the rest of the
paper.

Notation. Let G = (V,E) be a simple undirected graph of order n = |V(G)|. We will say that G is non-trivial if n>2. We
denote by K, Nn, P, and G, the complete, empty, path and cycle graphs, respectively, of order n. Moreover, we will use the
notation u <¢ v (negated as u ¢ v) to indicate that u and v are adjacent in G, that is (u,v) € E. For a vertex v of G, Ng(v)
denotes the set of neighbours of v in G, that is N;(v) = {u € V(G) : u < v}. The set N;(v) is called the open neighbourhood
of the vertex v in G and Ng[v] = Ng(v) U {v} is called the closed neighbourhood of v in G. The degree of a vertex v of G will
be denoted by &5 (v). If there is no ambiguity, we will drop the subscripts and simply write u < v, u # v, N(v), etc. Two
different vertices u, v are called true twins if N[u] = N[v]. Likewise, u, v are called false twins if N(u) = N(v). In general, u, v
are called twins if they are either true twins or false twins. Moreover, a vertex u is called a twin if there exists v # u such
that u and v are twins. Note that the property of being twins induces an equivalence relation on the vertex set of any graph.
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Finally, we will use the notation dimpys(G) for the outer multiset dimension of a graph G, and dim(G) for the standard metric
dimension.

Proposition 3.1. For every non-trivial graph G of order n, the following facts hold:

i. 1 <dimps(G) <n-—1.
ii. dimps(G) > dim(G).

Proof. The fact that dimpys(G) > 1 follows directly from the definition of outer multiset dimension, whereas dimps(G) <n —1
follows trivially from the fact that every vertex v is the sole vertex in V(G) \ (V(G) \ {v}), and thus it has a unique multiset
representation w.r.t. V(G) \ {v}, which is thus a multiset resolving set. The fact that dimpys(G) > dim(G) follows directly
from items (ii) and (iii) of Proposition 2.2. O

Once established the global bounds of the outer multiset dimension, we now focus on the extreme cases of these in-
equalities.

Proposition 3.2. A graph G satisfies dimns(G) = 1 if and only if it is a path graph.

Proof. Let G be a path graph. It is clear that the set {v}, where v is an extreme vertex of G, is a multiset resolving set of G,
so dimps(G) < 1. By item (ii) of Proposition 3.1, dimps(G) > dim(G) > 1, so the equality holds. On the other hand, if G is not
a path graph, then item (ii) of Proposition 3.1 also leads to dimmps(G) > dim(G) > 2, as the standard metric dimension of a
graph is known to be 1 if and only if it is a path graph [2]. O

According to Proposition 3.2, the cases where dimps(G) = dim(G) =1 coincide. However, this is not the case for the
upper bound of Proposition 3.1 (i). Indeed, while it is easy to see that, for any positive integer n>2, the complete graph
Ky satisfies dimps (K,) = dim(K,) = n — 1, we have the fact that this is the sole family of graphs for which dim(K;) =n -1,
whereas there exist graphs G such that dimpys(G) =n—1 > dim(G), as exemplified by the next results.

Example 3.3. The cycle graphs C4 and Cs satisfy dimps(C4) = 3 > 2 = dim(C() and dimps(Cs) =4 > 2 = dim(Gs).

Proposition 3.4. Every complete k-partite graph G=K r, r, such that ri=ry=-.-=r>2 and ZL r; =n satisfies
dimps(G) =n—1.
Proof. Let G =K, r, _r, be a complete k-partite graph such that r{ =r; = --- =1, > 2. Let u, v € V(G) be two arbitrary ver-

tices of G and let SC V(G) \ {u,v}. If u # v, then m(u | S) = m(v | S), as they are false twins in G. Consequently, S is not a
multiset resolving set of G. We now treat the case where u < v, for which we differentiate the following subcases:

+ S=V(G) \ {u,v}. In this case, m(u | S)=m(v | S) = U{;}{Z} UU{;}{]} UU%‘;Z Uj=111}. and so S is not a multiset
resolving set of G.

