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Obesity has become one of the major public health issues during
the last three decades. A considerable number of determinants have
been proposed for body mass index (BMI) by a large range of studies
from multiple disciplines. In addition, it is well documented that im-
pacts of these determinants are varying across demographic groups.
However little is known about the relative importance of these poten-
tial determinants and the varying impacts of all relatively important
determinants. Using the shrinkage estimation technique, we propose
a variable selection procedure for the categorical varying-coefficient
model. We present a simulation study to exam performance of our
method in different scenarios. We further apply the proposed method
to examine the impacts of a large number of potential determinants
on BMI, using data from the 2013 National Health Interview Survey
in the United States. By our method, the relevant determinants of
BMI are identified through the variable selection procedure; and their
varying impacts across demographic groups are quantified through
the post-selection estimation.

1. Introduction. As a widely used measurement for body fat, body
mass index (BMI) has been attracting significant attention from numerous
researchers in multiple disciplines. The interest in measuring body fat came
with increasing obesity in the last three decades especially in developed
countries. According to WHO estimates, the worldwide prevalence of obe-
sity is more than doubled between 1980 and 2014. Overweight is a major
risk factor for a large range of noncommunicable diseases (Fontaine et al.,
2003; WHO, 2015). It is thus crucial to identify and quantify the correla-
tions between potential predictors and BMI. Empirical studies, which try
to link particular lifestyle behaviours and other risk factors to BMI, may
inform and guide policy makers to provide efficient incentives and interven-
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tions to reduce population BMI. Numerous studies have been seen in the
last two decades and a large number of factors have been proposed as impor-
tant drivers of increasing BMI (for references see Cawley (2011)). Though
there is an impressive amount of evidence on the individual importance of
determinants, there is little guidance for policy makers about where cost-
containment efforts (Stice, Shaw and Marti, 2006) should be focused on.
The inability of interventions to produce significant prevention effects may
be due to incomplete understanding of the relative importance of predictors
from various domains (Rehkopf et al., 2011).

A lot of effort has been devoted to selecting the relatively important
predictors for BMI in the last decade. Besides the conventional, but contro-
versial, stepwise regression procedures (e.g., Von Kries et al. (2002)), some
new statistical methods have been proposed or adopted recently to select
determinants of BMI. For example, Huang et al. (2009) propose a group
bridge approach and apply it to determine risk factors on BMI of high school
students. Rehkopf et al. (2011) adopt random forest, a tree-based analysis
procedure, to rank the relative importance of risk factors for BMI among
adolescent girls.

Despite the effort on selecting relatively important predictors for BMI,
none of these studies simultaneously takes into account the fact that im-
pacts of determinants on BMI may vary across demographic groups. In fact,
these varying impacts have been well documented in the literature. For ex-
ample, Yu (2012) find that education attainment has different impacts on
BMI in different gender, age and race groups. Particularly, compared with
college graduates, less educated whites and younger black women are more
likely to be obese, and the differentials are larger for women than men,
but weak or non-existent among black men and older black women. Sim-
ilar evidences have been found by a considerable amount of studies, such
as Colditz et al. (1991), Sobal, Rauschenbach and Frongillo (1992), Lipow-
icz, Gronkiewicz and Malina (2002), Zhang and Wang (2004), and so on. In
order to capture such varying impacts, a common practice is to add interac-
tion terms between selected BMI determinants and demographic variables
into a regression model. The major shortcoming of this method is that it
requires large degrees of freedom, which restricts the number of variables
being allowed to have varying impacts on BMI. The choice of determinants
having varying impacts, normally, serves to answer a specific research ques-
tion, therefore it is arbitrary and lack of statistical support. Furthermore
the method of adding interaction terms provides no statistical evidence to
justify the importance of demographic variables, in terms of differencing the
determinants’ impacts on BMI.

imsart-aoas ver. 2014/10/16 file: aoasmainfinal.tex date: March 3, 2017



VARIABLE SELECTION FOR DETERMINANTS OF BODY MASS INDEX 3

In this paper, we provide a solution to the modelling issues existing in the
literature of BMI studies using individual health survey data, i.e., (1) how to
allow for and quantify the varying impacts of determinants on BMI; (2) how
to justify the relative importance of demographic variables in differencing
potential determinants’ impacts on BMI; and (3) how to identify the rela-
tively important determinants of BMI. Data used in this study are from 2013
National Health Interview Survey (NHIS) in the United States. There are
16, 593 observations, 48 potential determinants and 32 demographic groups
generated by 3 categorical variables (i.e., age group, gender and race).

To allow for and quantify the varying impacts of BMI determinants across
demographic groups, we adopt the categorical varying-coefficient model pro-
posed by Li, Ouyang and Racine (2013), which specifies the impacts of BMI
determinants as unknown functions of demographic variables. Different from
the conventional practice of adding interaction terms to regression models,
categorical varying-coefficient model does not consume degrees of freedom
that quickly when the number of demographic variables and/or BMI de-
terminants increases.! Moreover, as documented in Li, Ouyang and Racine
(2013), the selection of optimal bandwidths for categorical variables provides
statistical justification on the relative importance of demographic variables
in terms of differencing BMI determinants’ impacts, and is able to serve as
a filter to remove irrelevant demographic groups. For example, in our BMI
study we are able to demonstrate that all demographic variables including
age, gender and race are important in driving the BMI determinants’ im-
pacts to be different in different groups. We also find that gender and race
are stronger in differencing the determinants’ impacts on BMI than age. To
identify the relatively important determinants of BMI, we adopt the group
LASSO method proposed by Yuan and Lin (2006). In particular, we marry
the categorical varying-coefficient model and the group LASSO method to
simultaneously solve the aforementioned modelling issues in this BMI study.

The rest of the paper is organized as follows. We review the categorical
varying-coefficient model of Li, Ouyang and Racine (2013), and introduce
a variable selection procedure and its asymptotic results for the varying-
coefficient model in Section 2. In Section 3, we conduct a Monte Carlo study
to investigate the finite sample properties of the method. In Section 4, by us-
ing the 2013 NHIS data, we identify the important determinants of BMI and
quantify their varying impacts on BMI across demographic groups. Section
5 concludes the paper with some discussions. The necessary assumptions
required for the theoretical development are provided in Appendix A. Ad-

' A detailed example is provided in Appendix S3 of the supplementary file (Gao et al.,
2017) to illustrate this difference.
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ditional results and mathematical proofs are provided in the supplementary
file of this paper (Gao et al., 2017).

