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ABSTRACT The explosive rise of intelligent devices with ubiquitous connectivity have dramatically
increased Internet of Things (IoT) traffic in the cloud environment and created potential attack surfaces for
cyber-attacks. Traditional security approaches are insufficient and inefficient to address security threats in
cloud-based IoT networks. In this vein, software defined networking (SDN), network function virtualization
(NFV), and machine learning techniques introduce numerous advantages that can effectively resolve
cybersecurity matters for cloud-based IoT systems. In this paper, we propose a collaborative and intelligent
network-based intrusion detection system (NIDS) architecture, namely SeArch for SDN-based cloud IoT
networks. It composes a hierarchical layer of intelligent IDS nodes working in collaboration to detect
anomalies and formulate policy into the SDN-based IoT gateway devices to stop malicious traffic as fast
as possible. We first describe a new NIDS architecture with a comprehensive analysis in terms of the system
resource and path selection optimizations. Next, the system process logic is extensively investigated through
main consecutive procedures, including initialization, runtime operation, and database update. Afterward,
we conduct a detailed implementation of the proposed solution in an SDN-based environment and perform a
variety of experiments. Finally, evaluation results of the SeArch architecture yield outstanding performance
in anomaly detection and mitigation as well as bottleneck problem handling in the SDN-based cloud IoT
networks in comparison with existing solutions.

INDEX TERMS Internet of Things security, software defined networking, network function virtualization,
machine learning, intrusion detection system, distributed cloud computing.

I. INTRODUCTION

The advancement of Internet of Things (IoT) has been
bringing enormous capabilities for ubiquitously intelligent
connectivity and applications in many domains of human
life [1], [2]. Smarter devices can provide a smart and active
life for human by enabling sensing and actuation abilities,
contextual awareness [3], [4]. Recently, the IoT appliances

The associate editor coordinating the review of this manuscript and
approving it for publication was Jun Wu.

have been exponentially increased due to a wide range of new
technologies [1] such as sensors, wireless communications
and cloud computing technologies, e.g., Software-Defined
Networking (SDN) and Network Function Virtualiza-
tion (NFV) [5]. A good illustration, Cisco Systems [6],
forecasts the global mobile data traffic projections and growth
trends for a period of time from 2017 to 2022, in which there
will be 12.3 billion mobile-connected devices by 2022, and
the global mobile data traffic will reach 77 exabytes every
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month by 2022. The tremendous amount of data would be
absorbed into the Internet consisting of smart-home devices,
autonomous vehicles, wearable devices, environmental sen-
sors, and almost anything we can imagine. Consequently,
the opportunities from the development of IoTs are endless,
and its capabilities and potential will be tangible very soon
as a vast number of IoT devices are getting connected to the
Internet day by day. On the other hand, IoT network systems
present new potential cyber-attack surfaces for malicious
attackers leading to tremendous economic and reputation
destruction for system operators/providers [7], [8], if there
are no correctly protection solutions.

Fortunately, the network softwarization including
SDN and NFV cloud technologies are representing a major
breakthrough in Telco industries, by providing several bene-
fits regarding dynamics, flexibility, and manageability. Con-
cerning network security, these two key enablers of cloud
computing technologies are obtaining a great momentum by
introducing dynamic and flexible security protection mecha-
nisms to cloud environment [9]. Although, a variety of studies
based on SDN/NFV technologies have been proposed to
better cope with IoT security threats [10]-[16]. However,
current solutions still face with some critical problems such as
bottleneck issues [11]-[15] and lacking of collaboration [16],
[17] while providing security services or mechanisms for
cloud-based IoT networks. In addition, due to the huge
quantity of IoT devices, it is always challenging for every
network operator to create an effective defense mechanism
against cyber attacks in IoT networks [7].

Therefore, in this article, we propose a novel collab-
orative and intelligent network-based intrusion detection
system (NIDS) architecture to effectively defense against
network-related cyber attacks in SDN-based cloud IoT net-
works, entitled SeArch. This security architecture consists of
a hierarchical distribution of NIDS nodes, including Edge-
IDS, Fog-IDS, and Cloud-IDS, respectively. These IDSs are
based on machine learning/deep learning algorithms for their
detection operations, and those located in the same computing
layer can be in a distributed design. In particular, Edge-
IDS is a lightweight security application integrated into an
SDN-based IoT gateway in the edge computing level, Fog-
IDS located in the fog computing layer runs as an SDN
application on top of SDN controller, and Cloud-IDS is an
IoT security application running on the cloud computing level
with enough computation power and storage resources. This
architecture introduces an effective collaboration way among
IDS nodes in network-related anomaly IoT traffic detection
by setting up communication channels among nodes for data
synchronization and load balancing.

Our significant contributions can be listed as follows:

« Firstly, we analyze existing security solutions and pro-
vide motivations for applying machine learning/deep
learning-based detection techniques to cyber attacks
in cloud-based IoT networks. Afterward, we show the
resource consumption problem at the edge computing
level by our prior experiment.
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o Secondly, we propose a new security architecture,
SeArch, representing a collaborative and intelligent
NIDS framework in SDN-based cloud IoT networks,
in which an arrangement of three layers of IDS nodes,
i.e., Edge-IDS, Fog-IDS, and Cloud-IDS, is introduced
with an effective collaboration among nodes.

« Furthermore, we conduct a thorough analysis of the sys-
tem and take the resource management and the overhead
of communication of the proposed solution into account.
Then we formulate a novel system resource optimization
and optimal path selection scheme.

« Finally, we carry out comprehensive experiments in an
SDN-based cloud IoT emulation network. An extensive
comparison of SeArch with existing solutions shows
significant improvements in anomaly detection and mit-
igation as well as performance bottleneck handling.

The rest of this article is constructed as follows. Section II
shows background knowledge about the SDN-based cloud
IoT networks and network-related security threats. Next,
research motivations will be provided in section III. Details of
our proposed SeArch architecture are presented in section I'V.
Section V presents our deployment example and experiments,
and result analysis will be provided in section VI. Finally,
section VII concludes our study and draws some future
developments.

II. PRELIMINARIES

A. SDN-BASED CLOUD IloT NETWORKS

As illustrated in Figure 1, the modern cloud-based IoT
networks is often divided into three primary levels: Edge
computing, Fog computing, and Cloud computing [1], [11],
[18], [19] which correspond to three layers of IoT system:
Perception, Distribution Network, and Application. A brief
description of three computing levels is given as follows.

1) EDGE COMPUTING LEVEL

The edge computing level mainly covers edge nodes
(e.g., routers switches and small/macro base stations) pow-
ered by mobile edge computing (MEC) technology [20].
However, in the SDN-based cloud vein, we regularly con-
sider SDN-based IoT gateways which support protocols
(e.g., OpenFlow and NetConf) and connect to the SDN con-
trol plane located in the fog computing level. An SDN-based
IoT gateway connects to IoT devices via several protocols
[1] such as ZigBee, WirelessHART, RUBEE, WiFi, Ethernet,
and second-generation 2G/3G/4G/5G. In addition, the edge
computing level is located at the distribution network layer
of the IoT systems which can provide real-time connec-
tion, services, and security for limited resource capacity
IoT devices in the perception layer [19] by leveraging the
capability of MEC technology. Besides, it is noted that
computational capability at the edge devices is one of the
significant challenges for the edge computing level because
of the computation offloading [21], [22]. For example, mas-
sive IoT devices may require for different compute-intensive
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services/applications from a mobile edge station, which can
result in an outage situation.