+ ScV(G)\ {u,v}. Here, if there exists some x € V(G) \ (SU{u,v}) such that x # u (resp. x # v), then m(u | S) =
m(x | S)(resp. m(v | S) =m(x | S)), as x and u (resp. x and v) are false twins in G. Thus, S is not a multiset re-
solving set of G. Finally, if every x e V(G) \ (SU {u, v}) satisfies u <> x <> v, then we have that m(u | ) =m(v | S) =
Ui';]l{z}UU{;H]}UUL{]}U-~~UUf":*12{1}, with t;<r for i e {1,...,k—2}, which entails that S is not a multiset
resolving set of G.

Summing up the cases above, we have that no set S V(G) such that |S| < n — 2 is a multiset resolving set of G, and so
dimmps (G) > n — 1. The equality follows from item (i) of Proposition 3.1. The proof is thus completed. O

Example 3.3 shows two cases where the outer multiset dimension of a cycle graph is strictly larger than its standard
metric dimension. With the exception of C3, which satisfies dimpys(C3) = dim(C3) = 2, the strict inequality holds for every
other cycle graph, as shown by the following result.

Proposition 3.5. Every cycle graph C, of order n> 6 satisfies dimmps(C,) = 3.

Proof. Consider an arbitrary pair of vertices u,v € V(C;) and a pair of vertices x,y € V(Cy) \ {u, v} such that u<x, y < v,
and both x and y lie on exactly one path from u to v (note that for n>6 at least one such pair x, y exists). We have
that m(x | {u,v}) =m(y | {u,v}) ={1,d(u,v) £ 1}, so no vertex subset of size 2 is a multiset resolving set of C,. Thus,
dimms(Gy) > 3.

Now, consider an arbitrary vertex v; € V(C;) and the set S = {v;_,, v;, i, 1}, where the subscripts are taken modulo n. We
differentiate the following cases for a pair of vertices x, y € V(Cy)\S:

1. x =v;_1. In this case, m(x | S) ={1,1,2} #m(y | S), as y is at distance 1 from at most one element in S.

2. x and y satisfy {d(x,v;),d(x,v;_3)} = {d(y,v;),d(y,v;_)}. In this case, assuming without loss of generality that a =
d(x,v;) <d(y,v;), we have that m(x | S) ={a,a+2,a-1} #{a,a+2,a+3} =m(y | S).

3. x and y satisfy {d(x,v;.1),d(x,v;i_3)} = {d(,viy1).d(y.v;_3)}. In a manner analogous to that of the previous case,
we assume without loss of generality that b=d(x,v;,1) <d(y,v;1) and obtain that m(x | S)={b,b+1,b+3} #
{bb+2,b+3}=m(y | S).

4. In every other case, we have that min{d|d e m(x|S)}# min{d’'|d’ e m(y|S), so m(x|S)#m(y|S).
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V4

Us U3
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Fig. 2. The wheel graph W, 5 = (v) +Gs.

Finally, summing up the cases above, we have that S is a multiset resolving set of G, and so dimms(G) < |S| = 3. This
completes the proof. O

Next, we characterise a large number of cases where the outer multiset dimension is strictly greater than the stan-
dard metric dimension. To that end, we first introduce some necessary notation. We represent by [Cep the number of
r-combinations, with repetition, from n elements. Likewise, we represent by }'Pp the number of r-permutations, with rep-
etition, from n elements. Recall that P'Crp = (”’;’1) = (r;’jl), whereas !'Prp = n". Finally, we recall the quantity f{n, d),
defined in [2] as the smallest positive integer k such that k+d* > n. In an analogous manner, we define f(n, d) as the
smallest positive integer k' such that k' + (rgdj]) > n. Since, by definition, ?Gep <P Pep, we have that fin, d) <f(n, d). With
the previous definitions in mind, we introduce our next result.

Theorem 3.6. For every graph G = (V,E) of order n and diameter d such that dim(G) < f’(n, d),
dimpys(G) > dim(G).