2. Methodology. In this study, a categorical varying-coefficient model
is adopted to capture the varying impacts of a large range of factors on
BMI across demographic groups. Varying-coefficient models have attracted
considerable attention and gained popularity in the past two decades from
both theoretical and practical aspects (e.g., Hastie and Tibshirani, 1993; Fan
and Zhang, 1999; Wang and Xia, 2009; Li and Racine, 2010; Li, Ouyang and
Racine, 2013; and so forth). As discussed in Wang and Xia (2009), including
spurious regressors can degrade the estimation efficiency substantially. In
order to address this issue, variable selection for varying-coefficient models
has received increasing attention (Wang, Li and Huang, 2008; Wang and
Xia, 2009; Ma et al., 2015), but almost all of these existing variable selection
methods for varying-coefficient models are specifically for the setting that
only continuous predictors or indexes enter the nonparametric specification
of linear parameters. In fact, it is very common in empirical applications that
categorical variables influence the regressors’ impacts on dependent variable,
such as our BMI study in this paper.

To fill in the gap of literature and solve the modelling issues raised in
BMI studies, we propose a variable selection procedure for the categorical
varying-coefficient model below.

2.1. Brief Review: A Categorical Varying-Coefficient Model. The model
of Li, Ouyang and Racine (2013) is specified as follows:

(21) E:X{ﬁo(Zl)qul, i=1,..., N,

where Z; = (Z!,Z!)" is an r-dimensional vector of discrete covariates with
a support D = D x D, Z; = (Zin,. .. Zig), Z; = (Zig41,-- - Ziyp) and
1 < 7 < r. Moreover, {Zi,l < ¢ < N} is independent of all other vari-
ables and has no impact on fy(-), which implies that Z; has no impact on
Y; at all. Therein, Z; and ZZ- are referred to as relevant and irrelevant co-
variates respectively. When 7 = r, there is no irrelevant covariate existing
in the system, i.e., Z; = Z;. To distinguish X; from Z;, they are referred
to as regressors and covariates, respectively, hereafter. Based on the above
description, the true model reduces to

(2.2) Y; = X[Bo(Z;) +¢ei, i=1,...,N,
where ¢; is a random error term; X; = (X; 1, ..., X; )" is a p-dimensional vec-
tor of regressors; Bo(z) = (Boi(2), ..., Bop(2)) is a p-dimensional unknown
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coefficient function; and no information is known in advance to distinguish
Z; and Z;. Moreover, both p and r are supposed to be fixed. This assumption
is not that controversial. For example, in our BMI application, the sample
size N is normally much larger than the number of potential predictors of
X, i.e., p, and the number of possible covariates Z is even smaller. In partic-
ular, N, p and r are 16593, 48 and 3, respectively, in our BMI application.
We refer to Section 4 for the details.

Applying model (2.2) to BMI data analysis allows us to capture the
varying impacts of X, i.e., potential predictors such as lifestyles and socio-
economic factors, on BMI (indicated by Y') across demographic groups in-
cluding gender, age group and race (denoted by Z). It is a common practice
to capture such kind of varying impacts by adding interactions between
the discrete Z variables and the X variables to a linear regression model,
while it is straightforward to show that model (2.2) nests the latter model
specification as a special case (cf., Appendix S3 of Gao et al. (2017)).

To carry on the regression, the kernel function of Aitchison and Aitken
(1976) for an unordered covariate is adopted:

) . 1, if Z’i,s = Zg3
(2:3) UZis, 25,05) = { 0y, otherwise
where the range of 6, is [0,1] for s = 1,...,7. It can be seen that 65 = 0

leads to an indicator function and #; = 1 gives a uniform weight function.
Then (2.3) allows us to construct a product kernel function of the form:

(24) L(Zi,2,0) = [[ UZis. 2. 65) = [] 657,
s=1 s=1

where © = (61,...,0,). Therefore, for any z € D, the kernel-based OLS
estimator is denoted as

N N A
B(z) = [ZX]'XJ/'L(ZW%G))} 12Xj)/jL(Zjvzve)7
J=1 J=1

where an optimal bandwidth © is obtained by minimizing the following
cross-validation criterion function:

1 Y N2
(2.5) CV(©) = = > (Y- Xip)
i=1
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6 GAO, PENG, REN AND ZHANG

and the leave-one-out OLS estimator B,i is defined as

N N
B, :[ 3 XX’L(ZJ,ZZ,@] N XYiL(Z;.2:,0).
J=1j#i J=1j#i

It is convenient to introduce some notation here. For an r-dimensional
vector z = (z1,...,2,) € D, we partition z as z = (z/,2') conformably
with Z;, where Z = (21,...,27) and Z = (2741, - .-, z+)". Correspondingly, we
partition © as © = (©',0')', where © = (A1,...,0;) and © = (67,1,...,6,)".
Due to space limitation, all assumptions needed for the lemmas and theorems
in this paper are stated in the Appendix A, and all mathematical proofs are
provided in the supplementary file (Gao et al., 2017). Given that our study
is based on Li, Ouyang and Racine (2013), we borrow two results from them
and summarize them in the following lemma:;:

LEMMA 2.1. Let © = (0y,...,6,) = argmingcp 1» CV(O).

1. Under Assumptions 1 and 2.1 é =0Op ( ) fors=1,.

A~

2. Under Assumptions 1 and 2.2, 05 = Op (W) fors=1,...,F, and

im0 Pr(fre =1, .. =1) > a for some a € (0,1).

Lemma 2.1 summaries Theorems 1 and 3 of Li, Ouyang and Racine (2013)
and provides asymptotic theory of smoothing parameters 6. In particular,
the rate of convergence of 0, depends on whether there is irrelevant covariate
or not, rather than the identification requirements stated in Assumption 2.1
or 2.2. For details, see Theorems 1 and 3 of Li, Ouyang and Racine (2013). It
is worthwhile to mention that for nonparametric/varying-coefficient models
with at least one covariate as continuous variable, the asymptotic theory of
selected smoothing parameters through cross-validation has also been well
developed (cf., Hall, Li and Racine (2007) and Li and Racine (2010)).