2) FOG COMPUTING LEVEL

The fog computing level is also placed at the distribution
network layer. It mainly consists of SDN controllers and SDN
application servers, in which they could be formed as a dis-
tributed manner. These SDN controllers communicate with
SDN-based IoT gateways via southbound protocols (e.g.,
OpenFlow and NetConf); meanwhile, northbound APIs are
used for data exchange with application servers and the cloud
computing level. Hence, the fog computing can provide not
only enough computational resources but also low latency
and compute-intensive applications [12], [19], which makes
it become a great place to deploy IoT security applications.

3) CLOUD COMPUTING LEVEL

A standard definition for the cloud computing level is given
by the National Institute for Standards and Technology
(NIST) in 2011 [23], it reports “‘a model for enabling ubiqui-
tous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or ser-
vice provider interaction” . Accordingly, this computing level
is majorly responsible for storage, processing and accessing
of data produced by a vast number of IoT devices. In other
words, high computational applications and big data storage
should be placed at the cloud computing level [19].

B. NETWORK SECURITY THREATS
Cloud environment for IoT networks and platforms pro-
vides not only connectivity among IoT devices and
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FIGURE 2. Common security threats in the cloud-based loT networks.

applications but also distributed computational resources and
storage. Consequently, several potential security vulnerabili-
ties have been exploited recently by attackers [10]. As illus-
trated in Figure 2, we can categorize common cyber-attacks
into Network-related and other groups which could happen
and seriously harm the cloud-based [oT networks. How-
ever, in this research, we only pay attention to well-known
network-related security threats which are briefly described
as follows.

1) EAVESDROPPING ATTACK

Known as data sniffing, eavesdropping technique [24] is a
serious cyber-attack conducted by listening to IoT device
communications. In particular, if transferring data are unen-
crypted in an insecure channel, sniffers can extract sensitive
information from those communications such as device cre-
dentials or configurations. Eavesdropping attacks are chal-
lenging to detect and prevent completely; this is because
adversaries do not cause network transmissions to appear to
be abnormal.
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2) DENIAL-OF-SERVICE ATTACK

Denial-of-Service (DoS) or Distributed DoS (DDoS)
attacks [8] are the most common and dangerous cyber-
threats in cloud-based IoT environment. With the purpose of
flooding network links and IoT devices with an enormous
traffic volume, adversaries can quickly exhaust network and
computational resources resulting in the unavailability of the
IoT communication system. Different techniques can be used
to launch a saturation attack, such as ICMP flood, TCP/UDP
SYN flood, TearDrop, and Low & Slow DDoS. For example,
Mirai botnet network is built based on a swarm of more
than 400,000 vendor/technology-specific IoT devices that
saturated a French WebHost in September 2016 [8] with
1 Tbps of DDoS traffic.

3) SPOOFING ATTACK

The adversarial purpose of a spoofing attack is to send mali-
cious traffic to destination IoT networks and devices but
seem legitimate traffic patterns. For instance, attackers can
launch an eavesdropping attack to gather information about
authorized accesses, then spoof attack traffic with legitimate
information such as IP addresses, hence gaining access to
IoT network system [25].

4) MAN-IN-THE-MIDDLE ATTACK

A man-in-the-middle attack (MITM) is an advanced ver-
sion of the spoofing attack where an adversary lies on the
network path between two IoT devices in communication.
The attacker impersonates both devices and relays traffic by
independently communicating with each endpoint in order
to intercept the transferring data between victims. This tech-
nique makes two parties believe in their communication
channel without any doubts about delaying, cloning, replay-
ing, spoofing or dropping packets. Accordingly, the MITM
attack can bring savage effects to IoT systems in case of sen-
sitive information captured by an adversary such as control
traffic or key exchange data, hence causing insurmountable
security problems for IoT system [26].

Ill. RESEARCH MOTIVATIONS

A. EXISTING SOLUTIONS FOR SECURING CLOUD-BASED
IoT NETWORKS

Many research efforts [10], [27] have been proposed to
secure cloud-based IoT networks. A recent research [11]
introduces a multi-level DDoS mitigation framework to
defend against DDoS attacks for industrial IoT networks.
This mechanism leverages SDN to manage a large num-
ber of industrial IoT devices and to mitigate DDoS attack
traffic. However, this solution is vulnerable to bottleneck
problems because the detection engine is centrally placed on
top of the SDN controller. Moreover, high latency between
detection engine and the data plane would reduce the attack
mitigation performance. Similarly, a fog-assisted intrusion
detection/prevention system [ 12] and an artificial intelligence-
based two-stage intrusion detection system [13] are proposed
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to deal with attacks in IoT networks relying on SDN and cloud
platform technologies. As a result, these mechanisms can be
collapsed because of a centralized control in case of a high
data processing load.

Authors in [17] present a distributed mechanism for intru-
sion detection system utilizing SDN and programmable for-
warding devices (e.g., OpenvSwitch), in which intrusion
detection system is located at the forwarding devices, and
it is running as a security service in the data plane. One
of the main drawbacks of this mechanism is lacking col-
laboration among detection engines; hence if a new kind of
attacks presents, it takes a long time to detect or even cannot
recognize the new attack due to lacking updates from other
nodes in the system. A study in [16] shows the same approach
for placing the detection engine in the SDN-based IoT gate-
way as an extra security function. Accordingly, these two
methods [16], [17] are still not capable of handling
with different and new cyber-attacks in IoT networks.
Another research proposes a novel framework [14], called
ATLANTIC, for anomaly traffic detection, classification, and
mitigation based on the capability of SDN. ATLANTIC cal-
culates deviations from collected information in flow tables
in the data plane and then uses machine learning algorithms
to classify traffic flows. Again, this framework does not
mention or resolve the centralized bottleneck problem, but it
only focuses on intelligently recognizing new attacks.

Additionally, in [28], an SDN-IoT architecture based on
Network Function Virtualization is proposed with virtual IoT
gateway which brings dynamics, scalability, and elasticity to
the control and management of IoT network traffic in the data
plane but does not open considerable and detailed discus-
sions regarding security issues. Another study [15] presents
a framework to overcome the big data problem by analyzing
IoT traffic patterns in lower layers instead of evaluating the
values in the application layer. In which, the volume of data
is significantly reduced before coming to Internet or other
places; however, it places very high pressures on devices
in the data plane, and it is vulnerable to bottleneck issues
in case of a high traffic load. Authors in [29] introduce
a new host-based intrusion detection and mitigation archi-
tecture based on SDN and OpenFlow protocol to protect
smart IoT devices at network-level in home environment.
Nonetheless, this framework is insecure to bottleneck and
scalability problems because of its centralized design, and it
requires high computational efforts for traffic monitoring in
realtime. Consequently, these mentioned approaches are only
applicable for addressing some specific security problems
and can operate efficiently under certain conditions.

To sum up, previous research are still facing with critical
problems, i.e., bottleneck issues [11]-[15] and lacking of
collaboration [16], [17], in order to better secure cloud-based
IoT networks. In this article, therefore, this motivates us to
come up with our new security architecture for efficiently
securing SDN-based cloud IoT networks, which can benefit
the advantages of existing solutions while avoiding their
drawbacks.
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B. INTELLIGENCE-BASED APPROACH FOR SECURITY

IN IoT NETWORKS

1) MACHINE LEARNING TECHNIQUES FOR CYBER SECURITY
Machine learning techniques have been exhibiting notable
successes in classification problems in many computer
networks-related areas [17], [30], [31], recently. Because it
provides a general solution to solve complex classification
problems where a phenomenon model is hugely complex to
derive or very dynamic to be assumed in mathematics, which
makes the machine learning’s popularity nowadays. Con-
cerning the classification of machine learning techniques,
although there are many ways to classify them, we consider
a common classification based on learning methods [30],
[31] including reinforcement, supervised, and unsupervised
in this work. Most research applying reinforcement learning
approach are for optimization problems or finding an optimal
solution for a specific situation [32]. Meanwhile, super-
vised and unsupervised learning algorithms are mostly for
classifying and clustering input data into separated groups.
Therefore, two latter are seen in many studies related to
security solutions in IoT networks [27], which motivates us
to take a machine learning-based approach into account with
the purpose of intelligently classifying IoT network traffic in
this research.