Proof. Let G = (V,E) be a graph of order n and diameter d. It was proven in [2] that every such graph satisfies dim(G) >
f(n,d). Indeed, no vertex subset S C V such that |S| <f(n, d) is a metric generator of G, because the number of different metric
representations, with respect to S, for elements in V\S is at most dlSl < n— |S| = |V \ S|. In general, if |S| =, the set of all
possible different metric representations for elements of V\S with respect to S is that of all permutations, with repetition,
of r elements from {1,2,...,d}. Applying an analogous reasoning, we have that the set of all possible different multiset
metric representations for elements of V\S with respect to S is that of all combinations, with repetition, of r elements from
{1,2,...,d}. Thus, any multiset metric generator S of G must satisfy Tslcrep >n—|S], so dimpys(G)>f(n, d). In consequence,

if dim(G) < f'(n,d), then dimpys(G) > dim(G). O

An example of the previous result is the wheel graph W; 5 = (v) 4+ Cs, which has diameter 2 (see Fig. 2). As discussed in
[24], dim(W;5) =2 = f(6,2) < f/(6,2) =3 < 4 = dimms (W; 5).

To conclude this section, we give a general result on the relation between outer multiset resolving sets and twin vertices,
a particular case of which will be useful in further sections of this paper.

Proposition 3.7. Let G be a non-trivial graph and let SC V(G) be an outer multiset resolving set of G. Let u,v € V(G) be a pair
of twin vertices. Then, ueS or veS.

Proof. The proof follows from the fact that, as twin vertices, u and v satisfy d(u,x) =d(v,x) for every x e V(G) \ {u, v},
which entails that u and v have the same multiset representation according to any subset of V(G) \ {u, v}. O

Corollary 3.8. Let G be a non-trivial graph and let T = {[uq], [uz2], ..., [uc]} be the set of equivalence classes induced in V(G) by
the twin equivalence relation. Then,

t
dimms(G) = > (|[ui]] - 1).
i=1

Proof. The result follows from the fact that, for every twin equivalence class, at most one element can be left out of any
outer multiset resolving set. O

4. Complexity of the outer multiset dimension problem

In the previous section, we showed that algorithms able to compute the metric dimension can be used to determined
or bound the outer multiset dimension. The trouble is, however, that calculating the metric dimension is NP-Hard [6]. We
prove in this section that computing the outer multiset dimension of a simple connected graph is NP-hard as well. The
proof is, in some way, inspired by the NP-hardness proof of the metric dimension problem given in [6]. To begin with, we
formally state the decision problem associated to the computation of the outer multiset dimension:

Outer Multiset Dimension (DIMMS)
INSTANCE: A graph G = (V,E) and an integer k satisfying 1 <k < |V| - 1.
QUESTION: Is dimps(G) <k?
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Fig. 3. Gadget of a variable x;.

Fig. 4. Gadget of clause C;.

Theorem 4.1. The problem DIMMS is NP-complete.

Proof. The problem is clearly in NP. We give the NP-completeness proof by a reduction from 3-SAT. Consider an arbitrary

input to 3-SAT, that is, a formula F with n variables and m clauses. Let x, X5, ..., X, be the variables, and let C;,G,, ...,Cy be

the clauses of F. We next construct a connected graph G based on this formula F. To this end, we use the following gadgets.
For each variable x; we construct a gadget as follows (see Fig. 3).

« Nodes T;, F; are the “true” and “false” ends of the gadget. The gadget is attached to the rest of the graph only through
these nodes.

» Nodes a!, a?, b!. b? “represent” the value of the variable x;, that is, a] and a? will be used to represent that variable
x; is true, and b} and b? that it is false.

» Nodes dl.1 and dl.2 will help to differentiate between nodes in different gadgets.

« Q; is a set of end-nodes of cardinality g; adjacent to dil. Notice that all these nodes are indistinguishable from diz.
Moreover, the cardinalities of these sets Q; are pairwise distinct, which is necessary for our purposes in the proof. We
further on state the explicit values of their cardinalities.

For each clause C; we construct a gadget as follows (see Fig. 4).

» Nodes c} and C? will be helpful in determining the truth value of .
» Nodes cJ2. and c;‘ will help to differentiate between nodes in different gadgets.
+ P; is a set of end-nodes of cardinality p; adjacent to c?. Notice that all these nodes are indistinguishable from c;?. As

in the case of the sets Q; from the variable gadgets, the cardinalities of these sets P; are also pairwise distinct.

As mentioned before, we require some conditions on the cardinalities of the sets P; and Q; from the variables and clauses
gadgets, respectively. The values of their cardinalities (which we require in our proof) are as follows. For every i € {1,...,n}
we make q;=2-i-n, and for every je {1,...,m} we make p; = 2. j-n+2n2 In concordance, we notice that the set of
numbers p; and g; are pairwise distinct. Also, we clearly see that }"g; 4+ Y_ p; is polynomial in n +m.