For a covariate z,, if we obtain és = 1, we can safely remove z; from
the model.? To some extent, this provides a variable selection procedure for
covariates. Hereafter, with slight abuse of notation, we assume that we have
removed all detected irrelevant covariates according to Lemma 2.1, i.e., those
zs with és = 1, and the remaining covariates of the ith observation is still
represented by Z; = (Z!, Z!)' as before. However, clearly there is a positive

2 Although one cannot always achieve 6, = 1 for all irrelevant covariates simultaneously,
as stated in Lemma 2.1, there is always a certain positive probability that we can recognize
a covariate as irrelevant, i.e., the probability of s = 1 for the corresponding covariate is
positive.
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probability such that no Z; exists. The purpose of this variable selection on
covariates is to reduce the total number of distinct realizations of z from our
sample {Z1,...,Zn}.

2.2. Variable Selection on X;. For model (2.2) with all detected irrele-
vant covariates removed, we propose a variable selection procedure to iden-
tify regressors of X; with nonzero coefficient, when both p and r are fixed.
Assume that there exists an unknown set U¢ C {1,...,p} satisfying that
E|Bo;i(Z:)]?> = 0 if and only if j € U, where (8y;(Z;) denotes the jth el-
ement of By(Z;). To simplify notation, we assume that in the true model,
U={1,...,p*} and U® = {p* + 1,...,p}, where the integer p* satisfies
1 < p* < p. In other words, only the first p* variables in X; have nonzero
coefficients and our goal is to identify U and U*°.

Let m denote the number of realizations of z by observing {Z1,...,Zx}.
Obviously m converges to the cardinality of D in probability with non-
degenerate probability imposed on i.i.d. Z; as N diverges to co. Since m is
finite and observable, our parameters of interest can be characterized by the
following m X p matrix B with the underlying true coefficient function By.
For the sake of presentation, denote

mB;p - (617"'>5m)/ = (b1>"'7bp)?

B = (Bj,lv"'aﬁj,p)/ forj=1,...,m,

px1
= (61,87"' 75771,8)/ for s = 17...’p’

mx1

BO = (BO(ZI), e ,ﬁo(zm)), = (bol, .. .,bop*,o, e ,0),

mxp

(2.6) bos = (Bos(27),...,Bos(27)) for s =1,...,p"%,
mx1

where 27, 7 = 1,...,m, denotes the jth realization of z € D.

Notice that the last p — p* columns of By are zero columns. By treating
entries in each column of By as a group, the selection on regressor of X; is,
essentially, to identify those groups (i.e., columns) of the matrix By with all
entries as zero. Following the spirit of Yuan and Lin (2006), we consider the
following regularized least squares estimator:

(2.7) B=(By1, - Bym) = (by1,...,b,,) = argmin Q,(B),
BeRmxp

and

m N p
(28)  Qy(B) =Y (Y- XiB) L(Zi,#,0) + > %sllbsl.

7j=11:i=1 s=1
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8 GAO, PENG, REN AND ZHANG

where © is the smoothing parameter vector obtained from Lemma 2.1; b,
(s =1,...,p) is the sth column of B as denoted in (2.6); > 2_, ~4||bs]| is the
group-wise regularizer and defined as the weighted sum of the ¢ norms of
all the column vectors in B; and v = (71, .. .,7,)’ represents the weight that
controls the group-wise regularizer.

REMARK 2.1. If we ignore the optimal bandwidth selection and use an
indicator function to replace all kernel functions, we essentially have an
adaptive version of a group LASSO model (cf., Yuan and Lin (2006)). On
the other hand, if we set all vs’s to 0, we end up with the model proposed in
Li, Ouyang and Racine (2013). Due to the features of BMI data, we combine
both methods together and try to filter out any redundant information as
much as possible.

Our first theorem is stated below.

THEOREM 2.1. Suppose Assumptions 1-3 hold.

1. Let~v* = (71,... ,'yp*)l and % — wy, where w1 s a constant satisfying
0 < wi < oco. Then HB%j —Bo(ij)H = Op (Nfl/Q) for 3 =1,...,m,
where 77 = (21,..., 2.

2. Let ﬁ Milgefpeiq,. p} Vs = w2, where wo is a sufficiently large con-
stant. Then Pr(||b, ;]| =0) = 1 for j =p* +1,...,p.

The first result of Theorem 2.1 states if the regularizer weight is not too
large, estimator (2.7) always has optimal v/ N consistency. The second result
implies that when the regularizer weight is at level /N, estimator (2.7)
can successfully identify those regressors with zero coefficient. To satisfy the
assumptions in Theorem 2.1, all elements of 4 can be simply set at level v/N.
However, with such -y, Theorem 2.1 does not imply any asymptotic normality
property of the estimator (2.7). While in Li, Ouyang and Racine (2013),
asymptotic normality property has been achieved for the oracle estimator.?
Specifically, the oracle estimator is defined as:

N -1 N
(2.9) Bora(#7) = (Z XiUX{UL(Zz‘,Zj,@)) > XwViL(Zi,#,0),

=1 =1

3Notice that the word “oracle” refers to those estimators provided in Li, Ouyang and
Racine (2013) by assuming we know the true set U. Here we completely ignore the ineffi-
ciency brought in the model by the irrelevant covariates Z;. The asymptotically efficient
estimator is obtained when we know both the set U and the irrelevant covariates. However,
this can only be done at certain probability based on Lemma 2.1.
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where j =1,...,m and X,y = (Xi1,..., Xip)"

In fact, with a more careful data-driven choice of v, we can further achieve
the asymptotic normality whenever there is no irrelevant covariate with the
help of following oracle property for our estimator (2.7).

THEOREM 2.2. Under conditions of Theorem 2.1,

3 JU _Bora(zj)H =
Op (W) for j=1,...,m, where B, ju = (Byj1,- -, By jp-)'; Bjs denotes

the sth element ofﬂA%j forg=1,....mands=1,...,p"; and v* is denoted
in Theorem 2.1.

To achieve an asymptotic normality for the estimator (2.7), the conver-
gence rate of Bw,jU to ﬁAom(Zj)
property in Theorem 2.2 implies such a result as long as ||y*|| is much smaller
than v/ N. Therefore the simple choice of v/ N level for ~ is not sufficient.

To achieve a desired asymptotic normality property for the estimator
(2.7), we propose a data-driven choice of -, which can yield an even faster

rate of convergence of an order of op (ﬁ) to the oracle estimator. From
now on, we assume that whenever the true coefficient is nonzero, that is
bos # 0 for s =1,...,p% its f3 norm is much larger than root IV level, i.e.,
|bos ]| > \F for s = 1,...,p*. This assumption is not controversial in the
current fixed dimension setting in which [|bys|| is some positive constant as
N increases.