To make the above motivation clear, we conduct a prior
experiment on three machine learning-based security solu-
tions for a simple SDN-based network in MaxiNet emulator
[33]. The emulated network comprises a Web server and 08
hosts (04 attackers and 04 benign users); they are all based on
Linux containers and connect to an OpenFlow switch (Open-
vSwitch). We leverage BoNeSi tool [34] to launch DDoS TCP
SYN attacks with 100, 200, and 300 Mbps from attackers
to the Web server in the SDN network, then precision and
accuracy metrics are recorded for the evaluation of this attack
detection performance. Those security solutions based on a
lightweight traffic classifier [35] (Support Vector Machine
- SVM), a moderate traffic classifier [36] (Self Organizing
Map - SOM), and an intensive and complex traffic classifier
[37] (Stacked Autoencoder Deep Learning approach - SAE),
respectively. Note that, for training phase, we use public
data sets, CAIDA [38], [39], to extract training samples1 for
detection engines. As shown in Table 1, the DDoS detection
performance® of three security approaches are remarkable
with a trained classification algorithm. Moreover, it shows
that a more complex classification algorithm gives a higher
chance to recognize the DDoS attack presence.

2) COMPUTATION ISSUES AT THE EDGE COMPUTING

LEVEL IN SDN-BASED CLOUD loT NETWORKS

As discussed in Section II-A, the computational capacity is
one of the significant issues for SDN-based IoT gateway

1Based on studies in [17], [40], we train SVM and SOM classifiers using
simple features consisting of number of flows, number of packet per flow,
number of byte per flow, flow duration, growth of client ports, and protocol.
For the deep learning-based SAE classifier, we apply a set of 9 features for
TCP traffic and a set of 6 features for ICMP traffic as the same in [37].

2Traffic is classified into two classes, including normal and attack.
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TABLE 1. Anomaly detection performance of security applications during
different DDoS attack volumes.

Algorithms [ SVM [ SOM [ SAE
Precision results (%)

100 Mbps 94.34 | 9540 | 97.80

200 Mbps 93.06 | 96.63 | 97.63

300 Mbps 93.23 | 96.54 | 97.65

Accuracy results (%)

100 Mbps 94.56 | 96.85 | 97.98

200 Mbps 94.23 | 96.67 | 97.67

300 Mbps 94.12 | 96.78 | 97.90

150

—+—SVM - 100 Mbps
—+—SOM - 100 Mbps
—+—SAE - 100 Mbps
—*—SVM - 200 Mbps
100 —#—SOM - 200 Mbps

—#—SAE - 200 Mbps

CPU Utilization (%)
"

Time (minutes)

FIGURE 3. CPU utilization of a server running security applications during
different DDoS attack volumes.

devices because the edge device is a perfect location for the
deployment of applications [11], [19] such as access con-
trol, intrusion detection, and data encryption. For instance,
a security application which requires real-time and complex
processes, it always needs for an intensive computational
resource from the gateway device. As a result, the edge
device is unable to perform all processing tasks well and may
become overloaded. To clarify this issue, we again utilize the
emulation setup in the above section and extract the CPU
utilization® of the machine hosted three security applications
based on SVM, SOM, and SAE algorithms during attacks.
As can be seen in Figure 3, the results show that the required
computational capability is proportional to the complexity of
machine learning or deep learning algorithms, and there are
significant differences among cases. Hence, the placement
of security applications plays a crucial role in the operating
performance of the edge devices.

From above analyses, accordingly, in order to eliminate
this problem at the edge device while providing efficient
security services for SDN-based cloud IoT networks, we pro-
pose a collaborative and intelligent network-based intrusion
detection system in next section.

IV. COLLABORATIVE AND INTELLIGENT NIDS FOR
SDN-BASED CLOUD loT NETWORKS

In this section, we elaborate the proposed SeArch architecture
for network anomaly detection system in SDN-based cloud
IoT networks. We firstly describe the overall architecture and

3We observe the CPU usage of the core running the security application.
The machine is Intel Core 17-4790 (4 cores) 3.60 GHz and 16 GB DDR3
1600 MHz.
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components, then operation workflow and proposed algo-
rithms will be provided hereinafter.

A. OVERALL ARCHITECTURE
In order to minimize mentioned issues, i.e., performance bot-
tleneck, lacking collaboration, and resource overconsumption
at the edge computing (see section III), we propose a collabo-
rative and intelligent NIDS architecture in SDN-based cloud
IoT networks that is illustrated in Figure 4. The introduced
security architecture consists of three main layers of IDS
including Edge-IDS, Fog-IDS, and Cloud-IDS, respectively.
In which, these IDSs are both placed in hierarchical and
vertical dimensions. However, IDSs, which are in the same
computing layer, can be in a distributed form. In particu-
lar, Edge-IDS is a security application integrated into an
SDN-based IoT gateway device, Fog-IDS is installed as an
SDN application above SDN controllers, and Cloud-IDS is
an IoT security application running on the cloud with enough
computation and storage resources.

Regarding the collaboration among IDSs, each Edge-IDS
is designed to have an online communication channel* to a
Fog-IDS for information/data exchange. Likewise, Fog-IDS
and Cloud-IDS establish their channels to send and receive
data. In addition, Fog-to-Fog-IDS and Cloud-to-Cloud-IDS
communications are set up for data/information sharing and
updating, and there are no channels between Edge-IDSs.
The main objective behind this arrangement is to reduce

4Each IDS at a layer is configured to keep in touch with its collaborators
using sockets referred to as the online channels.
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information exchange latency and to avoid outage problems
for the edge devices because the higher layers should mainly
conduct data/information exchange while the edge devices
should focus on processing IoT traffic.

B. MULTI-LEVEL NIDS IN SDN-BASED CLOUD

From the above arrangement, we now expose each computing
level IDS in terms of the placement, functionality and degree
of collaboration among others in details.

Edge-IDS: This element is placed at the edge comput-
ing level and runs as an intrusion detection engine which
resides in an SDN-based IoT gateway [11] powered by MEC
technology [20]. The main tasks of an Edge-IDS are to
periodically collect and extract traffic flow statistics infor-
mation from a local IoT network to derive a set of desired
features which is then fed into a machine learning-based
engine. Afterward, anomaly detection and policy-making
processes are conducted locally to stop malicious traffic
flows in the connected SDN-based IoT gateway device.
From our analyses in section III-B.2, therefore, we recom-
mend to utilize only lightweight or less time-complexity
machine learning-based detection algorithms, i.e., Support
Vector Machine [35], as the core of detection engine. Due to
the placement of this security mechanism, this arrangement
is considered as a source-based detection approach. More-
over, for unknown traffic patterns or a high volume incom-
ing traffic, e.g., DDoS attack traffic, the Edge-IDS actively
forwards data to the upper layer (Fog-IDS) for further
processes via the online channel, and we will elaborate further
later on.
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Fog-IDS: At the fog computing level, the network-based
detection engine operates as SDN applications in a dis-
tributed manner with data synchronization/updates among
others. Because of the sufficient power supply, these Fog-
IDSs can perform machine learning-based detection algo-
rithms with moderate complexity and resource consumption,
e.g., Self Organizing Map - SOM. By doing so, the Fog-IDS is
expected to provide low latency and compute-intensive secu-
rity analyses in comparison with the Edge-IDS. Furthermore,
a Fog-IDS should act as an upper or aggregation engine of
some Edge-IDSs from the lower layer in order to process
and categorize data (unknown and load-balancing). In brief,
the main tasks of a Fog-IDS are to aggregate and extract
received data to derive a set of desired features, and then
feed these features into a machine learning-based engine for
its anomaly detection. Subsequently, it makes policies and
applies to the dedicated SDN-based IoT gateway if possible;
otherwise, it sends to a Cloud-IDS for more advanced anal-
yses regarding unrecognized traffic patterns. Besides, a Fog-
IDS can load balance with its Fog-IDS neighbours in case
of an outage situation caused by a large amount of data
forwarded from Edge-IDS nodes, e.g., a DDoS attack, which
is explained in section IV-D.

