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multiset representation of a vertex u ∈ V (G) with respect to S is the mul-
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m(u|S) = m(v|S) ⇐⇒ u = v for every u, v ∈ V (G) \ S is said to be
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outer multiset dimension. We study the general behaviour of the outer mul-
tiset dimension, and determine its exact value for several graph families. We
also show that computing the outer multiset dimension of arbitrary graphs
is NP-hard, and provide methods for efficiently handling particular cases.
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1. Introduction

The characterisation of vertices in a graph by means of unique features,
known as distinguishability or resolvability, has found applications in com-
puter networks where nodes ought to be localised based on their properties
rather than on identifiers [6], or to determine the social role of an actor in
society in comparison to other peers with similar structural properties [7]. In
fact, simple structural properties of vertices, such as their degree or the sub-
graphs induced by their neighbours, have been successfully used to re-identify
(supposedly) anonymous users in social graphs [8, 16, 17].

This article focuses on vertex characterisations that are defined in re-
lation to a subset of vertices of the graph. The earliest of such charac-
terisations is known as metric representation, introduced independently by
Slater [14] in 1975 and Harary and Melter [3] in 1976. Formally, given an
ordered set of vertices S = {w1, . . . , wt} ⊆ V in a graph G = (V,E), the
metric representation of a vertex u ∈ V with respect to S is the t-vector
r(u|S) = (dG(u,w1), . . . , dG(u,wt)), where the metric dG(u, v) is computed
as the length of a shortest u − v path in G. An ordered subset S satisfying
that every two distinct vertices u and v in the graph have different metric
representation, i.e. r(u|S) 6= r(v|S), is said to be a resolving set. The min-
imum cardinality amongst the resolving sets in a graph G is known as the
metric dimension of G, and denoted as dim(G). The metric dimension of
graphs has been extensively studied in literature since the 70s. Issues that
are relevant to the present day, such as privacy in online social networks, are
still benefiting from such research effort [9, 10, 11, 15].

The assumption that resolvability requires an order to exist (or be im-
posed) on a set S for obtaining metric representations remained unchallenged
until 2017, when Simanjuntak, Vetŕık, and Mulia introduced the notion of
multiset representation [13] by looking at the multiset of distances rather
than at the standard vector of distances.

For a vertex u ∈ V and a vertex set S ⊆ V , the multiset representation
of u with respect to S, denoted m(u|S), is defined by

m(u|S) = {|dG(u,w1), . . . , dG(u,wt)|},

where {|.|} denotes a multiset.
Using this definition, the notions of resolvability in terms of the metric

representation were straightforwardly extended to consider resolvability in
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terms of the multiset representation [5, 13]. Our main observation in this ar-
ticle is that these straightforward extensions are in fact an oversimplification
of the problem of distinguishing vertices in a graph based on the multiset
representation. We argue that this problem has two flavours, one of which
has been neglected in literature.
Contributions. This article makes the following contributions.

• We generalise the metric dimension of graphs to accommodate different
characterisations of their vertices, such as the metric and multiset rep-
resentations (Section 2). We show that the metric dimension problem
with respect to the multiset representation admits two interpretations:
one that can be found in the literature [5, 13] and is known as the
multiset dimension, and another one that we call the outer multiset
dimension. The latter is well-defined, whereas the multiset dimen-
sion [5, 13] is undefined for an infinite number of graphs. We also show
that the outer multiset dimension finds applications on measuring the
re-identification risk of users in a social graph. To the best of our knowl-
edge, the multiset dimension has no obvious practical application.

• We characterise several graph families for which the outer multiset di-
mension can be easily determined, or bounded by the metric dimension
(Section 3).

• We prove that the problem of computing the outer multiset dimension
in a graph is NP-Hard (Section 4).

• We provide a polynomial computational procedure to calculate the
outer multiset dimension of full 2-ary trees (Section 5), and a par-
allelisable algorithm for the general case of full δ-ary trees.

2. A generalisation of the metric dimension

We consider a simple and connected graph G = (V,E) where V is a set
of vertices and E a set of edges. The distance dG(v, u) between two vertices
v and u in G is the number of edges in a shortest path connecting them. If
there is no ambiguity, we will simply write d(v, u).

The metric dimension of graphs has traditionally been studied based on
the so-called metric representation, which is the vector of distances from a
vertex to an ordered subset of vertices of the graph. To accommodate other
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types of relations between vertices, we generalise the metric dimension by
considering any equivalence relation ∼⊆ V × V over the set of vertices of
the graph. That is, we consider a relation ∼ that is reflexive, symmetric,
and transitive. We use [u]∼ to denote the equivalence class of the vertex
u ∈ V with respect to the relation ∼, while V/ ∼ denotes the partition of V
composed of the equivalence classes induced by ∼.

Definition 2.1 (Resolving and outer resolving set). A subset S of vertices in
a graph G = (V,E) is said to be resolving (resp. outer resolving) with respect
to ∼ if all equivalence classes in V/ ∼ (resp. (V − S)/ ∼ ) have cardinality
one.

While standard resolving sets distinguish all vertices in a graph, outer
resolving sets only look at those vertices that are not in S, hence the name.
We remark that there exist applications working under the assumption that
S is given, implying that vertices in S do not need to be distinguishable.
For example, in an active re-identification attack on a social graph [1, 15],
attackers first retrieve a set of attacker nodes by using a pattern recognition
algorithm, then they re-identify other users in the network based on their
metric representations with respect to the set of attacker nodes.

We use ∼S to denote the relation on the set of vertices of a graph defined
by u ∼S v ⇐⇒ r(u|S) = r(v|S), where r(v|S) is the vector of distances from
v to vertices in S, and ∼=S to denote the relation u ∼=S v ⇐⇒ m(u|S) =
m(v|S), where m(v|S) is the multiset of distances from v to vertices in S.
These two relations are interconnected in the following way.