Similarly to Wang and Leng (2007) and Wang and Xia (2009), our data-
driven regularizer weight is as follows:

~ (117 1-1 Y
(2.10) =5 (1B~ 1Bl )
where 7 is a scalar, b, is the sth column of the unregularized estimator B,
and B is obtained from (2.8) by simply choosing 7 = -+ = 7, = 0 as
follows:
(2.11) B=(B1,--,Bm) = (by,...,b,) = argmin Q(B)
BeRmxp

and

m N
(2.12) QB) =Y (Yi— X[p;)" L(Z, 2, ).

j=11i=1

Under Assumption 3.1, the first result of Theorem 2.1 and the assumption
of [|bos|| > \F for s = 1,...,p%, it is easy to verify that ||bs|| ! = op(v/N)
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10 GAO, PENG, REN AND ZHANG

for s =1,...,p* and ||bs|| = Op(1/V/N) for s = p*+1,...,p. Then the intu-
ition of choosing « as (2.10) is straightforward. The unregularized estimator
B is an V/N consistent estimator. It provides information on how likely each
column of By is a zero column. In other words, smaller ||b;|| implies that
the jth column is more likely to be zero and hence suggests a larger regu-
larizer on ||b;|. In particular, given that ||bs|| ! = op(V/N) for s = 1,..., p*,

Theorem 2.2 implies the desired rate of op (ﬁ) for BAWU to be the oracle

estimator Bm(zﬂ' ). Given the form of v in (2.10), the selection on the vector
~ reduces to the selection on the scalar 4. Note that the properties of ||b;]|~*
for j = 1,...,p imply that a large enough constant 4 would satisfy all the
conditions on . More specifically, we select the constant 4 by the following
modified BIC-type (MBIC) criterion:

In N
MBICS = In RSS; + dfs - ——.
where df5 is the number of nonzero coefficients identified by B@, and RSS5
A 2 N
is defined as RSS; = & X7, S, (Vi — X/By;) L(Zi,#9,©). The weight
parameter is obtained by

(2.13) 5 = argmin M BIC5.
Y

Recall the true set of nonzero coefficients is denoted by U = {1,...,p*}.
Let S = {j : [|bs,| > 0,1 < j < p} indicate the set of relevant vari-

ables identified by the regularized estimator B% with the weight parameter
% chosen by (2.13). Then we have

THEOREM 2.3.  Suppose that ||bos|| > ﬁ fors=1,...,p*. Under condi-

tions of Theorem 2.1, the weight parameter selected by the modified BIC-type
criterion (2.13) can:

1. Identify the true model consistently, i.e., Pr(S’% =U)—1as N — oo;
2. Achieve asymptotic normality, i.e.,

(2.14) VN(B: iy — Bou(27)) =p N(0,%(x7))

for the relevant covariate case defined in Assumption 2, and for j =
1,...,m, where

B(27) = AT QUATH),  A(F) = BIXuw Xyl Pr(27),
Q(2’) = Elei X Xiy|#] Pr(2?), Bov(27) = (Bor(#'). ..., Bop+ (7)),
and X,;u has been defined in (2.9).
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3. For irrelevant covariate case defined in Assumption 2,

(2.15) B~ () = 0n ()

for j =1,...,m, where Boy(2) = (Bo1(Z7), .. .,5op*(2j))’.

When there is no irrelevant covariate (i.e., 7 = 7 and Z; = Z;), the
asymptotic normality result of (2.14) is based on the limiting distribution of
VN (Bora(27) = Bou(27)), which is established by applying Theorem 2 of Li,
Ouyang and Racine (2013) on the oracle model. In practice, one may want
to establish a consistent estimate for X(z7) for j = 1,...,m, which can be
immediately obtained following the procedure provided in Theorem 2 of Li,
Ouyang and Racine (2013), assuming 5’% =U:

B(x)) = AT )Q() AT (),

where & = Y; — X/B: ., Q7N(2) = 2N, & X X)), L(Z;, 27, 0), and
AN ) = & X X Xjy L(Z3, 2, ©).

However, when there are irrelevant covariates (i.e., r > 7), the asymptotic
distribution of v/ N (Bore (7)) — Borr (7)) remains unknown even for the oracle
estimator and hence we only obtain v/N consistency in (2.15). In this case,
the asymptotic distribution of VN (Bora(27) — Borr (7)) can be established by
using a bootstrap method as documented in Li, Ouyang and Racine (2013).

In this section, we propose a regularized estimator for the categorical
varying-coefficient model and obtain its superior statistical properties. In
particular, the coefficients of the proposed categorical varying-coefficient
model possess a natural group structure. To take an advantage of the struc-
ture, we apply a group-wise regularizer to improve accuracy of variable selec-
tion and parameter estimation. Moreover, we apply a data-driven method,
i.e., a modified BIC-type criterion, to select the weight parameter, which fur-
ther boosts the performance and helps to achieve an asymptotic normality
property for the estimator, especially when no irrelevant covariate presents.

3. Monte Carlo Evidence. In this section, we conduct a comprehen-
sive Monte Carlo (MC) study to show the finite-sample performance of our
method and a range of competing methods. To each generated data set
{Yi, X, Z;}, firstly, we apply model (2.2) and estimate the optimal band-
widths. Following Lemma 2.1 and its discussion in Section 2.1, we remove
irrelevant covariates to reduce the number of groups based on the realiza-
tions of Z;.4 Secondly, we identify the irrelevant regressors by estimating B

“Refer to Li, Ouyang and Racine (2013) for extensive evidences on the performance of
bandwidth selection in finite sample.
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12 GAO, PENG, REN AND ZHANG

through (2.7). Lastly, we estimate the model excluding irrelevant covariates
and regressors by the unregularized estimator proposed in Li, Ouyang and
Racine (2013). The purpose of the last step is to further reduce the possible
bias.

To compare the finite-sample performance of our method with some com-
peting ones and put all the methods on equal footing, we use their adaptive
versions for all LASSO related methods. More specifically, for each data set,
we conduct (a) an adaptive version group LASSO estimation method; (b)
an adaptive version of LASSO estimation method; and (c) stepwise estima-
tion method. In particular, group LASSO method (denoted by GroupL) is
essentially a special case of (2.2), i.e., with all bandwidths equal to 0. Al-
ternatively, without taking into account of the varying impacts of X on Y
according to Z, we apply methods (b) and (c) to the linear regression model
(3.1) below (denoted by LASSO1 and SW1, respectively). Moreover, we ap-
ply methods (b) and (c) to the linear regression model (3.2) below (denoted
by LASSO2 and SW2, respectively), where the varying impacts of X on Y
are (particularly) captured by the interaction terms between X on Z. It is
a very common practice in empirical studies (e.g., Yu (2012)).