Cloud-IDS: A Cloud-IDS is referred to a cloud-based
detection engine running as IoT applications at the cloud
computing layer with the inexhaustible resource supply, and
it could be formed in a distributed style. The core engine
of a Cloud-IDS can operate machine learning-based detec-
tion algorithms with much higher complexity and resource
consumption, e.g., Deep learning. Therefore the outcome
of detection is believed as the most conscious of a traffic
pattern sent from a Fog-IDS. Similar to the operation of
the Fog-IDS node, this IDS level deals with unhandled data
and then sends back appropriate policies to Fog-IDS for
immediately stopping malicious traffic flows generated from
IoT networks.

It is noted that NIDS engines in our introduced security
mechanism are initiated easily as virtual machines with built-
images in physical servers powered by the capability and
flexibility of SDN/NFV and MEC technologies.

C. SYSTEM MODEL ANALYSIS

Since the proposed security architecture operates as a dis-
tributed system in the edge, fog, and cloud computing layers,
resource management must be considered. Otherwise, infor-
mation/data processing may put pressure on some specific
nodes in case of high traffic load (e.g., DDoS attack traffic)
generated from IoT networks; hence, it can easily lead to a
bottleneck problem if no load balancing decision is made in
time. Furthermore, data flows among IDSs are also forwarded
using the same SDN-based cloud infrastructure, i.e., flow-
tables in SDN switches or SDN-based IoT gateways.
Accordingly, the overhead of communication of the proposed
solution must be appropriately minimized. To achieve these
goals, we formulate a novel system resource optimization and
optimal path selection scheme thereinafter.
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TABLE 2. Notations.

Resource Optimization Formulation
N Set of IDS nodes in the edge, fog, and cloud levels
R; Resources of an IDS node i
R Maximum capacity of resource R; in node i
Bl Maximum bandwidth can be processed by node i
Bj; Transferred bandwidth from node j to i, and Bj; # B;;
B; Sum of incoming bandwidth to node i s.t. B; =Y ; Bj; and
B; < le_nax
ZLji Link capacity between node j and i, and .Z}; = .Zj;
D An IDS node, and D € N
Df (B;)  Usage of resource R when IDS node i processes bandwidth B;
Optimal Path Selection
aij The amount data sent from node i to node j
Si The available supply atnode i
Cij The cost for flow along the arc between node i and node j

1) EFFICIENT SYSTEM RESOURCE MANAGEMENT

Authors in [41] report the CPU usage of virtual machines is
proportional to the amount of processing traffic by measuring
the CPU utilization per network I/O rate on a Xen hypervisor.
Consequently, a virtual machine consumes more resources
when processes more incoming traffic. Therefore, we can
approximate how much resources are needed and how many
traffic information can be processed by remaining resources.
Besides, the amount of incoming traffic is represented by
bandwidth. Thus, we design an optimization formula that can
calculate optimal bandwidth distribution for each IDS node in
order to avoid the exceeded resource capacity.

Firstly, we define some notations in Table 2. As can be seen
from Figure 4 b), the proposed mechanism includes a set of
N nodes and can distribute traffic based on the concurrent
resource usage of each IDS node. A resource R; of an IDS
node i is a type of virtual resources provided by physical
servers, R; € {vCPU, vMemory} in case CPU and memory
of the IDS node are considered. Since physical resource has
a limit; thus, the value of resource R; should not exceed
its capacity R/"**. A bandwidth Bj; denotes the transferred
bandwidth from node j to i; therefore, a total bandwidth
between two nodes j and i becomes Bj;+B;;, which should
not be excessive compared to a full duplex link capacity Lj;
between them. fo (B;) refers the usage of resource R when
IDS node i processes bandwidth B; (Mbps), where B; < B/"**.
For instance, an IDS node i handles with 10Mbps traffic, then
CPU usage of the IDS can be formed as D}’CP U(10).

From above description of variables, we can set up an
optimization formula as follows:

maximize ZBﬁ @))
J

subject to 0 < B; < B"™* 2)

Vj,iGN:Bji-i—Bijiji A3)

VR; € {vCPU,vMemory},i€N : Df"(B,-) <R"™.

4)

The main objective of this formulation is calculating max-
imum incoming traffic on an IDS node i to make a load
balancing decision in time avoiding the overload case, and it
is written as equation (1). Afterward, we have to determine
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conditions to find out a feasible solution for the formula.
Equation (2) shows the amount of processing bandwidth B;,
and it must be a positive value and less than the maxi-
mum allocated value. Next, equation (3) should be satisfied
because the bandwidth of data traffic exchanging between
two nodes j and i must not be over a link capacity Lj;.
Similarly, the resources of a node should not be over its
capacity; hence, equation (4) also has to be satisfied.

In this work, we introduce to efficiently manage the sys-
tem resource by leveraging the capabilities of SDN/NFV
technology to initiate IDS nodes as virtual machines over
the cloud environment. As a result, the cloud administrator
can rely on our proposed calculation in order to set up the
right configuration for IDS nodes such as vCPU, vMemory,
B and location. In addition, we now denote this calcu-
lation as ESRM _func(N) to refer to the proposed efficient
system resource management in this study.

2) OPTIMAL PATH SELECTION FOR DATA EXCHANGE

In our proposed security architecture, the system is character-
ized using a graph structure representing nodes and commu-
nication channels among them, which is shown in Figure 4
b). In order to meet the mentioned requirement regarding
the overhead of communication, we have to find an optimal
path, which has the minimum communication cost, between
two any IDS nodes in the system. In other words, we are
interested in minimizing the cost of transferring data in the
proposed system. To achieve this aim, we follow the min-
imum cost flow formulation in transportation and network
flow problems [42]. Firstly, we define some variables as
follows: a;; denotes the amount data that must be sent from
node i to node j, i.e., unhandled data and load balancing
data; s; represents the available supply of data at a node i,
if s; < 0; thus, there is a required demand of data at node i; and
the shipping cost for flow along the arc between node i and
node j is denoted as c¢;;. In common sense, it is reasonable to
assume the system is balanced, i.e., total supply equals total
demand, then Z:': 18i = 0, where n is the total number of
nodes in the system. Accordingly, the minimum cost of the
system communication problem can be expressed as follows:

n
minimize E cijajj 5)
ij=1

n n

subjectto Za,-j — Zak,- =s; fori=1,2,...,n (6)
j=1 k=1

a; >0 fori=1,2,...,n 7

From equation (5) and its conditions, we can find the
optimum path between two any nodes in the system. The
solution for solving this equation is well described in [42].
Therefore, we utilize the solution and the result as a primitive
to find paths for node communication in our proposed archi-
tecture. For ease of use, we denote equation (5) as a function
FSP_func(i, j) to find the optimum path between node i and j
from now on.
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D. SYSTEM PROCESS LOGIC

To present our novel SeArch security architecture in deal-
ing with network-related cyber-attacks in SDN-based cloud
IoT networks, the overall system process logic is provided by
three main following consecutive procedures.