Proposition 2.2. For every non-trivial graph G, the following facts hold:

i. Every resolving set of G with respect to ∼=S is an outer resolving set.

ii. Every outer resolving set of G with respect to ∼=S is an outer resolving
set of G with respect to ∼S.

iii. Every outer resolving set of G with respect to ∼S is a resolving set of G,
and vice versa.

Proof. Let S ⊆ V (G) be a resolving set of G with respect to ∼=S. Then,
every pair of distinct vertices u, v ∈ V (G) satisfy m(u|S) 6= m(v|S). Thus,
it trivially follows that the same property holds for every pair of distinct
vertices u, v ∈ V (G) \ S. This completes the proof of (i).
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The second property follows straightforwardly from the fact that m(u|S) 6=
m(v|S) =⇒ r(u|S) 6= r(v|S), and (iii) is a well-known property of resolving
sets based on the metric representation.

Figure 1 depicts the relations between resolvability notions enunciated in
Proposition 2.2 in the form of a hierarchy. In the figure, every arrow from
resolvability notion A to resolvability notion B indicates that a set S which
is resolving as defined by A is also resolving as defined by B. We use the
following shorthand notation in Figure 1 and in the remainder of this article.

• resolving set to denote a resolving set with respect to ∼S.

• multiset resolving set to denote a resolving set with respect to ∼=S.

• outer resolving set to denote an outer resolving set with respect to ∼S.

• outer multiset resolving set to denote an outer resolving set with respect
to ∼=S.

multiset resolvability

outer multiset resolvability

outer resolvability resolvability

Figure 1: Hierarchy of resolvability notions.

Definition 2.3 (Metric dimension and outer metric dimension). The metric
dimension (resp. outer metric dimension) of a simple connected graph G =
(V,E) with respect to a structural relation ∼ is the minimum cardinality
amongst a resolving (resp. outer resolving) set in G with respect to ∼. If no
resolving (resp. outer resolving) set exists, we say that the metric dimension
(resp. outer metric dimension) is undefined.
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An example of a metric dimension definition that is undefined for some
graphs is given by Simanjuntak et al. [13]. They use the multiset representa-
tion to distinguish vertices. It is easy to prove that a complete graph has no
multiset resolving set, which leads to indefinition. Conversely, the outer met-
ric dimension with respect to the multiset representation is always defined,
given that for every graph G = (E, V ), V is an outer multiset resolving set.

Overall, we highlight the fact that, while the outer metric dimension and
the standard metric dimension with respect to the metric representation are
equivalent (see Figure 1), the use of the multiset representation renders the
outer metric dimension different from the standard metric dimension. In fact,
the outer multiset dimension is defined for any graph, whereas the multiset
dimension is not. Furthermore, recent privacy attacks and countermeasures
on social networks [1, 12, 15] rely on the notion of outer resolving set, rather
than on the original notion of resolving set. The remainder of this article
is thus dedicated to the study of the outer multiset dimension, that is, the
outer metric dimension with respect to ∼=S.

3. Basic results on the outer multiset dimension

In this section we characterise several graph families for which the outer
multiset dimension can be easily determined, or bounded by the metric di-
mension otherwise. We start by providing notation that we use throughout
the paper.
Notation. Let G = (V,E) be a graph of order n = |V (G)|. We will say
that G is non-trivial if n ≥ 2. Kn, Nn, Pn and Cn stand for the complete,
empty, path and cycle graphs, respectively, of order n. Moreover, we will
use the notation u ↔G v (negated as u 6↔G v) to indicate that u and v
are adjacent in G, that is (u, v) ∈ E. For a vertex v of G, NG(v) denotes
the set of neighbours of v in G, that is NG(v) = {u ∈ V (G) : u ↔ v}.
The set NG(v) is called the open neighbourhood of the vertex v in G and
NG[v] = NG(v) ∪ {v} is called the closed neighbourhood of v in G. The
degree of a vertex v of G will be denoted by δG(v). If there is no ambiguity,
we will drop the subscripts and simply write u↔ v, u 6↔ v, N(v), etc. Two
different vertices u, v are called true twins if N [u] = N [v]. Likewise, u, v are
called false twins if N(u) = N(v). In general, u, v are called twins if they
are either true twins or false twins. Moreover, a vertex u is called a twin if
there exists v 6= u such that u and v are twins. Note that the property of
being twins induces an equivalence relation on the vertex set of any graph.
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Finally, we will use the notation dimms(G) for the outer multiset dimension
of a graph G, and dim(G) for the standard metric dimension.

Remark 3.1. For every non-trivial graph G of order n, the following facts
hold:

i. 1 ≤ dimms(G) ≤ n− 1.

ii. dimms(G) ≥ dim(G).

Proof. The fact that dimms(G) ≥ 1 follows directly from the definition of
outer multiset dimension, whereas dimms(G) ≤ n − 1 follows trivially from
the fact that every vertex v is the sole vertex in V (G) \ (V (G) \ {v}), and
thus it has a unique multiset representation w.r.t. V (G) \ {v}, which is thus
a multiset resolving set. The fact that dimms(G) ≥ dim(G) follows directly
from item (ii) of Proposition 2.2.

Once established the global bounds of the outer multiset dimension, we
now focus on the extreme cases of these inequalities.

Remark 3.2. A graph G satisfies dimms(G) = 1 if and only if it is a path
graph.

Proof. Let G be a path graph. It is clear that the set {v}, where v is an
extreme vertex of G, is a multiset resolving set of G, so dimms(G) ≤ 1. By
item (ii) of Remark 3.1, dimms(G) ≥ dim(G) ≥ 1, so the equality holds. On
the other hand, if G is not a path graph, then item (ii) of Remark 3.1 also
leads to dimms(G) ≥ dim(G) ≥ 2, as the standard metric dimension of a
graph is known to be 1 if and only if it is a path graph [2].