(31)  Yi=(X],Zitt,- s Ziter—1s-- s Zigts- - s Zz',rcrﬂ)lﬁé + €4,
(32) Y= (XL(Zin X)), (Zige 1 X0,

/
(Zi,rlXi)/7 Tty (Zi,rcr—lXi)/> 58 + &5,

where Z; ;. = 1 if the jt element of Z; being k with k = 1,...,¢5 — 1;
Z; jx = 0, otherwise.

Notice that when X; does not exist in a model (3.1), i.e., only categorical
variables are included, special treatment (Gertheiss and Tutz, 2010) can be
considered. We avoid using more complicated ways to introduce interactions
in model (3.2), since it is almost impossible to exhaust all possibilities.

We consider three scenarios in terms of the data generating process (DGP).
In the first two scenarios, the DGPs are based on two categorical varying-
coefficient models, i.e., without and with irrelevant covariate included in Z;,
respectively. And the DGP of the third scenario is a conventional linear
regression model. Details of the DGPs are as follows.

Scenario 1: Let p = 10, p* = 5, and Y; = (1, X])'B0o(Z;) + €i, where
XZ' = Hl + V; and ZZ == (Zi71, s ,Zw«)/. For \V/] = 1, Lo, Ty Z@j is i.i.d. over %
and takes a value from {0, 1,2} with probability {0.25,0.25, 0.5} respectively.
V; is ii.d. over i and follows N(Z;1/2 - ip—1,/Zi1 +1 - I,_1), in which
I,,—1 denotes the (p— 1)-dimensional identity matrix and i,_; represents the
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VARIABLE SELECTION FOR DETERMINANTS OF BODY MASS INDEX 13

(p — 1)-dimensional vector with all entries being one; H; is i.i.d. over ¢ and
follows N (ip—1,Ip—1); and ¢; is i.i.d. over ¢ and follows N (0, 1). Let 5o;(Z;)
denote the jth element of the coefficient function 5y(Z;) for j =1,...,p.

Two sub-scenarios are designed as without and with irrelevant covariate
included in Z;, respectively.

e Scenario 1.1: Relevant Covariate Case (i.e., 7 = r). For Vj <5,

2+ 24, if the remainder of  ;_; Z; /2 is 0
1425, otherwise

Boj(Zi) = { ;
for V5 > 5, Bp; = 0.
e Scenario 1.2: Irrelevant Covariate Case (i.e., 7 = 1). For Vj < 5,

2 +2j, if the remainder of Z; /2 is 0
1+ 25, otherwise

)

Boj(Zi) = {

for j > 5, Boj = 0.

Scenario 2: Let Y; = (1, X))’y + €i, where By = (Bot,--.,B0p), and
Boj = 5 with j < 5 and Bp; = 0 with j > 5. All the other variables are
generated in exactly the same way as for Scenario 1.

Under Scenario 1, model (2.2) is correctly specified, while models (3.1) and
(3.2) are misspecified. Therefore, we expect our estimator performs better
than the other methods. Under Scenario 2, all models (i.e., (2.2), (3.1) and
(3.2)) are correctly specified, so we expect reasonable performance from all
the estimators.

To evaluate model performance, we examine three measures. They are
(1) the percentage of missed true regressors (FNR); (2) the percentage of
falsely selected noise regressors (FPR)%; and (3) mean squared prediction
error (MSPE). We calculate MSPE, in the spirit of Chu, Li and Reimherr
(2016), as follows:

N

1 X
(3.3) MSPE = & z;(y_i —yi)%
1=
where y_; denotes the leave-one-out prediction for the ith individual (i.e.,
we implement estimation without the observation of the ith individual, and

then use the estimated parameters to predict y; for the ith individual). For

®To be clear, all binary variables and interactions terms in (3.1) and (3.2) are con-
sidered as redundant information. For example, if we identify some interaction terms as
relevant regressors by LASSO method for model (3.2), these variables are counted as
falsely selected.
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each method under each scenario, we report averaged, over 1000 replications,
FNR and FPR, and the root of averaged MSPE, denoted as RME. Note that
the estimated RME should ideally converge to the standard deviation of ¢;
(i.e., 1 in our MC design). Therefore, an estimated RME closing to 1 is an
indicator for good model performance of the corresponding method.

In this MC study, we also consider a range of different settings for (N, r).
In particular we consider N of 2000, 4000 and 8000, which are reasonable, if
not much smaller, sample sizes in empirical applications. With regard to the
size of r, we set it as 2, 3, and 4. It is noteworthy that as r = 4, we already
have 81 demographic groups based on our DGP, so it is more than enough
to demonstrate that the current setting covers our case study perfectly. For
example, in our BMI study, 3 covariates (and 32 groups) are reasonably
considered, which is supported by the BMI literature (cf., Yu (2012)).

We summarize the simulation results in Table 1. As expected, under Sce-
narios 1.1 and 1.2, our estimator (denoted as Varying-Coef) and group
LASSO estimator (denoted as GroupL) outperform all other methods in
general. As models (3.1) and (3.2) are misspecified, it is not surprising that
LASSO1, LASSO2, SW1 and SW2 do not perform well. The RME’s esti-
mated by our estimator and group LASSO method, under different settings,
are all close to 1, i.e., the true standard deviation of ¢;. However, those
estimated by LASSO and stepwise methods are far away from 1, which is
an indication for less accurate estimates. Note that the true regressor can
almost be identified by our estimator and group LASSO method, i.e., FNR’s
are zero; in contrast, FNR’s from SW1, SW2 and LASSO2 are considerably
large. FPR’s from Varying-Coef and GroupL are very low, compared to those
from all other methods. Not surprisingly, under Scenario 2, all methods per-
form relatively well except SW1 and SW2.