1) INITIALIZATION PHASE

Under the perspective of the cloud administrator, we need
to investigate the cloud infrastructure of three distributed
computing levels properly. Next, we formulate a detailed plan
for deployment based on the capabilities of SDN/NFV and
MEC technologies. This step focuses on some key points
such as the resource allocation and the deployment location
of IDS nodes, and these processes can clearly benefit from our
proposals mentioned in sections IV-C.1 and IV-C.2 by using
ESRM_func(N) and FSP_func(i, j). Additionally, we exten-
sively discussed the placement of machine learning-based
detection engine in the SDN-based cloud for IoT networks in
sections III-B and IV-B. Then, we use some ready-made data
sets [38], [39], [43], [44] and extract samples for training
phases of lightweight, moderate, and compute-intensive clas-
sification algorithms.

2) RUNTIME OPERATION PHASE

In the next step, we describe how IoT traffic can be classified,
and data exchange are done in the SeArch framework after
the Initialization phase is done. At first, every Edge-IDS

Algorithm 1 Runtime Operation at Edge-IDS Nodes

1: Ejps < Set of IDS nodes at the edge computing level
and Ejps € N.

2: B; < Amount of total incoming bandwidth of an IDS
node i at a certain time.

3: fori = 1to E;ps do

4:  Collect 10T traffic flow statistics data from gateway.

5. Calculate B;, Dl.VCP U(B;) and D;Memury (B)).

6 if (D)PUB;) < vCPUM™) and (D" (B;) <

vMemory") then

7: continue

8: else

9: Forward AB; to a designated Fog-IDS, where
AB; = B; — B/"*.

10:  end if

11:  Extract features from remaining data amount.
12:  Feed inputs into a lightweight IDS.

13:  Get IDS’s outcome.

14:  if outcome = normal then

15: continue

16:  else if outcome = malicious then

17: Call Policy creation and enforcement.
18:  else if ourcome = unknown then

19: Forward to a connected Fog-IDS node.
20:  end if

21: end for
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Algorithm 2 Runtime Operation at Fog-IDS and Cloud-IDS
Nodes
1: {Fips, Cips} < Set of IDS nodes at the fog and cloud
computing levels and Fipg, Cips € N.
2: B; < Amount of total incoming bandwidth of an IDS
node i at a certain time.
3: fori = 1to {Fps, Cips} do
. Calculate B;, DYPU(B;) and D" (B;).
5. if (D)PUB;) < vCPUM™™) and (D" (B;) <
vMemory!"*") then
continue
else
Forward el (g nelghbm to each Fog-
IDS or Cloud-IDS neighbor, where AB; =
B; — B,
1
9:  end if
10:  Extract features from remaining data amount.
11:  if i € Fips then

12: Feed inputs into a moderate 1DS.

13:  else

14: Feed inputs into a compute-intensive IDS.
15:  endif

16:  Get IDS’s outcome.
17:  if outcome = normal then

18: continue

19:  else if outcome = malicious then

20: Call Policy creation and enforcement

21:  else if outcome = unknown then

22: if i € Fips then

23: Forward to a connected Cloud-IDS node.
24: else

25: Send a report to the cloud administrator.
26: end if

27:  end if

28: end for

continuously collects IoT traffic flow statistics information
passing the associated SDN-based IoT gateway device. For
example, the gateway device is an OpenFlow switch, then the
collection data of IoT traffic is the switch’s flow-table data,
including all raw information of flow-tables [45]. Moreover,
the collected amount of data represented by a correspond-
ing bandwidth value, B;, are forwarded to the Edge-IDS
node i for processing. Afterward, the Edge-IDS checks its
current resource usage (VCPU, vMemory) and compares
with the condition mentioned in Equation (4) (see line 6 in
Algorithm 1). If the condition is satisfied, it means the Edge-
IDS node i can handle all the incoming data. Otherwise,
it decides to load balance a part of the incoming data to
a connected Fog-IDS with an exact amount, see line 9 in
Algorithm 1.

Next, the Edge-IDS node i conducts feature engineering
and extraction to take out values of desired features; the Edge-
IDS forms these values into inputs and feeds them into its
classification algorithm [27]. There are two possibilities of
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Algorithm 3 Proposed Database Update Scheme
1: N ={Eps, Fips, Cips} < Set of all IDS nodes.
2: New; < New traffic patterns collected by an IDS node
i that is not sent to any nodes before.
3: T; < Regular period of time (minutes) for updating
connected nodes of an IDS node i.
4: Time_Counter; < Time counter (minutes) for database
exchange of an IDS node i.
5: fori =1to N do
6 if Time_Counter; > T; then
7: if B; < B"*" then
8
9

ifi e EIDS then
: Send New; to connected Fog-IDS node.
10: else if i € Fjps then

11: Send New; to connected Fog-IDS and Cloud-
IDS nodes.

12: else if i € C;pg then

13: Send New; to connected Cloud-IDS nodes.

14: end if

15: Time_Counter; < 0

16: end if

17:  else

18: Time_Counter; < Time_Counter; + 1

19:  end if

20: end for

outcomes from the machine learning-based detection engine
on an input: obvious (normal or malicious) and unknown
traffic patterns. For obvious decisions, the Edge-IDS can
take action/policy immediately to stop malicious traffic flows
passing the gateway while keeping normal traffic flows. Since
there are several types of network-related attacks which can
happen in IoT networks (see section II-B); therefore, we
will adequately address the policy creation and enforcement
in the SeArch system later. For unknown patterns, it means
the Edge-IDS i cannot decide on this input because of any
reasons such as lacking key features or unseen type of traffic,
and then these patterns will be forwarded to a superior Fog-
IDS node for security checking with more advanced knowl-
edge. Algorithm 1 summarizes the operation of Edge-IDS
nodes.

Regarding the Fog-IDS nodes, they perform detection tasks
for unknown and load-balanced traffic patterns from the
edge nodes and among the fog nodes. This is reasonable
due to a low latency between the edge and fog comput-
ing levels (see section II-A.2 and [12], [19]), while only
unhandled data is transferred to the Cloud-IDS nodes for
the most advanced security analyses based on deep learn-
ing. Finally, polices are loaded to SDN controllers that can
apply these policies to corresponding SDN-based IoT gate-
way devices to drop/block abnormal traffic flows. Similar
processes are applied for the Cloud-IDS nodes in run-
time operation. All mentioned processes can be summarized
in Algorithm 2.
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3) DATABASE UPDATE SCHEME
One of the essential factors encouraging the performance
improvement of the SeArch solution is the database syn-
chronization and update scheme among IDS nodes. The rea-
son is that the network traffic behavior of IoT networks is
always dynamic time by time; hence, it is needed to update
databases of IDS nodes and train machine learning algorithms
with updated data in order to produce more accurate deci-
sions. Therefore, we propose a scheme for database update
among nodes of the system, which is accurately described in
Algorithm 3. From the proposed scheme, we can see that
Edge-IDS nodes update Fog-IDS nodes, Fog-IDS nodes share
new data with Fog-IDS and Cloud-IDS nodes, and Cloud-IDS
nodes only update among them.

Generally, [oT traffic is considered as heterogeneous from
a macro perspective; however, according to [46] it is group-
specific from the perspective of each local IoT network. Thus,
our proposed arrangement allows the detection engine at each
SDN-based IoT gateway to more efficiently classify group-
specific (local) IoT network traffic than mixed several traffic
types. Even if there is an unseen traffic pattern, the Edge-IDS
can send it to the Fog-IDS for further checking, and because
the fog nodes have more knowledge of the traffic compared
to the edge nodes by sharing and updating databases together.
Consequently, the unseen traffic pattern will be verified very
soon by the designated Fog-IDS node, then a policy can be
issued to drop/block the traffic flow if the unseen data is
recognized as an attack pattern. In conclusion, the proposed
Algorithm 3 can allow the system to improve the performance
of source-based detection for both group-specific and hetero-
geneous traffic at local IoT networks.