According to Remark 3.2, the cases where dimms(G) = dim(G) = 1 coin-
cide. However, this is not the case for the upper bound of Remark 3.1 (i).
Indeed, while it is easy to see that, for any positive integer n, the complete
graph Kn satisfies dimms(Kn) = dim(Kn) = n− 1, we have the fact that this
is the sole family of graphs for which dim(Kn) = n− 1, whereas there exist
graphs G such that dimms(G) = n− 1 > dim(G), as exemplified by the next
results.

Example 3.3. The cycle graphs C4 and C5 satisfy dimms(C4) = 3 > 2 =
dim(C4) and dimms(C5) = 4 > 2 = dim(C5).
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Remark 3.4. Every complete k-partite graph G ∼= Kr1,r2,...,rk such that r1 =

r2 = . . . = rk ≥ 2 and
∑k

i=1 ri = n satisfies dimms(G) = n− 1.

Proof. Let G ∼= Kr1,r2,...,rk be a complete k-partite graph such that r1 =
r2 = . . . = rk ≥ 2. Let u, v ∈ V (G) be two arbitrary vertices of G and let
S ⊆ V (G) \ {u, v}. If u 6↔ v, then m(u | S) = m(v | S), as they are false
twins in G. Consequently, S is not a multiset resolving set of G. We now
treat the case where u↔ v, for which we differentiate the following subcases:

• S = V (G) \ {u, v}. In this case, m(u | S) = m(v | S) =
⋃r−1
i=1{|2|} ∪⋃r−1

i=1{|1|}∪
⋃k−2
i=1

⋃r
j=1{|1|}, and so S is not a multiset resolving set of G.

• S ⊂ V (G)\{u, v}. Here, if there exists some x ∈ V (G)\(S∪{u, v}) such
that x 6↔ u (x 6↔ v), then m(u | S) = m(x | S) (m(v | S) = m(x | S)),
as x and u (x and v) are false twins in G. Thus, S is not a multiset
resolving set of G. Finally, if every x ∈ V (G) \ (S ∪ {u, v}) satisfies
u ↔ x ↔ v, then we have that m(u | S) = m(v | S) =

⋃r−1
i=1{|2|} ∪⋃r−1

i=1{|1|} ∪
⋃t1
i=1{|1|} ∪ . . .∪

⋃tk−2

i=1 {|1|}, with ti ≤ r for i ∈ {1, . . . , k− 2},
which entails that S is not a multiset resolving set of G.

Summing up the cases above, we have that no set S ⊆ V (G) such that
|S| ≤ n − 2 is a multiset resolving set of G, and so dimms(G) ≥ n − 1. The
equality follows from item (i) of Remark 3.1. The proof is thus completed.

Example 3.3 shows two cases where the outer multiset dimension of a
cycle graph is strictly larger than its standard metric dimension. With the
exception of C3, which satisfies dimms(C3) = dim(C3) = 2, the strict inequal-
ity holds for every other cycle graph, as shown by the following result.

Remark 3.5. Every cycle graph Cn of order n ≥ 6 satisfies dimms(Cn) = 3.

Proof. Consider an arbitrary pair of vertices u, v ∈ V (Cn) and a pair of
vertices x, y ∈ V (Cn) \ {u, v} such that ux . . . yv is a path of Cn (note that
for n ≥ 6 at least one such pair x, y exists). We have that m(x | {u, v}) =
m(y | {u, v}) = {|1, d(u, v) ± 1|}, so no vertex subset of size 2 is a multiset
resolving set of Cn. Thus, dimms(Cn) ≥ 3.

Now, consider an arbitrary vertex vi ∈ V (Cn) and the set S = {vi−2, vi, vi+1},
where the subscripts are taken modulo n. We differentiate the following cases
for a pair of vertices x, y ∈ V (Cn) \ S:
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1. x = vi−1. In this case, m(x | S) = {|1, 1, 2|} 6= m(y | S), as y is at
distance 1 from at most one element in S.

2. x and y satisfy {d(x, vi), d(x, vi−2)} = {d(y, vi), d(y, vi−2)}. In this case,
assuming without loss of generality that a = d(x, vi) < d(y, vi), we have
that m(x | S) = {|a, a+ 2, a− 1|} 6= {|a, a+ 2, a+ 3|} = m(y | S).

3. x and y satisfy {d(x, vi+1), d(x, vi−2)} = {d(y, vi+1), d(y, vi−2)}. In a
manner analogous to that of the previous case, we assume without loss
of generality that b = d(x, vi+1) < d(y, vi+1) and obtain that m(x | S) =
{|b, b+ 1, b+ 3|} 6= {|b, b+ 2, b+ 3|} = m(y | S).

4. In every other case, we have that min{d | d ∈ m(x | S)} 6= min{d′ | d′ ∈
m(y | S), so m(x | S) 6= m(y | S).

Finally, summing up the cases above, we have that S is a multiset resolving
set of G, and so dimms(G) ≤ |S| = 3. This completes the proof.

Next, we characterise a large number of cases where the outer multiset
dimension is strictly greater than the standard metric dimension. To that
end, we first introduce some necessary notation. We represent by n

rCrep
the number of r-combinations, with repetition, from n elements. Likewise,
we represent by n

rPrep the number of r-permutations, with repetition, from
n elements. Recall that n

rCrep =
(
r+n−1

r

)
=
(
r+n−1
n−1

)
, whereas n

rPrep = nr.
Finally, we recall the quantity f(n, d), defined in [2] as the smallest positive
integer k such that k + dk ≥ n. In an analogous manner, we define f ′(n, d)
as the smallest positive integer k′ such that k′ +

(
r+d−1
d−1

)
≥ n. Since, by

definition, nrCrep ≤nr Prep, we have that f(n, d) ≤ f ′(n, d). With the previous
definitions in mind, we introduce our next result.