The gadgets representing the variables and the gadgets representing the clauses are connected in the following way in
order to construct our graph G.

» Nodes c}, for every j, are adjacent to nodes T;, F; for all i.

« If a variable x; does not appear in a clause G, then the nodes T;, F; are adjacent to c?.

« If a variable x; appears as a positive literal in a clause Cj, then the node F; is adjacent to cf‘.
« If a variable x; appears as a negative literal in a clause Cj, then the node T; is adjacent to c?.
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We first remark that the constructed graph G is connected, and that its order is polynomial in the number of variables
and clauses of the original 3-SAT instance. We will prove now that the formula F is satisfiable if and only if the multiset
dimension of G is exactly M= Y"1, q;+ Y1 pj +1n.

First, let us look at some properties that must be fulfilled by a multiset resolving set S of minimum cardinality in G.
First, as the nodes in Q; U {diz}, for every i € {1,...,n}, are indistinguishable among them, and at least |Q;| of them must be
in S, we can assume without lost of generality that Q; cS. By using a similar reasoning, also P;cS for every j e {1,...,m}.
Moreover, for every i € {1,...,n}, at least one of the nodes al.l, al.z, b}, bl? must be in S, otherwise some pairs of them would
have the same multiset representation, which is not possible. Thus, the cardinality of S is at least M. Clearly, if M = |S|, then
we have already fully described a set of nodes that could represent S.

Lemma 4.2. Consider a set S* containing exactly M nodes given as follows. All nodes in Q; for i € {1,...,n}, all nodes in P;
for je{1,...,m}, and exactly one node from each set {a}, al.z, b}, bl?} forie{1,...,n} are in S*. Then, all pairs of nodes have
different multiset representations with respect to S*, except possibly c} and c? (for some je{1,...,m}).

Proof. To prove the lemma, we will explicitly compute the multiset representation of each node. For easier representation,
we use a vector (xq,...,Xp) to denote the multiset over positive integers such that 1 has multiplicity x;, 2 has multiplicity
X5, and so on.

m(cf|s*) = (0, p;.0,n,...).

m(c[S*) = (pj...).

m(d!$*) = (q....),

m(d?|$s) = (0,4;....),

(m(T;|S*), m(F;|S*)) is equal to either ((1,gq;,...), (0,q; +1,...)) or ((0,q; +1,...),(1,q;,...)),

al, a?, b}, b?: Let's assume b? e S*. Then {m(a/ [$*). m(a?|$*). m(b}|S*)} = {(1.0.¢;....). (0.1.q;....). (0,0, + 1...)}.
An analogous result remains if the assumption that bi2 e §* is dropped, based on the following observations. First, one

and only one of the nodes a].a?, b}, b? is in S*, and the distances from the other three to this one are exactly 1, 2, 3
in some order. Second, each of these nodes have g; nodes at distance 3.

m(cj|S*) = (0. pj+n. Ly i XL i — ).

c]3 : the number of nodes at distance two depends on which node belongs to S* from each variable gadget. We distin-
guish three possible cases for the distance between c;’f and the node from S* belonging to the gadget corresponding
to a variable x;.

- If x; appears in G as a positive literal, and a} e §* or a,.2 € §*, then such distance is 3.
- If x; appears in G as a negative literal, and b} € S* or bl.2 € §*, then such distance is 3.
- If none of the above situations occurs, then such distance is 2.

Therefore, the multiset representation of cf' is related to the set (0, pj+w;, Y q;+n—wj,> p;— p;), where w; is the
number of nodes from gadgets representing some x; matching the third case above. Notice that, as the difference between
any p; and any g; is at least 2n, all pairs of nodes have also a different multiset representation, except possibly (c}, c]3.) that
depend on the selected nodes from each variable gadget. We next particularise some of these situations.