V. IMPLEMENTATION AND EXPERIMENTS

A. DEPLOYMENT SETUP

To verify the novelty of the SeArch architecture, we have
implemented the proposed NIDS framework, as illustrated
in Figure 5. In which, we leverage the use of a distributed
SDN emulator, MaxiNet [33], and a docker container-based
framework - Containernet [47], in order to emulate a dis-
tributed SDN-based networks through 03 physical machines.
In each machine, we set up a small scale network with
some OpenvSwitches running as SDN-based IoT gateways
associated with Edge-IDS (E1-E9°) nodes, and 12 container-
based hosts (d1-d12°) are distributed as shown in Figure 5.
ONOS [48] is chosen as the SDN controller with an Fog-
IDS (F1-F37) in the application layer. GRE tunnels are set
up between machines to transfer data among SDN-based
networks. In addition, 02 physical machines are used for
formulating the cloud environment with 02 Cloud-IDS
(C1-C2%) nodes, and these physical machines are connected
to others using two L2 switches. A part of Figure 5 shows the

SE1-E9 stand for 09 Edge-IDS nodes

6d1-d12 stand for 12 docker container-based hosts
TF1-F3 stand for 03 Fog-IDS nodes

81-C2 stand for 02 Cloud-IDS nodes
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NIDS node graph connecting all nodes. Five machines are all
Intel Core 17-4790 3.60 GHz and 16 GB DDR3 1600 MHz.

Note that for ease of implementation, we assume that
we already applied two functions ESRM _func(N) and
FSP_func(i, j) (see section IV-C) to solve the resource allo-
cation and the deployment placement issues.

B. EXPERIMENTS

1) MACHINE LEARNING-BASED DETECTION

AND TRAINING DATASETS

As discussed above in sections III-B, IV-B, and IV-D.1,
we now have to select the machine learning algorithms
for detection engines in the SeArch architecture. Again,
for an ease of deployment, we utilize the lightweight traf-
fic classifier [35] (Support Vector Machine - SVM) for
Edge-IDS, the moderate traffic classifier [36] (Self Organiz-
ing Map - SOM) for Fog-IDS, and the compute-intensive
traffic classifier [37] (Stacked Autoencoder Deep Learning
approach - SAE) for Cloud-IDS, respectively. Nevertheless,
other machine learning-based detection techniques are abso-
lutely feasible to apply to the proposed system.

Moreover, we thoroughly investigated the network-related
threats in IoT networks in section II-B, including eavesdrop-
ping, denial-of-service (DoS/DDoS), spoofing and man-in-
the-middle (MITM) attacks. However, it can be seen that to
achieve sensitive information for conducting eavesdropping,
spoofing, and MITM attacks, intruders must prior launch a
probing attack to gather useful network or target information.
Consequently, there are two common network-related cyber-
attacks, including DoS/DDoS and Probe/Reconnaissance
attacks which can harm IoT networks, generally. Fur-
thermore, Table 3 illustrates the statistics of three well-
known datasets for network intrusion detection system,
CAIDA [38], [39], KDD Cup 1999 [43], and
UNSW-NBI15 [44]. From the above analyses, we decide
to consider DoS/DDoS and Probe/Reconnaissance attacks
in our experiments. Moreover, we separately implemented
02 types of SVM detection engine for both above threats
in each Edge-IDS node (E1 — E9), while SOM and SAE
algorithms allow us to examine many traffic types using
one detection engine, for example in [17], [40], the SOM is
trained with and classifies both ICMP and TCP DDoS traffic
using a 2-dimensional map.

Initially, 30,000 data samples are extracted from three
datasets in Table 3 with a wide range of features. Based
on studies in [17], [40], we train Edge-IDS and Fog-IDS
detection engines using simple features consisting of number
of flows, number of packet per flow, number of byte per
flow, flow duration, growth of client ports, and protocol.
For deep learning-based Cloud-IDS nodes, we apply a set
of 9 features for TCP traffic and a set of 6 features for
ICMP traffic as the same in [37]. It is noted that we train IDS
nodes for anomaly detection according to their corresponding
IoT traffic group patterns, which is mentioned in the next
section.
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FIGURE 5. Deployment topology of the proposed SeArch architecture.
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TABLE 3. Statistical distribution of CAIDA, KDD Cup 1999 and UNSW-NB15 data sets.

CAIDA data sets [38], [39]

Traffic Types TCP Protocol (%) | ICMP Protocol (%) | Other Protocols (%)
Normal (2015) 88.45 6.0 5.55
DDoS Attack (2007) 7.58 91.25 1.17
KDD Cup 1999 data set [43]
Attack types Training Patterns Testing Patterns Number of Features
Probe, DoS, U2R, R2L 45,927 7,458 41
UNSW-NBI15 data set [44]

Attack types

Normal Patterns

Attack Patterns Number of Features

Fuzzers, Analysis, Backdoors,
DoS, Exploits, Generic
Reconnaissance, Shellcode, Worms

2,218,761

321,283 49

2) loT TRAFFIC GENERATION

Although there is a wide variety of IoT devices, we already
discussed this in section IV-D.3; therefore, we can generalize
the types of traffic into three common groups:

e Sensor traffic: 10T sensor devices generate this traffic
group in a certain period with a low number of packets
per traffic flow.

o Monitor traffic: This traffic type is generally referred to
real-time applications, characterized by a small number
of flows but a significant number of packets per flow.

o Alarm traffic: This traffic group is not easily described
because alarm IoT devices only generate traffic when
an abnormal event occurs. Accordingly, we assume this
traffic group has a moderate amount regarding both the
number of flows and the number of packets per gener-
ated flow.

As can be seen in Figure 5, we configure each of small

scale SDN-based network to generate only one type of
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mentioned traffic groups as follows: Sensor traffic is for IoT
devices dl to d4, d5 to d8 are generating Monitor traffic
and Alarm traffic is processed by d9 to d12, respectively.
To do so, we utilize BoNeSi traffic generator tool [34], which
provides various configurations of traffic generation, to gen-
erate HTTP-based traffic for normal IoT traffic. Regarding
attack traffic generation, BoNeSi is also used to generate
DoS/DDoS traffic, and Nmap scanning tool [49] is chosen
in order to launch Probe/Reconnaissance attacks. These tools
are installed in container-based IoT devices.

3) POLICY CREATION AND ENFORCEMENT

After the detection phase is done in any NIDS nodes, policy
creation and enforcement play a key role in stopping attack
traffic flows in the IoT networks. Due to two mentioned
DoS/DDoS and Probe/Reconnaissance attacks; hence, we
propose the following process to defend against or mitigate
malicious traffic flows.

VOLUME 7, 2019



T. G. Nguyen et al.: SeArch: A Collaborative and Intelligent NIDS Architecture for SDN-Based Cloud loT Networks

IEEE Access

DoS/DDoS attacks: In [50], authors have carefully anal-
ysed the two most common DDoS attack types from the
perspective of the SDN-based network. The first type (#1)
is to rely on the volume of packets or data coming from
a source address which generates one or two flows with a
high volume of packets in each flow; for example, Smurf and
Fraggle, and ICMP flooding attacks [10]. The second type (#,)
relies on the volume of the number of flows from a source
IP address in a short period (e.g., TCP SYN flooding [10])
and these flows may be kept alive during the attack
(e.g. Low and Slow rate DDoS attack [51]). Accordingly,
in the SeArch solution, if an attack is detected at an Edge-
IDS node, this node should be allowed to install flow rules
into the affected SDN-based IoT gateway for a fast reac-
tion to attacks. Otherwise, a Fog-IDS or Cloud-IDS should
inform the associated SDN controller to sends a flow_mod
message [45] to the affected gateway device. For the first
attack type, the policy is with a drop action and a preset
hard_timeout value to drop every packet from the attacking
source. Meanwhile, the sent flow_mod message is with a
delete action to remove malicious flows in the second attack
type. Besides, these IDS nodes can inform the forwarding
engine of the SDN controller to drop packet_in messages of
attacking sources which require for new flow installation at
the gateway.