We now take a close look at these results from Varying-Coef and GroupL,
as both of them can address two questions raised in the introduction, i.e.,
(1) allowing for and quantifying the varying impacts, and (2) identifying
the relatively important determinants. However, only our method is able to
address the question of “how to justify the relative importance of demo-
graphic variables” by looking at the estimates of the optimal bandwidths
based on Lemma 2.1. Compared to the group LASSO method, the better
performance of the varying-coefficient setting is due to the following two rea-
sons: (1) The varying-coefficient setting uses optimal bandwidths through-
out Scenarios 1.1, 1.2 and 2, so the RMEs of Varying-Coef are closer to 1
as expected; and (2) For Scenario 1.2, the varying-coefficient setting can po-
tentially throw away more possible irrelevant variables, so that reduces the
number of groups based on the realizations of Z;. In other words, each group
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can potentially include more samples after we remove extra covariates from
the system. For the sake of space, we report the histograms of the estimates
on the bandwidth of irrelevant covariate with corresponding discussions in
the supplementary file of this paper (Gao et al., 2017).

4. An Application to BMI.

4.1. Data. Data used in this empirical study are from the 2013 National
Health Interview Survey (NHIS) in the United States. The NHIS is con-
ducted annually through face-to-face interviews. Our analysis focuses on
adults aged 18 and over. BMI is calculated based on self-reported height
and weight. We exclude underweight individuals (BMI less than 18.5) from
our analysis, and focus on such individuals with normal weight and over-
weight. There are three reasons for us to do so. First, underweight is a much
less prevalent health problem in developed countries like the U.S. In partic-
ular, in the NHIS data underweight accounts for a very small proportion,
i.e., 1.8 percent of the whole sample. Second, factors causing (or relating
to) underweight are very much different from those for overweight or obe-
sity. For example, eating disorders, such as anorexia nervosa and bulimia,
lack of nutrition, and a hypermetabolism state, are considered as causes of
underweight (Ali and Lindstrom, 2006), while unhealthy lifestyles and poor
socio-economic factors are the major determinants of overweight and obe-
sity (as discussed below in detail). However, information on these potential
determinants of underweight is not available in NHIS. Last but not least, for
common factors causing both underweight and overweight, their impacts on
BMI might have different signs. For example, mental health problems, such
as depression, can cause both BMI increase from normal weight to over-
weight level (positive impact on BMI) (Faith et al., 2011) and BMI decrease
from normal weight to underweight level (negative impact) (Carey et al.,
2014). This kind of “U” shape impact of determinants on BMI is hardly
captured by our method.® In the end we use the natural logarithm trans-
formed BMI in our analysis, because BMI scores are skewed towards higher
values in our sample (Zeng et al., 2013).

Through a systematic review of the literature on overweight and obesity,
we test impacts of 48 factors” (i.e., regressors X in the model (2.2)) on BMI,

SWe thank one referee for pointing out that quantile regression can serve as an alterna-
tive modelling method for BMI (Koenker, 2005; Zhao, Zhang and Liu, 2014). See Section
5 for a detailed discussion.

"The number of factors tested is restricted by information available in the data set.
For example, energy intake and dietary habit are important factor for BMI and obesity
(see, for example, Hill and Peters (1998)). But information about food consumption is not
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TABLE 1. Monte Carlo Simulation Results

s N
Scenario 1.1 2 2000
4000
8000
3 2000
4000
8000
4 2000
4000
8000

Scenario 1.2 2 2000
4000

8000

3 2000

4000

8000

4 2000

4000

8000

Scenario 2 2 2000
4000

8000

3 2000

4000

8000

4 2000

4000

8000

Varying-Coef

RME

0.9871
0.9942
0.9970
0.9354
0.9801
0.9909
0.8038
0.9585
0.9986

0.9929
0.9970
0.9985
0.9898
0.9954
0.9977
0.9881
0.9942
0.9972

0.9972
0.9988
0.9992
0.9953
0.9980
0.9989
0.9939
0.9971
0.9986

FNR

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

FPR

0.0357
0.0076
0.0031
0.0404
0.0118
0.0068
0.0921
0.0758
0.0660

0.0379
0.0130
0.0043
0.1423
0.0759
0.0196
0.3168
0.2656
0.1584

0.0002
0.0000
0.0000
0.0008
0.0000
0.0000
0.0012
0.0000
0.0000

GroupL
RME FNR
0.9869 0.0000
0.9941 0.0000
0.9966 0.0000
0.9321 0.0000
0.9794 0.0000
0.9907 0.0000
0.7565 0.0000
0.8932 0.0000
0.9477 0.0000

0.9868 0.0000
0.9942 0.0000
0.9972 0.0000
0.9323 0.0000
0.9797 0.0000
0.9909 0.0000
0.7860 0.0000
0.8854 0.0000
0.9356 0.0000

0.9883 0.0000
0.9945 0.0000
0.9971 0.0000
0.9320 0.0000
0.9811 0.0000
0.9913 0.0000
0.7858 0.0000
0.8932 0.0000
0.9478 0.0000