Theorem 3.6. For every graph G = (V,E) of order n and diameter d such
that dim(G) < f ′(n, d),

dimms(G) > dim(G).

Proof. Let G = (V,E) be a graph of order n and diameter d. It was proven
in [2] that every such graph satisfies dim(G) ≥ f(n, d). Indeed, no vertex
subset S ⊆ V such that |S| < f(n, d) is a metric generator of G, because the
number of different metric representations, with respect to S, for elements in
V \ S is at most d|S| < n− |S| = |V \ S|. In general, if |S| = r, the set of all
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possible different metric representations for elements of V \S with respect to
S is that of all permutations, with repetition, of r elements from {1, 2, . . . , d}.
Applying an analogous reasoning, we have that the set of all possible different
multiset metric representations for elements of V \S with respect to S is that
of all combinations, with repetition, of r elements from {1, 2, . . . , d}. Thus,
any multiset metric generator S of G must satisfy n

|S|Crep ≥ n − |S|, so

dimms(G) ≥ f ′(n, d). In consequence, if dim(G) < f ′(n, d), then dimms(G) >
dim(G).

An example of the previous result is the wheel graph W1,5
∼= 〈v〉 + C5,

which has diameter 2 (see Figure 2). As discussed in [2, 4], dim(W1,5) = 2 =
f(6, 2) < f ′(6, 2) = 3 < 4 = dimms(W1,5).

v

v5

v1 v2

v3

v4

Figure 2: The wheel graph W1,5
∼= 〈v〉+ C5.

To conclude this section, we give a general result on the relation between
outer multiset resolving sets and twin vertices, a particular case of which will
be useful in further sections of this paper.

Proposition 3.7. Let G be a non-trivial graph and let S ⊆ V (G) be an outer
multiset resolving set of G. Let u, v ∈ V (G) be a pair of twin vertices. Then,
u ∈ S or v ∈ S.

Proof. The proof follows from the fact that, as twin vertices, u and v satisfy
d(u, x) = d(v, x) for every x ∈ V (G)\{u, v}, which entails that u and v have
the same multiset representation according to any subset of V (G)\{u, v}.

Corollary 3.8. Let G be a non-trivial graph and let T = {[u1] , [u2] , . . . , [ut]}
be the set of equivalence classes induced in V (G) by the twin equivalence
relation. Then,

dimms(G) ≥
t∑
i=1

(|[ui]| − 1) .
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Proof. The result follows from the fact that, for every twin equivalence class,
at most one element can be left out of any outer multiset resolving set.

4. Complexity of the outer multiset dimension problem

In the previous section, we showed that algorithms able to compute the
metric dimension can be used to determined or bound the outer multiset
dimension. The trouble is, however, that calculating the metric dimension
is NP-Hard [6]. We prove in this section that computing the outer multiset
dimension of a simple connected graph is NP-hard as well. The proof is,
in some way, inspired by the NP-hardness proof of the metric dimension
problem given in [6]. To begin with, we formally state the decision problem
associated to the computation of the outer multiset dimension:

Outer Multiset Dimension (DimMS)
INSTANCE: A graph G = (V,E) and an integer k satisfying 1 ≤ k ≤ |V |−1.
QUESTION: Is dimms(G) ≤ k?

Theorem 4.1. The problem DimMS is NP-complete.

Proof. The problem is clearly in NP. We give the NP-completeness proof
by a reduction from 3-SAT. Consider an arbitrary input to 3-SAT, that is, a
formula F with n variables and m clauses. Let x1, x2, . . . , xn be the variables,
and let C1, C2, . . . , Cm be the clauses of F . We next construct a connected
graph G based on this formula F . To this end, we use the following gadgets.

For each variable xi we construct a gadget as follows (see Fig. 3).

• Nodes Ti, Fi are the “true” and “false” ends of the gadget. The gadget
is attached to the rest of the graph only through these nodes.

• Nodes a1i , a
2
i , b

1
i , b

2
i “represent” the value of the variable xi, that is, a1i

and a2i will be used to represent that variable xi is true, and b1i and b2i
that it is false.

• Nodes d1i and d2i will help to differentiate between nodes in different
gadgets.

• Qi is a set of end-nodes of cardinality qi adjacent to d1i . Notice that all
these nodes are indistinguishable from d2i . Moreover, the cardinalities of
these setsQi are pairwise distinct, which is necessary for our purposes in
the proof. We further on state the explicit values of their cardinalities.
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a1i b1i

a2i b2i

Ti Fi

d1i

d2i Qi

Figure 3: Gadget of a variable xi

For each clause Cj we construct a gadget as follows (see Figure 4).

• Nodes c1j and c3j will be helpful in determining the truth value of Cj.

• Nodes c2j and c4j will help to differentiate between nodes in different
gadgets.

• Pj is a set of end-nodes of cardinality pj adjacent to c2j . Notice that
all these nodes are indistinguishable from c4j . As in the case of the sets
Qi from the variable gadgets, the cardinalities of these sets Pj are also
pairwise distinct.

c1j c2j c3j

c4j Pj

Figure 4: Gadget of clause Cj

As mentioned before, we require some conditions on the cardinalities of
the sets Pi and Qi from the variables and clauses gadgets, respectively. The
values of their cardinalities (which we require in our proof) are as follows.
For every i ∈ {1, . . . , n} we make qi = 2 ·i ·n, and for every j ∈ {1, . . . ,m} we
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make pj = 2 · j · n+ 2n2. In concordance, we notice that the set of numbers
pi and qj are pairwise distinct. Also, we clearly see that

∑
qi +

∑
pj is

polynomial in n+m.
The gadgets representing the variables and the gadgets representing the

clauses are connected in the following way in order to construct our graph
G.