Probe/Reconnaissance attacks: Because of the less traf-
fic volume generated from this kind of attacks, it could be
challenging to mitigate these attacks. However, in this study,
we suggest installing flow rules with a source IP matching
field and drop action for the malicious sources in a preset
hard_timeout value. By doing so, within a specific period,
the source cannot access to the destination in any approaches
due to the drop action that matches to every incoming packet
from the abnormal source IP address.

4) ATTACK SCENARIOS
We now discuss about attack scenarios in our deployment.

DoS/DDoS attack scenarios: At first, we launch local
DDoS attacks (L;, - ICMP Flooding and L;, - TCP SYN
Flooding) in the IoT network including d5 to d8 containers,
in which d5, d6, and d7 simultaneously flood d8 (an Apache
webserver). After that, global DDoS attacks (G, - ICMP
Flooding and G;, - TCP SYN Flooding), malicious traffic
is generated from all IoT devices, are conducted in order to
break down the web service in d8§ container.

Probe/Reconnaissance attack scenarios: We carry out a
local scanning attack (Lpyype) from d5 to d8 by launching the
Nmap tool. Similarly, a global scale probing attack (Gp,ope)
is launched from both d5 and d12 to d8 to achieve sensitive
information about the destination device.

Note that we carry out 10 experiment trials with
500 seconds for each, and mentioned attacks are generated
many times to the victim device during each trial.

5) RELATED SOLUTIONS FOR COMPARISON
To show the inspired performance of the SeArch architecture
in anomaly detection and mitigation for SDN-based cloud
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TABLE 4. Anomaly detection performance indices.

Detection Rate | Precision Accuracy FAR
TP TP TP+TN FP
TP+ FN TP+FP TP+FP+TN+FN TN+ FP

IoT networks, we carry out experiments of the proposed solu-
tion in comparison with following other existing methods:

o Distributed Edge-based Defense (DED): In references
[16], [17], authors proposed to utilize the SDN-based
IoT gateway device to detect and perform an appropri-
ate response in case of an attack presence. Setting up
this DED architecture in our testbed, machine learning-
based detection engines or Edge-IDS nodes (E1 — E9)
are placed at SDN-based IoT gateway devices located
in three physical machines (1-3) as shown in Figure 5,
and they are then trained individually without in any
collaborations.

o Centralized Fog-based Defense (CFD): References [12],
[13] present similar approaches for anomaly detec-
tion based on the power of the fog computing and
improved or combined intelligent classifiers. To achieve
the CFD architecture setup, we deploy another physical
machine with a centralized ONOS SDN controller which
controls all SDN-based IoT gateway devices® in three
physical machines (1-3) as shown in Figure 5. After-
ward, we place a Fog-IDS node on top of this ONOS
controller, in which the Fog-IDS collects traffic statistics
information from all SDN-based IoT gateway devices
and conducts its detection.

o Centralized Fog and Cloud-based Defense (CFCD):
Authors in reference [11] introduce a multi-level DDoS
mitigation framework leveraging the use of both the fog
and the cloud computing levels. Similarly, we utilize
the above centralized CFD setup and then connect the
Fog-IDS node to a Cloud-IDS node at another machine,
e.g., the physical machine 4 in Figure 5. Next, the Fog-
IDS collects traffic statistics information from all SDN-
based IoT gateway devices and conducts its detection.
Moreover, in case of overload, the Fog-IDS does a load
balancing with the Cloud-IDS node for more advanced
analyses.

Note that we implement these solutions [11]-[13], [16],

[17] in our testbed according to the above description to keep
their original novelties and functionalities.

VI. RESULT ANALYSIS

A. ANOMALY DETECTION PERFORMANCE

In our experiments, we measure four parameters: True Posi-
tive (TP) is the probability of abnormal traffic flows, which
are classified as illegal flows. True Negative (TN) shows
the probability of legitimate traffic flows that are trusted
as normal flows. False Positive (FP) reflects the probability
of normal traffic flows that are judged as abnormal flows,

9Note that, in this setup, there are no associated Edge-IDS nodes in
SDN-based IoT gateways.
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FIGURE 6. Anomaly detection performance comparison among 4 different solutions.
(a) Detection rate. (b) Precision. (c) Accuracy. (d) False alarm rate.

and False Negative (FN) reveals the probability of attack
traffic flows that are recognized as legal flows. According
to the recorded results, we next calculate four important
criteria including Detection rate, Precision, Accuracy, and
False alarm rate (FAR) to evaluate the performance of our
proposed model, as illustrated in Table 4. Detection rate is
the ratio of correctly identified attack over the total amount
of attacks happened in the networks. On the other hand,
Precision represents the ratio of correctly identified attacks
over the total amount of identification of attacks. False alarm
rate shows the ratio of incorrectly identified attack over the
total amount of incorrect identification, whereas Accuracy
means how correct the detection engine is. All indices are
measured in trials during different attacks.

As shown in Figure 6, it is clear that the DED solu-
tion achieves poor performances in terms of Detection rate,
Accuracy, Precision, and False alarm rate for six different
attack scenarios. This is understandable because Edge-IDS
nodes could not effectively detect unknown malicious traffic
patterns without any collaborations, and achieve irrelevant
results when trained detection engine was updated during
attack time. Contrary SeArch, CFD, and CFCD schemes
produce similar results of all four evaluation criteria. The pro-
posed SeArch is slightly lower regarding Detection rate since
the system needs to exchange information to become con-
verged and then achieve the most accurate decision for every
traffic pattern. Meanwhile, it shows not much different in
terms of Accuracy, Precision, and False alarm rate compared
to CFD and CFCD approaches. To sum up, the SeArch
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architecture guarantees a remarkable level of anomaly detec-
tion performance in comparison with the centralized solu-
tions, while completely outperforms the distributed approach
with non-collaborations.

B. ATTACK MITIGATION PERFORMANCE

Attack mitigation plays a crucial role in securing every net-
worked system; hence, we now analyze the results recorded
from our experiments among four comparing solutions.

1) AVERAGE DETECTION TIME OF A NEW ATTACK
PRESENCE IN THE TARGETED NETWORK

Firstly, we consider how fast a new attack is detected
in the victim network. By generating unknown attacks of
detection engines (e.g., TCP SYN Flooding and Probe/
Reconnaissance) in the IoT network residing in the physical
machine 2 (see Figure 5), we measure and calculate the aver-
age detection time of a new attack as depicted in Figure 7. It is
evident that at first the SeArch mechanism would take a bit
longer time compared to CFD and CFCD solutions to detect
a new incoming attack in the victim network, this is because
of collaboration time among IDS nodes and this leads to a
less delay of new attack detection performed by the SeArch
solution later on. Meanwhile, DED could not detect a new
attack if Edge-IDS nodes do not update its detection brain
to adapt to the current network traffic; therefore, we denote
N /A (not available) in this case. In summary, as the SeArch
architecture becomes converged, it can recognize a new attack
pattern very quickly in comparison with centralized solutions.
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2) AVERAGE ATTACK MITIGATION TIME

Furthermore, we look at how fast policy is conducted and
implemented in the data plane since a detection alert is
raised. It is clear that the DED solution only relies on source-
based detection and mitigation; thus, it takes a very little
time to implement policies if an attack is detected, as shown
in Figure 7. Similarly, the SeArch solution also bases on
source-based detection and mitigation as discussed earlier;
thus, it is just a little slower than the DED scheme because
of some unknown patterns at the beginning, and it absolutely
outperforms the CFD and CFCD approaches in more quickly
stopping attack traffic.