« As q;#pj for every i e {1,....n} and every j e {1,...,m}, we observe m(cfls*) # m(d]|S"), m(c}‘|5*) # m(d?(S*).
- Since p; #q;+1 for every ie{1,..., n} and every je{l,..., m}, we deduce m(cﬂs*) # m(T;|S*) and m(cj.‘|5*) #

m(E|S*).
- Since pj, # pj, +n for every jy, j, € {1,...,m}, we get m(cj?1 |S*) # m(c}2 1S*).
Remaining cases trivially follow, and are left to the reader, and so the proof of the lemma is complete. O

We will now show a way to transform the set S* into values for the variables x; that will lead to a satisfiable assign-
ment for F. If $*n {a},aiz} # ¢ for some variable x;, then we set the variable x; = true (with respect to S*). Otherwise
(S*n{a}.a?} = ¢ or equivalently S* N {b!.b?} +# ), we set x; = false. Hence, the clause C; is true or false in the natural
way, according to the values previously given to its variables.

Lemma 4.3. Let S* be a set of nodes as defined in the premise of Lemma 4.2. Then c} and C? have different multiset representa-
tions with respect to S* if and only if the clause C; is true.

Proof. Notice that the distance between C? and the node in S* from the gadget corresponding to x; is 3 if and only if the
clause C; is true (see Lemma 4.2). Thus, w; = 0 (as defined in Lemma 4.2) when the clause G is false, and only in this case
m(c?|5*) = m(c} 1S*). O

By using the lemmas above, we conclude the NP-completeness reduction, through the following two lemmas.

Lemma 4.4. If F is satisfiable, then the outer multiset dimension of G is M.
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Proof. Recall that dimpys(G) > M. It remains to prove that if F is satisfiable then dimpys(G) <M. Let us construct a set S in the
following way. If x; is true, then a} € S. Otherwise (x; is false), b} € S. Also, we add to S all nodes in the sets P; and Q;.
Hence, according to Lemmas 4.2 and 4.3, S is a multiset resolving set, and its cardinality is exactly M. O

Lemma 4.5. If the outer multiset dimension of G is M, then F is satisfiable.

Proof. Let S be a set of nodes of cardinality equal to the multiset dimension of G. Hence, as explained before, without
lost of generality all nodes in the sets P;, Q;, and exactly one node of a}, al.z, b}, bl.z, must belong to S, and no other node
is in S. If ai1 eSor ai2 € S, then let x; be true. Otherwise, let x; be false. Since S is a multiset resolving set, according to
Lemmas 4.2 and 4.3, all clauses G of F must be true, unless the nodes ¢! and ¢ would have the same multiset representa-
tion, which is not possible. If all clauses of F are true, then F is satisfiable, as claimed. O

The last two lemmas together complete the reduction from 3-SAT to the problem of deciding whether the outer multiset
dimension of a graph G is equal to a given positive integer. The latter problem can in turn be trivially reduced to DIMMS.
This completes the proof. O

5. Particular cases involving trees

Given that, in general, computing the outer multiset dimension of a graph is NP-hard, it remains an open question for
which families of graphs the outer multiset dimension can be efficiently computed. The goal of this section is to provide a
computational procedure and a closed formula to compute the outer multiset dimension of full §-ary trees. A full §-ary tree
is a rooted tree whose root has degree §, all its leaves are at the same distance from the root, and its descendants are either
leaves or vertices of degree & + 1. We expect the results obtained in this section to pave the way for the study of the outer
multiset dimension of general trees.

Notation. Given a multiset M and an element x, we denote the multiplicity of x in M as M[x]. We use €;(x) to denote
the eccentricity of the vertex x in a graph G, which is defined as the largest distance between x and any other vertex in the
graph. We will simply write €(x) if the considered graph is clear from the context. Given a tree T rooted in w, we use Ty
to denote the subtree induced by x and all descendants of x, i.e. those vertices having a shortest path to w that contains x.
Finally, an outer multiset basis is an outer multiset resolving set of minimum cardinality.

We start by enunciating a simple lemma that characterises multiset resolving sets in full -ary trees.

Lemma 5.1. Let T be a full -ary tree rooted in w with § > 1. A set of vertices S< V(T) is an outer multiset resolving set if and
only if Vi yev(ry\s : d(u, w) = d(v,w) = m(ulS) # m(v|S).

Proof. Necessity follows from the definition of outer multiset resolving sets. To prove sufficiency we need to prove that
Vuvevns = A, w) #d(v, w) = m(u|S) # m(v|S).