• Nodes c1j , for every j, are adjacent to nodes Ti, Fi for all i.

• If a variable xi does not appear in a clause Cj, then the nodes Ti, Fi
are adjacent to c3j .

• If a variable xi appears as a positive literal in a clause Cj, then the
node Fi is adjacent to c3j .

• If a variable xi appears as a negative literal in a clause Cj, then the
node Ti is adjacent to c3j .

We first remark that the constructed graph G is connected, and that its
order is polynomial in the number of variables and clauses of the original
3-SAT instance. We will prove now that the formula F is satisfiable if and
only if the multiset dimension of G is exactly M =

∑n
i=1 qi +

∑m
j=1 pj + n.

First, let us look at some properties that must be fulfilled by a multiset
resolving set S of minimum cardinality in G. First, as the nodes in Qi∪{d2i },
for every i ∈ {1, . . . , n}, are indistinguishable among them, and at least |Qi|
of them must be in S, we can assume without lost of generality that Qi ⊂ S.
By using a similar reasoning, also Pj ⊂ S for every j ∈ {1, . . . ,m}. Moreover,
for every i ∈ {1, . . . , n}, at least one of the nodes a1i , a

2
i , b

1
i , b

2
i must be in S,

otherwise some pairs of them would have the same multiset representation,
which is not possible. Thus, the cardinality of S is at least M . Clearly, if
M = |S|, then we have already fully described a set of nodes that could
represent S.

Lemma 4.2. Consider a set S∗ containing exactly M nodes given as follows.
All nodes in Qi for i ∈ {1, . . . , n}, all nodes in Pj for j ∈ {1, . . . ,m}, and
exactly one node from each set {a1i , a2i , b1i , b2i } for i ∈ {1, . . . , n} are in S∗.
Then, all pairs of nodes have different multiset representations with respect
to S∗, except possibly c1j and c3j (for some j ∈ {1, . . . ,m}).
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Proof. To prove the lemma, we will explicitly compute the multiset represen-
tation of each node. For easier representation, we use a vector (x1, . . . , xn)
to denote the multiset over positive integers such that 1 has multiplicity x1,
2 has multiplicity x2, and so on.

• m(c4j |S∗) = (0, pj, 0, n, · · · )

• m(c2j |S∗) = (pj, · · · )

• m(d1i |S∗) = (qi, · · · )

• m(d2i |S∗) = (0, qi, · · · )

• (m(Ti|S∗),m(Fi|S∗)) is equal to either ((1, qi, · · · ), (0, qi + 1, · · · )) or
((0, qi + 1, · · · ), (1, qi, · · · ))

• a1i , a2i , b1i , b2i : Let’s assume b2i ∈ S∗. Then {m(a1i |S∗),m(a2i |S∗),m(b1i |S∗)} =
{(1, 0, qi, · · · ), (0, 1, qi, · · · ), (0, 0, qi + 1, · · · )}. An analogous result re-
mains if the assumption that b2i ∈ S∗ is dropped, based on the following
observations. First, one and only one of the nodes a1i , a

2
i , b

1
i , b

2
i is in S∗,

and the distances from the other three to this one are exactly 1, 2, 3 in
some order. Second, each of these nodes have qi nodes at distance 3.

• m(c1j |S∗) = (0, pj + n,
∑n

i=1 qi,
∑m

l=1 pl − pj)

• c3j : the number of nodes at distance two depends on which node belongs
to S∗ from each variable gadget. We distinguish three possible cases for
the distance between c3j and the node from S∗ belonging to the gadget
corresponding to a variable xi.

– If xi appears in Cj as a positive literal, and a1i ∈ S∗ or a2i ∈ S∗,
then such distance is 3.

– If xi appears in Cj as a negative literal, and b1i ∈ S∗ or b2i ∈ S∗,
then such distance is 3.

– If none of the above situations occurs, then such distance is 2.

Therefore, the multiset representation of c3j is related to the set (0, pj +
wj,
∑
qi + n − wj,

∑
pl − pj), where wj is the number of nodes from

gadgets representing some xi matching the third case above.
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Notice that, as the difference between any pj and any qi is at least 2n, all
pairs of nodes have also a different multiset representation, except possibly
(c1j , c

3
j) that depend on the selected nodes from each variable gadget. We

next particularise some of these situations.

• As qi 6= pj for every i ∈ {1, . . . , n} and every j ∈ {1, . . . ,m}, we observe
m(c2j |S∗) 6= m(d1i |S∗), m(c4j |S∗) 6= m(d2i |S∗) .

• Since pj 6= qi + 1 for every i ∈ {1, . . . , n} and every j ∈ {1, . . . ,m}, we
deduce m(c4j |S∗) 6= m(Ti|S∗) and m(c4j |S∗) 6= m(Fi|S∗).

• Since pj1 6= pj2 + n for every j1, j2 ∈ {1, . . . ,m}, we get m(c4j1|S
∗) 6=

m(c1j2|S
∗).

Remaining cases trivially follow, and are left to the reader, and so the proof
of the lemma is complete.

We will now show a way to transform the set S∗ into values for the
variables xi that will lead to a satisfiable assignment for F . If S∗∩{a1i , a2i } 6= ∅
for some variable xi, then we set the variable xi = true (with respect to
S∗). Otherwise (S∗ ∩ {a1i , a2i } = ∅ or equivalently S∗ ∩ {b1i , b2i } 6= ∅), we
set xi = false. Hence, the clause Cj is true or false in the natural way,
according to the values previously given to its variables.

Lemma 4.3. Let S∗ be a set of nodes as defined in the premise of Lemma 4.2.
Then c1j and c3j have different multiset representations with respect to S∗ if
and only if the clause Cj is true.