FPR

0.0381
0.0078
0.0036
0.0445
0.0149
0.0075
0.0934
0.0802
0.0690

0.1639
0.1161
0.0748
0.2575
0.2367
0.0912
0.3586
0.3034
0.2104

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

RME

4.1390
4.1424
4.1458
4.2912
4.2993
4.3031
4.3319
4.3393
4.3433

3.4909
3.4944
3.4940
3.4904
3.4897
3.4932
3.4892
3.4904
3.4941

0.9985
0.9994
0.9995
0.9980
0.9992
0.9995
0.9990
0.9995
0.9996

LASSO1
FNR
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

FPR

0.2497
0.2168
0.1878
0.2682
0.2160
0.2401
0.2264
0.1693
0.1602

0.1383
0.1068
0.0918
0.1321
0.0998
0.0828
0.1111
0.0884
0.0784

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

RME

4.2554
4.2504
4.2528
4.4940
4.4440
4.4092
4.6127
4.5909
4.5340

3.6608
3.6639
3.6637
3.6599
3.6568
3.6611
3.6572
3.6560
3.6585

2.7182
2.7172
2.7210
2.6872
2.6869
2.7014
2.6670
2.6764
2.6661

SW1
FNR
0.0833
0.0833
0.0833
0.0769
0.0769
0.0769
0.0714
0.0714
0.0714

0.0833
0.0833
0.0833
0.0769
0.0769
0.0769
0.0714
0.0714
0.0714

0.0833
0.0833
0.0833
0.0769
0.0769
0.0769
0.0714
0.0714
0.0714

FPR

0.1843
0.1888
0.1889
0.1192
0.1827
0.2376
0.0583
0.0812
0.1375

0.1074
0.1055
0.1059
0.1008
0.1025
0.0998
0.0935
0.0965
0.0966

0.0291
0.0286
0.0277
0.0303
0.0308
0.0277
0.0325
0.0301
0.0327

RME

3.4135
3.3459
3.2587
4.1787
4.1822
5.9979
4.5710
4.5658
4.2906

2706
2326
.0383
L0752
2851
.4331
2057
3948
1489

[ = = T Wy

1.0647
0.9938
0.9967
1.0855
0.9935
0.9967
0.9879
0.9939
0.9968

LASSO2
FNR
0.0158
0.0166
0.0170
0.0160
0.0164
0.0165
0.0163
0.0158
0.0162

0.0160
0.0170
0.0159
0.0150
0.0158
0.0171
0.0162
0.0163
0.0157

0.0156
0.0156
0.0165
0.0154
0.0156
0.0167
0.0156
0.0158
0.0167

FPR

0.6561
0.6567
0.6567
0.6589
0.6574
0.6577
0.6583
0.6565
0.6561

0.6348
0.6298
0.6176
0.6311
0.6266
0.6202
0.6304
0.6264
0.6171

0.0820
0.0813
0.0802
0.0814
0.0811
0.0803
0.0810
0.0811
0.0803

RME

3.4344
3.4270
3.3922
4.4234
4.3875
4.3494
4.6233
4.6252
4.6150

2.0078
2.0124
2.0115
2.0089
2.0082
2.0120
2.0064
2.0134
2.0088

2.6802
2.6815
2.6863
2.6761
2.6818
2.6826
2.6789
2.6823
2.6777

SW2
FNR
0.0143
0.0143
0.0143
0.0121
0.0121
0.0121
0.0105
0.0105
0.0105

0.0143
0.0143
0.0143
0.0121
0.0121
0.0121
0.0105
0.0105
0.0105

0.0143
0.0143
0.0143
0.0121
0.0121
0.0121
0.0105
0.0105
0.0105

FPR

0.1852
0.2081
0.2406
0.1145
0.1459
0.1729
0.0684
0.0854
0.1123

0.0984
0.0980
0.0969
0.0979
0.0979
0.0977
0.0972
0.0971
0.0977

0.0290
0.0289
0.0285
0.0297
0.0285
0.0291
0.0289
0.0286
0.0295

1. Varying-Coef represents for our variable selection method; GroupL represents for group LASSO method;
LASSOL1 represents for applying LASSO method to model (3.1); LASSOZ2 represents for applying LASSO method to model (3.2);
SW1 represents for applying stepwise method to model (3.1); SW2 represents for applying stepwise method to model (3.2).

2. Note that the estimated RME should converge to the standard deviation of ¢; (i.e., 1 in our MC design). Therefore,
an estimated RME closing to 1 is an indicator for good model performance of the corresponding method.
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including lifestyle factors, such as physical activity (Galani and Schneider,
2007), alcohol consumption (Colditz et al., 1991), smoking habits (Cawley
and Scholder, 2013) and so on; socio-economic factors (Cohen et al., 2013)
such as education, income, working arrangement, etc.; and some other fac-
tors such as marital status (Sobal, Rauschenbach and Frongillo, 1992), du-
ration of US residence (Oza-Frank and Cunningham, 2010), and depression
(Faith et al., 2011). As discussed, a range of previous studies show that
the impacts of regressors X on BMI are varying across demographic groups
(Colditz et al., 1991; Sobal, Rauschenbach and Frongillo, 1992; Zhang and
Wang, 2004). Therefore, we choose categorical variables of age, gender and
ethnicity as covariates, i.e., Z in our model. By excluding such individuals
with underweight and those having missing values of any variable involved
in the model, we end up with a data set having 16593 observations. Def-
initions and summary statistics for all variables are presented in Table 2.
Furthermore, Table 3 lists all 32 (i.e., m = 32) possible realizations of the
covariates.

4.2. Summary of the Main Findings.

4.2.1. Variable Selection. First of all, we implement (2.5) to estimate
the optimal bandwidth parameters. Results are reported in Table 4. It can
be seen that all three covariates are relevant, however, their influences on
the impacts of regressors on BMI are quite different. In particular, ethnicity
and gender have relatively stronger influences than age group because the
smoothing parameters associated with ethnicity and sex are much smaller
than that of age.

Based on these smoothing parameters, we then apply our method to
identify the relevant and irrelevant regressors to BMI. The optimal weight
parameter selected by the modified BIC-type criterion through (2.13) is
% = 3.2. Table 5 presents the result of variable selection through equation
(2.7). 24 regressors, out of 48 in total, are identified as relevant, and the
others are irrelevant to BMI.

In particular, while our estimate suggests that exercise is correlated with
BMI, the level of intensity and frequency does matter. For example, com-
pared to never doing vigorous (or strength) activity, doing such a level of
exercise less than once per week has almost no effect on BMI, while doing it
more than once per week starts to change BMI. In terms of light /moderate
activity, however, people have to do it more than three times per week to see
some effect on BMI. Results from our study may provide guidance for policy

available in NHIS.
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TABLE 2. Data Description and Summary Statistics