Take two vertices x, ye V(T)\S such that d(x,w) < d(y,w). Because T is a full §-ary tree, we obtain that d(x,w) <
d(y,w) < €7(x) < er(y). Also, there must exist two leaf vertices y;, ¥, in T which are siblings and satisfy d(y,,y) =
d(y3,y) = er(¥). Considering that y; and y, are false twins, we obtain that y{,y, ¢ S = m(y1|S) = m(y;|S). Therefore, given
that d(y1,w) = d(y,, w), it follows that y; €S or y, €S. We assume, without loss of generality, that y; €S. On the one hand,
we have that d(yq, y) e m(y|S). On the other hand, because d(y;,y) = €7(y) > €r(x), we obtain that d(yq, y) ¢ m(x|S), 1mply1ng
that m(x|S) # m(y|S).

Based on the result above, we provide conditions under which an outer multiset basis can be constructed in a recursive
manner. This is useful for the development of a computational procedure that finds the outer multiset dimension of an
arbitrary full §-ary tree.

Lemma 5.2. Given a natural number ¢>1, let Ty, ..., Ts be & full 5-ary trees of depth ¢ with pairwise disjoint vertex sets. Let
wi, ..., wg be the roots of Ty, ..., Ts, respectively, and let T be the full §-ary tree rooted in w defined by the set of vertices
V(T)=V(T})U---UV(Ty) U{w} and edges E(T) =E(T;) U---UE(Ts) U{(w,wy),..., (W,wy)}. Let Sy,...,Ss be outer multiset
bases of Ty, ..., Ty, respectively. Then

Vigiet,..symr (Wi|Sp e, (wi)] # mpj(w;|S))er;(w))] =
S1U...US;s is an outer multiset basis of T.

Proof. Let S=5;U...USs. Consider two vertices x and y in V(T)\S such that dr(x,w) =dr(y,w). We will prove that
mr(x|S) # mz(y|S), which gives that S is an outer multiset resolving set via application of Lemma 5.1. Our proof is split
in two cases, depending on whether x and y are within the same sub-branch or not.

First, assume that xe W(T;) and y e V(T;) for some i#je{1,..., 8}. For every leaf vertex z in T, but not in T;, we ob-
tain that dr(x,z) = €r(x). Because €r(x) > er.(x), we get mr(x[S)[er(x)] = X1 S\(i} M, (Wi |Si)ler, (wy)], which is the
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sum of the leaf vertices that are not in S from all sub-branches, but T;. Analogously, we obtain that mr(y|S)[er(¥)] =
Pke(1,...s1\{j) M1, Wil S) €, (wy)]. Therefore,

mr (x[S)[er (x)] — mr (¥|S)[er (v)] = mr; (w;|S;)[er, (W;)] — mr, (wi[S;)[er, (Wi)].

The premise is that Vi, ,5}mT,~(Wi|5i)[5Ti (wy)] # mTj(wj|Sj)[eTj (wj)]. This gives my, (wj|S)[eTj (wj)] - mTi(w,-|S)
[er,(wp)] # 0, which leads to my(x|S)[e7(x)] # mz(y|S)[€r(y)], which implies that mr(x|S) # mz(y|S).

For the second case assume that x e V(T;) and y € V(T;) for some i e {1,..., &}. This implies that my(x|S;) # mp(y|S;), because
S; is an outer multiset resolving set in T;. Moreover, for every vertex ze V(T)\W(T;) it holds that dr(x,z) = dr(y,z), which
gives the expected result: mp(x|S)# mp(y|S).

So far we have proved that S is an outer multiset resolving set. To prove that S is a basis, we proceed by showing that
any outer multiset resolving set S’ in T satisfies that the sets SNV (Ty),...,S NV (Ts) are outer multiset resolving sets in
T, ..., Ty, respectively. Given that Sy, ..., Ss are outer multiset bases, this would mean that S is an outer multiset resolving
set of minimum cardinality.