Proof. Notice that the distance between c3j and the node in S∗ from the
gadget corresponding to xi is 3 if and only if the clause Cj is true (see
Lemma 4.2). Thus, wj = 0 (as defined in Lemma 4.2) when the clause Cj is
false, and only in this case m(c3j |S∗) = m(c1j |S∗).

By using the lemmas above, we conclude the NP-completeness reduction,
through the following two lemmas.

Lemma 4.4. If F is satisfiable, then the outer multiset dimension of G is
M .

Proof. Recall that dimms(G) ≥M . It remains to prove that if F is satisfiable
then dimms(G) ≤ M . Let us construct a set S in the following way. If xi is
true, then a1i ∈ S. Otherwise (xi is false), b1i ∈ S. Also, we add to S all
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nodes in the sets Pj and Qi. Hence, according to Lemmas 4.2 and 4.3, S is
a multiset resolving set, and its cardinality is exactly M .

Lemma 4.5. If the outer multiset dimension of G is M , then F is satisfiable.

Proof. Let S be a set of nodes of cardinality equal to the multiset dimension
of G. Hence, as explained before, without lost of generality all nodes in the
sets Pj, Qi, and exactly one node of a1i , a

2
i , b

1
i , b

2
i , must belong to S, and no

other node is in S. If a1i ∈ S or a2i ∈ S, then let xi be true. Otherwise, let
xi be false. Since S is a multiset resolving set, according to Lemmas 4.2
and 4.3, all clauses Cj of F must be true, unless the nodes c1j and c3j would
have the same multiset representation, which is not possible. If all clauses of
F are true, then F is satisfiable, as claimed.

The last two lemmas together complete the reduction from 3-SAT to the
problem of deciding whether the outer multiset dimension of a graph G is
equal to a given positive integer. The latter problem can in turn be trivially
reduced to DimMS. This completes the proof.

5. Particular cases involving trees

Given that, in general, computing the outer multiset dimension of a graph
is NP-hard, it remains an open question for which families of graphs the outer
multiset dimension can be efficiently computed. The goal of this section is
to provide a computational procedure and a closed formula to compute the
outer multiset dimension of full δ-ary trees. A full δ-ary tree is a rooted tree
whose root has degree δ, all its leaves are at the same distance from the root,
and its descendants are either leaves or vertices of degree δ + 1. We expect
the results obtained in this section to pave the way for the study of the outer
multiset dimension of general trees.
Notation. Given a multiset M and an element x, we denote the multiplicity
of x in M as M [x]. We use εG(x) to denote the eccentricity of the vertex
x in a graph G, which is defined as the largest distance between x and any
other vertex in the graph. We will simply write ε(x) if the considered graph
is clear from the context. Given a tree T rooted in w, we use Tx to denote
the subtree induced by x and all descendants of x, i.e. those vertices having
a shortest path to w that contains x. Finally, an outer multiset basis is said
to be an outer multiset resolving set of minimum cardinality.
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We start by enunciating a simple lemma that characterises multiset re-
solving sets in full δ-ary trees.

Lemma 5.1. Let T be a full δ-ary tree rooted in w with δ > 1. A set of ver-
tices S ⊆ V (T ) is an outer multiset resolving set if and only if ∀u,v∈V (T )\S : d(u,w) =
d(v, w) =⇒ m(u|S) 6= m(v|S).

Proof. Necessity follows from the definition of outer multiset resolving sets.
To prove sufficiency we need to prove that

∀u,v∈V (T )\S : d(u,w) 6= d(v, w) =⇒ m(u|S) 6= m(v|S).

Take two vertices x, y ∈ V (T ) \ S such that d(x,w) < d(y, w). Because
T is a full δ-ary tree, we obtain that d(x,w) < d(y, w) ⇐⇒ εT (x) < εT (y).
Also, there must exist two leaf vertices y1, y2 in T which are siblings and
satisfy d(y1, y) = d(y2, y) = εT (y). Considering that y1 and y2 are false
twins, we obtain that y1, y2 6∈ S =⇒ m(y1|S) = m(y2|S). Therefore, given
that d(y1, w) = d(y2, w), it follows that y1 ∈ S or y2 ∈ S. We assume,
without loss of generality, that y1 ∈ S. On the one hand, we have that
d(y1, y) ∈ m(y|S). On the other hand, because d(y1, y) = εT (y) > εT (x), we
obtain that d(y1, y) /∈ m(x|S), implying that m(x|S) 6= m(y|S).

Based on the result above, we provide conditions under which an outer
multiset basis can be constructed in a recursive manner. Recall that an outer
multiset basis is an outer multiset resolving set of minimum cardinality.

Lemma 5.2. Given a natural number ` > 1, let T1, . . . , Tδ be δ full δ-ary
trees of depth ` with pairwise disjoint vertex sets. Let w1, . . . , wδ be the roots
of T1, . . . , Tδ, respectively, and let T be the full δ-ary tree rooted in w defined
by the set of vertices V (T ) = V (T1) ∪ · · · ∪ V (Tδ) ∪ {w} and edges E(T ) =
E(T1)∪ · · · ∪E(Tδ)∪ {(w,w1), . . . , (w,wδ)}. Let S1, . . . , Sδ be outer multiset
bases of T1, . . . , Tδ, respectively. Then

∀i 6=j∈{1,...,δ}mTi(wi|Si)[εTi(wi)] 6= mTj(wj|Sj)[εTj(wj)] =⇒
S1 ∪ . . . ∪ Sδ is an outer multiset basis of T .

Proof. Consider two vertices x and y in T such that dT (x,w) = dT (y, w). We
will prove that mT (x|S) 6= mT (y|S), which gives that S is an outer multiset
resolving set via application of Lemma 5.1. Our proof is split in two cases,
depending on whether x and y are within the same sub-branch or not.
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First, assume that x ∈ V (Ti) and y ∈ V (Tj) for some i 6= j ∈ {1, . . . , δ}.
For every leaf vertex z in T , but not in Ti, we obtain that dT (x, z) = εT (x).
Because εT (x) > εTi(x), we get mT (x|S)[εT (x)] =

∑
k∈{1,...,δ}\{i}mTk(wk|S)[εTk(wk)].