3) NUMBER OF DROPPED MALICIOUS PACKETS

To efficiently stop abnormal traffic in the IoT network, one
key evaluation criterion is how many malicious packets are
dropped during the attack. Therefore, we record the total
number of dropped malicious packets when IoT networks are
under several attacks, and results are illustrated in Figure 8.
Because of the high degree of detection rate, SeArch, CFD
and CFCD solutions conduct and implement policies as soon
as an attack pattern is detected leading to a high number of
dropped attack packets. In the case of DED scheme, it could
not efficiently recognize abnormal traffic compared to other
solutions, and it only dropped a low number of malicious
packets during attacks as a result.

4) NUMBER OF PACKET_IN MESSAGES TO THE SDN
CONTROL PLANE

Attack traffic not only can harm the data plane and IoT
devices but also produce harmful effects on the control plane.
In our experiments, we take the number of packet_in mes-
sages to the SDN controller into account to represent this
judgement criterion. As depicted in Figure 9, due to a low
detection rate of abnormal attacks in case of DED scheme;
hence, it causes many flow mismatching events in SDN-based
IoT gateways leading to a considerable volume of packet_in
messages are generated and sent to ONOS controller. How-
ever, three remaining mechanisms including SeArch, CFD,
and CFCD show an acceptable packet_in rate to the control
plane, and this is due to a right level of malicious traffic
detection and a fast implementation of policies in the data
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FIGURE 9. Number of packet_in messages to the SDN control plane
during attack for different approaches.

plane, which protects the SDN control plane from a packet_in
flooding attack [52] in case of high rate attacks.

5) NUMBER OF CONDUCTED POLICIES AND TRAFFIC FLOW
QUANTITY IN THE SDN-BASED loT GATEWAYS

Finally, we pay attention to the number of conducted poli-
cies (rules) in the data plane devices to judge our proposed
architecture in attack mitigation performance. As can be seen
in Figure 10, the SeArch, CFD, and CFCD methods create and
enforce policies more than twice on average in comparison
with the DFD solution. As we analyzed above, a high detec-
tion rate implies a high number of generated policies, and then
they are implemented to the SDN-based IoT gateway devices;
therefore, the recorded results are reasonable. In addition,
Figure 11 represents the total number of flow entries in
SDN-based IoT gateway devices during the attack time.
We can see that a higher number of conducted polices
results in many deleted malicious traffic flows; otherwise, the
SDN-based gateways must maintain a huge number of flow
entries in their flow-tables. In conclusion, the SeArch archi-
tecture again achieves remarkable results in protecting the
data plane from being flooded by saturation attacks.

C. SYSTEM OVERHEAD

To evaluate a new security architecture, the system over-
head criteria should also be considered; hence, we provide
analyses about how the SeArch architecture can deal with
bottleneck problems and overhead of collaboration at runtime
operation.
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1) PERFORMANCE BOTTLENECK HANDLING

As illustrated in Figure 12, we measure the average CPU
utilization'? of three IDS node levels when a massive DDoS
attack - Gy,, which is the most dangerous DDoS attack types,
is launched. The IDS nodes of the SeArch proposal always
consume the least computational resources in Edge and Fog
computing levels. Only CFCD-Cloud nodes have a simi-
lar resource consumption degree with SeArch-Cloud nodes.
Therefore, the SeArch solution saves the most computational
resources on average, when the IoT networks are under
a massive DDoS attack. Accordingly, the performance bot-
tleneck issues are minimized in the case of the SeArch archi-
tecture in comparison with existing solutions.

2) OVERHEAD OF THE SYSTEM COLLABORATION

Finally, we examine the overhead of the system collabo-
ration when the network is under different cyber attacks.
We record the amount of data generated by load balancing and
database update events in comparison with the total generated
data in the SeArch architecture. As depicted in Figure 13,
Gy, and Gpyope attacks produce just around 15.0 % of the total
handling data for the system collaboration tasks. Meanwhile,
other attacks only account for less than 8.5 % of the total
data amount. In particular, L;, and Lyp. create a moderate
level of traffic flow quantity in a local network scale resulting

10We observe the CPU usage of the core running the security application.
And, all machines are Intel Core 17-4790 (4 cores) 3.60 GHz and 16 GB
DDR3 1600 MHz.
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FIGURE 13. Data amount of load balancing and database update events
compared to the total generated data of the SeArch system during
different attacks.

in a low proportion requiring for the system collaboration
overhead. L;; and G;, attacks generate little number flow
entries in the SDN-based gateways; hence, the processing
data amount is quite small, and the overhead mostly comes
from the database update events. In summary, the overhead
of the system collaboration is unnoticeable compared to the
total data amount produced by the system operation.

D. DISCUSSION

Through comprehensive analyses above, one can see that the
SeArch solution completely outperforms the DED scheme in
terms of anomaly detection performance and most criteria of
attack mitigation by using an efficient collaboration scheme.
However, for attack mitigation time, the SeArch needs a little
longer time than the DED method to mitigate attack traffic
at the beginning due to the collaboration process, and it is
expected to achieve better performance for a long run.

The SeArch framework completely surpasses the CFD and
CFCD methods regarding attack mitigation time and dealing
with performance bottleneck problems by leveraging a good
source-based location to place detection engines. Nonethe-
less, with regard to the detection performance, i.e., detection
rate, precision and accuracy, and mitigation attack criteria
including number of dropped malicious packets, number of
packet_in messages, number of conducted polices, and num-
ber of traffic flow rules, the SeArch have similar performance
results with the CFD and CFCD methods.

From our above discussion, it proves that the proposed
SeArch architecture effectively benefits advantages from
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other existing solutions while altogether avoiding their draw-
backs in order to defense network-related cyber-attacks in
SDN-based cloud IoT networks. Besides, based on our pro-
posed functions in section IV-C, the SeArch architecture gives
the cloud administrator an efficient mechanism for resource
optimization in practical deployment.

VII. CONCLUSION

In this paper, we propose a new security architecture, SeArch,
representing a collaborative and intelligent NIDS system in
SDN-based cloud IoT networks, in which an arrangement of
three layers of IDS nodes (Edge-IDS, Fog-IDS, and Cloud-
IDS) is introduced with an effective collaboration among
nodes. This architecture leverages the use of machine learn-
ing/deep learning for intelligently detecting network-related
threats from IoT devices. A novel system resource optimiza-
tion and an optimal path selection scheme are proposed to
bring benefits to the resource management and the over-
head of communication of the proposed solution. In com-
parison with existing solutions, the SeArch solution achieves
a remarkable anomaly detection performance, i.e., around
95.5% on average of detection rate, accuracy, and precision,
which is same to results obtained by the CFD and CFCD
methods, while providing a right level of attack mitigation,
i.e., only 7.0 ms on average in attack mitigation time, and
tackling performance bottleneck problems as same as the
DED scheme does. Additionally, the SeArch architecture
presents only a minor overhead of the system collabora-
tion, i.e., from 8.5% to 15.0%. As our future development,
we plan to investigate other machine learning/deep learning
algorithms and cyber attacks with a more massive amount
of data sets and various/heterogeneous traffic types in the
proposed architecture.
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