Let §{ =S’ NV (Ty),.... S5 =S NV (T). Assume that S} is not an outer multiset resolving set in T; for some i e {1,...,}.
This means that there exist vertices x and y such that myg (x|S}) = my, (¥[S]). Because T; is a full §-ary tree with §>1 and
depth at least two, there must exist two leaf vertices xq, X, (resp. y1, ¥) in T; which are siblings and satisfy d(xq,x) =
d(xz,x) = €. (x) (resp. d(y1,y) = d(y2,¥) = €1,(¥)). Considering that x; and x; (resp. y; and y;) are false twins, we obtain
that x; €S’ or x; €S’ (resp. y; €S’ or y; €5'). This implies that x and y have the same eccentricity in T;, because er,(x) <
er,(¥) = er,(y) ¢ mg (x[S]), while €7, (x) > €1, (y) = €7, (x) ¢ mg,(y[S]). Given that T; is a full §-ary tree, it follows that x and y
also have the same distance to the root vertex w;. Therefore, for every vertex ze V(T)\W(T;) it holds that dr(x,z) = dr (y, 2),
which gives mr (x|S") = mr (y|S’). This contradicts the premise that ' is a multiset resolving set. Hence S; is an outer multiset
resolving set. O

Lemma 5.2 provides a sufficient condition for obtaining an outer multiset basis of a full §-ary tree T by joining bases of
the first level branches of T. The next result goes further, by providing a sufficient condition to finding § /1 outer multiset
bases in T, based on § + 1 outer multiset bases of the first level branches of T. This allows us to express the size of an outer
multiset basis in a recurrence equation and, consequently, provide a closed formula for the outer multiset dimension of full
§-ary trees.

Theorem 5.3. Let Tf be a full §-ary tree of depth ¢. Let n be the smallest positive integer such that there exist § +1 outer
multiset bases Sq,...,Ss,.q in TS satisfying that Vizjeqt,...s41yMps (WIS €55 (W)] # mys (W[Sj)[€5 (W)], where w is the root of
n n n n

T3, Then, for every ¢ >n, the outer multiset dimension of T is given by §=" x dimms(T}?).

Proof. We proceed by induction.
Hypothesis. For some ¢ >n, the following two conditions hold:

mpisplesnl

2. The outer multiset dimension of T is given by 8™ x dimms(T?).

Clearly, these two conditions hold for ¢ = n (base case). The remainder of this proof will be dedicated to finding 6 + 1
outer multiset bases Ry, ..., Rs q of Tf+l that satisfy condition (1). The second condition will follow straightforwardly from
the size of the bases Ry, ..., Rs, ;.

Let w’ be the root of Tf_ﬂ and w the root of T?. Let wy, ..., w; be the children vertices of w’ in T;S_H. For each sub-branch

Tw, of Tf_H, with ke {1,...,8}, let ¢, be an isomorphism from Tf to Ty,. It follows that Se = {¢(W)|u €S} is an outer

By Theorem 5.2, we obtain that, for every ie{1,..., 8 +1}, the set Ry = Ujeqr, . s+1)\(i} §j is an outer multiset basis of

Tfﬂ. Moreover, for every i € {1,...,8 + 1}, the following holds

my (WIR)ep W)= > mg, (Wj|§i)[€ij (wj)].

From the equation above we obtain that for every i, j € {1,...,5 + 1},

mys (W|Ri)[€rf+1 (wW)] —my; (W|Rj)[€rf+1 (w)] =mg, (Wj|§j)[€ij (wj)] —mg, (Wi|§i)[6Twi wy)].
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Table 1

Three outer multiset bases of T? satisfying the premises of
Theorem 5.3. Vertices of T42 have been labelled by using a
breadth-first ascending order, starting by labelling the root
node with 1 and finishing with the label 2™ —1.

S1 = {22, 24,14, 25, 26, 16, 28, 18, 2, 8, 30, 20, 21}
T? S, ={22,12,24,14,26,16,28,18,6.8,30,20,21}
S3 =1{22,24,14, 25, 26, 16, 17, 28, 18, 8, 30, 20, 21}

Recall that Vic(y_s.1my,, (WilSp) = my; (w|S,). which means that i+ j = mr, (Wj|§j)[67-wj (W))] # mg,, (Wi|‘§i)[erwi wpl.

Therefore, we conclude that Tf+1 and Ry, ..., Rs, satisfy the first condition of the induction hypothesis, i.e.