Analogously, we obtain that mT (y|S)[εT (y)] =
∑

k∈{1,...,δ}\{j}mTk(wk|S)[εTk(wk)].
Therefore,

mT (x|S)[εT (x)]−mT (y|S)[εT (y)] = mTj(wj|S)[εTj(wj)]−mTi(wi|S)[εTi(wi)].

By considering the fact that mTj(wj|S)[εTj(wj)] 6= mTi(wi|S)[εTi(wi)], we
obtain that mT (x|S)[εT (x)] 6= mT (y|S)[εT (y)], which implies that mT (x|S) 6=
mT (y|S).

For the second case assume that x ∈ V (Ti) and y ∈ V (Ti) for some i ∈
{1, . . . , δ}. This implies that mT (x|Si) 6= mT (y|Si), because Si is a multiset
resolving set in Ti. Moreover, for every vertex z ∈ V (T ) \V (Ti) it holds that
dT (x, z) = dT (y, z), which gives the expected result: mT (x|S) 6= mT (y|S).

Up to here we have proved that S is an outer multiset resolving set.
To prove that S is a basis, we only need to show that for any outer multiset
resolving set S ′ in T , it is satisfied that the sets S ′∩V (T1), . . . , S

′∩V (Tδ) are
outer multiset resolving sets in T1, . . . , Tδ, respectively. Given that S1, . . . , Sδ
are outer multiset bases, this would mean that S is an outer multiset resolving
set of minimum cardinality.

We proceed by contrapositive. Let S ′1 = S ′ ∩ V (T1), . . . , S
′
δ = S ′ ∩ V (T2).

Assume that S ′i is not an outer multiset resolving set in Ti for some i ∈
{1, . . . , δ}. Then, there must exist vertices x and y such that mTi(x|S ′i) =
mTi(y|S ′i). As in a previous reasoning, since x and y are both within Ti, it
follows that ∀z∈V (T )\V (Ti)dT (x, z) = dT (y, z). Hence, mT (x|S ′) = mT (y|S ′),
which is a contradiction.

Lemma 5.2 provides a sufficient condition for obtaining an outer multiset
basis of a full δ-ary tree T by joining bases of the first level branches of T .
This is useful for the development of a computational procedure that finds
the outer multiset dimension of an arbitrary full δ-ary tree. Despite this
fact, here we are interested in finding a closed formula for the outer multiset
dimension of full δ-ary trees. The next result will prove itself a key element
towards such a goal.

Theorem 5.3. Let T δ` be a full δ-ary tree of depth `. Let n be the smallest
positive integer such that there exist δ + 1 outer multiset bases S1, . . . , Sδ+1

in T δn satisfying that ∀i 6=j∈{1,...,δ+1}mT δn
(w|Si)[εT δn(w)] 6= mT δn

(w|Sj)[εT δn(w)],
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where w is the root of T δn. Then, for every ` ≥ n, the outer multiset dimension
of T δ` is given by δ`−n × dimms(T

δ
n).

Proof. We proceed by induction.
Hypothesis. For some ` ≥ n, the following two conditions hold:

1. There exists δ+1 outer multiset bases S1, . . . , Sδ+1 in T δ` satisfying that
∀i 6=j∈{1,...,δ+1}mT δ`

(w|Si)[εT δ` (w)] 6= mT δ`
(w|Sj)[εT δ` (w)]

2. The outer multiset dimension of T δ` is given by δ`−n × dimms(T
δ
n).

Clearly, these two conditions hold for ` = n (base case). The remainder of
this proof will be dedicated to finding δ+1 outer multiset bases R1, . . . , Rδ+1

of T δ`+1 that satisfy condition (1). The second condition will follow straight-
forwardly from the size of the bases R1, . . . , Rδ+1.

Let w′ be the root of T δ`+1 and w the root of T δ` . Let w1, . . . , wδ be
the children vertices of w′ in T δ`+1. For each sub-branch Twk of T δ`+1, with

k ∈ {1, . . . , δ}, let φk be an isomorphism from T δ` to Twk . It follows that Ŝk =
{φk(u)|u ∈ Sk} is an outer multiset basis of Twk , for every k ∈ {1, . . . , δ+ 1}.
Moreover, given that ∀k∈{1,...,δ+1}mTwk

(wk|Ŝk) = mT δ`
(w|Sk), we conclude

that

∀i 6=j∈{1,...,δ+1}mTwi
(wi|Ŝi)[εTwi (wi)] 6= mTwj

(wj|Ŝj)[εTwj (wj)]

By Theorem 5.2, we obtain that, for every i ∈ {1, . . . , δ + 1}, the set
Ri =

⋃
j∈{1,...,δ+1}\{i} Ŝj is an outer multiset basis of T δ`+1. Moreover, for

every i ∈ {1, . . . , δ + 1}, the following holds

mT δ`+1
(w′|Ri)[εT δ`+1

(w′)] =
∑

j∈{1,...,δ+1}\{i}

mTwj
(wj|Ŝi)[εTwj (wj)]

From the equation above we obtain that for every i, j ∈ {1, . . . , δ + 1},

mT δ`+1
(w|Ri)[εT δ`+1

(w)]−mT δ`+1
(w|Rj)[εT δ`+1

(w)] =

mTwj
(wj|Ŝj)[εTwj (wj)]−mTwi

(wi|Ŝi)[εTwi (wi)]

Recall that ∀k∈{1,...,δ+1}mTwk
(wk|Ŝk) = mT δ`

(w|Sk), which means that i 6=
j =⇒ mTwj

(wj|Ŝj)[εTwj (wj)] 6= mTwi
(wi|Ŝi)[εTwi (wi)]. Therefore, we con-

clude that T δ`+1 and R1, . . . , Rδ+1 satisfy the first condition of the induction
hypothesis, i.e.