Finally, observe that |R;| =[S, x -+ - x |§5+1| =8 x dimms(T?). The second condition of the induction hypothesis states that
dimms (T9) = 8" x dimms (T, which gives that dimmS(T(ﬂl) =8 x dimms(T) = §+1" x dimms (T9). O

We end this section by addressing the problem of finding the smallest n such that T} contains § + 1 outer multiset
bases Sy, ...,Ss,1 satisfying the premises of Theorem 5.3. We do so by developing a computer program' that calculates
such number via exhaustive search. The pseudocode for this computer program can be found in Algorithm 1. It reduces
the search space by bounding the size of an outer multiset basis with the help of Lemma 5.2 (see Step 13 of Algorithm 1).
That said, we cannot guarantee termination of Algorithm 1, essentially for two reasons. First, the computational complexity
of each iteration of the algorithm is exponential on the size of T while, at the same time, the size of T? exponentially
increases with n. Second, there is no theoretical guarantees that such an n can be found for every é.

Algorithm 1 Given a natural number §, finds the smallest n such that the full §-ary tree of depth n satisfies the premises
of Theorem 5.3.

: Let n=0 and T? a full §-tree of depth nrooted in w

—_

2: min=1 > Lower bound on the cardinality of a basis in T]‘S
3: max=06—1 > Upper bound on the cardinality of a basis in Tf
4: repeat

5: for i = min to max do > Each of these iterations can be ran in parallel
6: Let B be an empty set

7: for all S C V(T?9) s.t. |S| =i do

8: if S is a resolving set then

9: if VS/EBang (W|5/)[ET;I; (w)] # mys (W|5)[€Tn3 (w)] then

10: B=BU{S}

11: if B # ¢ then
12: break > The outer multiset dimension of T} has been found
13 min = dimms(T%) x § > See Lemma 5.2
14: max = min+ 3§ — 1 > This is the trivial upper bound

15 n=n+1
16: until |B| > 8§ + 1
17: return n

Despite the exponential computational complexity of Algorithm 1, it terminates for § = 2. In this case, the smallest n
satisfying the premises of Theorem 5.3 is n = 4. The three outer multiset bases S, S, and S3 of T42 are illustrated in Table 1
below.?2 We refer the interested reader to Appendix 6 for a visual representation of the bases shown in Table 1. The main

corollary of this result is the following.

Corollary 5.4. The outer multiset dimension of a full 2-ary tree T? of depth ¢ is:

1, ife=1,
3, if =2,
dimms (T2) = { 6, if e =3,
13 if e =4,

24 % 13, otherwise.

1 The computer program can be found at https://github.com/rolandotr/graph.
2 Qur program took about 3.25 h in a DELL computer with processor i7-7600U and installed memory 16 GB to find the result shown in Table 1.
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Proof. The first four cases are calculated by an exhaustive search using a computer program that can be found at https:
//github.com/rolandotr/graph. The last case follows from Theorem 5.3. O

It is worth remarking that Algorithm 1 can be paralellised and hence benefit from a computer cluster. Running the algo-
rithm in a high performance computing facility is thus part of future work, which may lead to termination of Algorithm 1 for
values of § higher than 2.

6. Conclusions

In this paper we have addressed the problem of uniquely characterising vertices in a graph by means of their multiset
metric representations. We have generalised the traditional notion of resolvability in such a way that the new formulation
allows for different structural characterisations of vertices, including as particular cases the ones previously proposed in
the literature. We have pointed out a fundamental limitation affecting previously proposed resolvability parameters based
on the multiset representation, and have introduced a new notion of resolvability, the outer multiset dimension, which
effectively addresses this limitation. Additionally, we have conducted a study of the new parameter, where we have analysed
its general behaviour, determined its exact value for several graph families, and proven the NP-hardness of its computation,
while providing an algorithm that efficiently handles some particular cases.
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Appendix

Here, the reader can find graphical representations for different outer multiset bases in a full 2-ary tree of depth 4. In
the figures, a basis is formed by the red-coloured vertices (Figs. 5-7).

:/1\
PPy Py

NN N AN
ANNANANANAA

16 17 18 19 20 21 22 23 24 25 26 27 28 29

Fig. 5. The multiset representation of the root vertex with respect to the set of red-coloured vertices is {1, 22, 419}. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. The multiset representation of the root vertex with respect to the set of red-coloured vertices is {2, 33, 4%}. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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/1\
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Fig. 7. The multiset representation of the root vertex with respect to the set of red-coloured vertices is {32,4"}. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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