∀i 6=j∈{1,...,δ+1}mT δ`+1
(w|Ri)[εT δ`+1

(w)] 6= mT δ`+1
(w|Rj)[εT δ`+1

(w)]
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Finally, observe that |R1| = |Ŝ2| × · · · × |Ŝδ+1| = δ × dimms(T
δ
` ). The sec-

ond condition of the induction hypothesis states that dimms(T
δ
` ) = δ`−n ×

dimms(T
δ
n), which gives that dimms(T

δ
`+1) = δ × dimms(T

δ
` ) = δ`+1−n ×

dimms(T
δ
n).

We end this section by addressing the problem of finding the smallest
n such that T δn contains δ + 1 outer multiset bases S1, . . . , Sδ+1 satisfying
the premises of Theorem 5.3. We do so by developing a computer program1

that calculates such number via exhaustive search. The pseudocode for this
computer program can be found in Algorithm 5. It reduces the search space
by bounding the size of an outer multiset basis with the help of Lemma 5.2
(see Step 13 of Algorithm 5). That said, we cannot guarantee termination of
Algorithm 5, essentially for two reasons. First, the computational complexity
of each iteration of the algorithm is exponential on the size of T δn while, at
the same time, the size of T δn exponentially increases with n. Second, there
is no theoretical guarantees that such an n can be found for every δ.

Despite the exponential computational complexity of Algorithm 5, it ter-
minates for δ = 2. In this case, the smallest n satisfying the premises of
Theorem 5.3 is n = 4. The three outer multiset bases S1, S2 and S3 of T 2

4 are
illustrated in Table 1 below2. We refer the interested reader to Appendix 6
for a visual representation of the bases shown in Table 1. The main corollary
of this result is the following.

Corollary 5.4. The outer multiset dimension of a full 2-ary tree T 2
` of depth

` is:

dimms(T
2
` ) =



1, if ` = 1

3, if ` = 2

6, if ` = 3

13, if ` = 4

2`−4 × 13, otherwise

Proof. The first four cases are calculated by an exhaustive search using a
computer program that can be found at https://github.com/rolandotr/

graph. The last case follows from Theorem 5.3.

1The computer program can be found at https://github.com/rolandotr/graph.
2Our program took about 3.25 hours in a DELL computer with processor i7-7600U and

installed memory 16GB to find the result shown in Table 1.
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Algorithm 1 Given a natural number δ, finds the smallest n such that the
full δ-ary tree of depth n satisfies the premises of Theorem 5.3.

1: Let n = 0 and T δn a full δ-tree of depth n rooted in w
2: min = 1 . Lower bound on the cardinality of a basis in T δ1
3: max = δ − 1 . Upper bound on the cardinality of a basis in T δ1
4: repeat
5: for i = min to max do . Each of these iterations can be ran in

parallel
6: Let B be an empty set
7: for all S ⊆ V (T δn) s.t. |S| = i do
8: if S is a resolving set then
9: if ∀S′∈B mT δn

(w|S ′)[εT δn(w)] 6= mT δn
(w|S)[εT δn(w)] then

10: B = B ∪ {S}
11: if B 6= ∅ then
12: break . The outer multiset dimension of T δn has been found

13: min = dimms(T
δ
n)× δ . See Lemma 5.2

14: max = min+ δ − 1 . This is the trivial upper bound
15: n = n+ 1
16: until |B| ≥ δ + 1
17: return n

Table 1: Three outer multiset bases of T 2
4 satisfying the premises of Theorem 5.3. Vertices

of T 2
4 have been labelled by using a breadth-first ascending order, starting by labelling the

root node with 1 and finishing with the label 2n+1 − 1.

S1 = {22, 24, 14, 25, 26, 16, 28, 18, 2, 8, 30, 20, 21}
T 2
4 S2 = {22, 12, 24, 14, 26, 16, 28, 18, 6, 8, 30, 20, 21}

S3 = {22, 24, 14, 25, 26, 16, 17, 28, 18, 8, 30, 20, 21}
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It is worth remarking that Algorithm 5 can be paralellised and hence ben-
efit from a computer cluster. Running the algorithm in a high performance
computing facility is thus part of future work, which may lead to termination
of Algorithm 5 for values of δ higher than 2.

6. Conclusions

In this paper we have addressed the problem of uniquely characterising
vertices in a graph by means of their multiset metric representations. We
have generalised the traditional notion of resolvability in such a way that the
new formulation allows for different structural characterisations of vertices,
including as particular cases the ones previously proposed in the literature.
We have pointed out a fundamental limitation affecting previously proposed
resolvability parameters based on the multiset representation, and have in-
troduced a new notion of resolvability, the outer multiset dimension, which
effectively addresses this limitation. Additionally, we have conducted a study
of the new parameter, where we have analysed its general behaviour, deter-
mined its exact value for several graph families, and proven the NP-hardness
of its computation, while providing an algorithm that efficiently handles some
particular cases.
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framework for privacy preserving network publication. Proc. VLDB En-
dow., 2(1):946–957, August 2009.

24



Appendix

Here, the reader can find graphical representations for different outer
multiset bases in a full 2-ary tree of depth 4. In the figures, a basis is formed
by the red-coloured vertices.
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Figure 5: The multiset representation of the root vertex with respect to the set of red-
coloured vertices is {1, 22, 410}.
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Figure 6: The multiset representation of the root vertex with respect to the set of red-
coloured vertices is {2, 33, 49}.
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Figure 7: The multiset representation of the root vertex with respect to the set of red-
coloured vertices is {32, 411}.
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