Variable Definition Mean St.D
Y
BM body mass index 27.96 6.01
Z
sex 0 for female and 1 for male 0.49 0.50
age 0 for age<25, 1 for 25<=age<=44, 2 for 45<=age<=64, and 3 for age>=65 1.39 0.75
race 0 for white, 1 for black, 2 For asian, 3 for all the other races 0.33 0.67
X
Lifestyle factors
vig_10 1 if never do vigorous activities, 0 otherwise (reference group) 0.45 0.50
vig-11 1 if do vigorous activities less than once per week, 0 otherwise 0.04 0.19
vig-12 1 if do vigorous activities more than one time and less than three times per week, 0 otherwise 0.28 0.45
vig-13 1 if do vigorous activities more than three times per week, 0 otherwise 0.23 0.42
mod_l0 1 if never do light/moderate activities, 0 otherwise (reference group) 0.35 0.48
mod_l1 1 if do light/moderate activities less than once per week, 0 otherwise 0.02 0.15
mod_12 1 if do light/moderate activities more than one time and less than three times per week, 0 otherwise 0.29 0.46
mod_13 1 if do light/moderate activities more than three times per week, 0 otherwise 0.33 0.47
str_10 1 if never do strength activities, O otherwise (reference group) 0.66 0.47
str_11 1 if do strength activities less than once per week, 0 otherwise 0.02 0.14
str_12 1 if do strength activities more than one time and less than three times per week, 0 otherwise 0.20 0.40
str_13 1 if do strength activities more than three times per week, 0 otherwise 0.12 0.32
smk_ed 1 if current every day smoker, 0 otherwise 0.13 0.34
smk_sd 1 if current some day smoker, 0 otherwise 0.04 0.20
smk_f 1 if former smoker, 0 otherwise 0.20 0.40
smk._n 1 if never smoke, 0 otherwise (reference group) 0.62 0.48
cigsday number of cigarettes per day 1.98 5.52
alclyr 1 if Ever hadng+ drinks in any one year, 0 otherwise 0.72 0.45
alc_life 1 if Had 124 drinks in entire life, 0 otherwise 0.13 0.33
alc_cO 1 if do not drink at all currently, O otherwise (reference group) 0.26 0.44
alc_cl 1 if current infrequent drinker, 0 otherwise 0.12 0.33
alc_c2 1 if current light drinker, 0 otherwise 0.36 0.48
alc_c3 1 if current moderate drinker, O otherwise 0.19 0.39
alc_c4 1 if current heavier drinker, 0 otherwise 0.06 0.25
cpuse_0 1 if never or almost never use computer, 0 otherwise (reference group) 0.15 0.35
cpuse_1 1 if use computer for some/most days, 0 otherwise 0.18 0.38
cpuse_2 1 if use computer on every day, 0 otherwise 0.67 0.47
ocio-economic factors
educl number of years of school completed 15.54 3.08
occupl 1 if management, business, science, and arts occupations, 0 otherwise 0.38 0.49
occup?2 1 if service occupations, 0 otherwise 0.18 0.38
occup3 1 if sales and office occupations, 0 otherwise 0.23 0.42
occup4 1 if natural resources, construction, and maintenance occupations, 0 otherwise 0.09 0.29
occupb 1 if production, transportation, and material moving occupations, 0 otherwise (reference group) 0.12 0.33
working 1 if working or with job last week, 0 otherwise 0.88 0.32
unemp 1 if looking for job last week, O otherwise 0.05 0.21
nowork 1 if not working at a job last week, O otherwise 0.05 0.22
retired 1 if retired, O otherwise (reference group) 0.02 0.15
wrkhrs hours worked last week 35.46 17.28
Inincome nature logrithm of total earnings last year 10.20 0.94
houseown 1 if own or being bought the house, 0 otherwise 0.56 0.50
notcov 1 if not have health insurance coverage, 0 otherwise 0.20 0.40
hp 1 if ever seen/talked to health professional in the last 12 months, O otherwise 0.79 0.40
hce-11 1 if amount family spent for medical care is 0, 0 otherwise (reference group) 0.13 0.33
hce_12 1 if amount family spent for medical care is less than $500 but more than 0, 0 otherwise 0.37 0.48
hce_13 1 if amount family spent for medical care is less than $1999 but more than $500, 0 otherwise 0.30 0.46
hce_14 1 if amount family spent for medical care is less than $2999 but more than $2000, 0 otherwise 0.09 0.29
hce_15 1 if amount family spent for medical care is less than $4999 but more than $3000, 0 otherwise 0.06 0.24
hce_16 1 if amount family spent for medical care is $5000 or more, 0 otherwise 0.06 0.23
Other factors
marrie 1 if married or de facto, 0 otherwise 0.51 0.50
us_born 1 if born in the US, 0 otherwise 0.81 0.39
us-ml5 1 if stay in the US for more than 15 years, 0 otherwise 0.12 0.32
us-mbl15 1 if stay in the US for more than 5 years but less than 15 years, 0 otherwise 0.06 0.24
us_15 1 if stay in the US for less than 5 years, 0 otherwise (reference group) 0.02 0.12
citizenp 1 if U.S. citizen, O otherwise 0.90 0.30
mental 1 if have depression/anxiety/emotional problem, 0 otherwise 0.01 0.12
rg-ne 1 if live in north east, 0 otherwise 0.16 0.37
rg-mw 1 if live in midwest, O otherwise 0.21 0.41
rg_sth 1 if live in south, O otherwise 0.36 0.48
rg-west 1 if live in west, 0 otherwise (reference group) 0.27 0.44
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TABLE 3. List of realizations of covariates in the data and the percentage of observations

for each group

Male Female

Age Ethnicity Perc Age Ethnicity Perc
GI <25 [25,45) [45,65) >=65 W B A O GI <25 [25,45) [45,65) >=65 W B A O
1 x x 3.9% 17 x X 4.1%
2 x x 1.0% 18 x x 0.7%
3 x X 0.3% 19 x X 0.3%
4 x x 0.1% 20 x 0.1%
5 x x 17.0% 21 x x 17.9%
6 x x 4.3% 22 x x 2.9%
7 x x 1.6% 23 x x 1.9%
8 x x 0.4% 24 x 0.4%
9 x x 14.6% 25 x x 14.4%
10 X X 3.1% 26 x X 2.3%
11 x x 1.0% 27 x x 1.1%
12 X x 0.2% 28 x 0.3%
13 X x 2.6% 29 X x 2.5%
14 X x 0.4% 30 X X 0.2%
15 X x 0.1% 31 x x 0.1%
16 X X 0.1% 32 X 0.1%

GI = Group Index

Perc = Percentage of the whole sample

M = Male, F = Female

‘W = White, B = Black, A = Asian, O = Other

TABLE 4. Estimated bandwidths for covariates

sex 0.1158 | age group

0.1979 |

ethnicity  0.0703

TABLE 5. List of relevant and irrelevant variables to BMI1

Relevant variable

Irrelevant variable

lifestyle factors

lifestyle factors

vig_12 vig 11
vig-13 mod_l1
mod_I3 mod_I2
str_12 str_l1
str_13 smk_sd
smk_ed cpuse-1
smk_f cpuse_2
cigsday socio-economic factors
alclyr occup3
alc_life occup4
alc_cl working
alc_c2 unemp
alc_c3 nowork
alc_c4 wrkhrs
socio-economic factors houseown
educl notcov
occupl hce_12
occup?2 hce-13
Inincome hce_14
hp hce_15
other factors hce_16
us_born other factors
us-m15 us_mb5115
rg-sth citizenp
married rg_ne
mental rg_mw

makers to adopt more efficient incentives to avoid overweight or obesity, i.e.,
encouraging people to do more intensive exercise or to do moderate exercise
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more frequently rather than simply promoting exercise at any intensive level
with any frequency.

Both the status of drinking and smoking and their consumption level
are relevant to BMI. No impact from computer use can be seen. For socio-
economic factors, education, income, and the two highest levels of occupa-
tional social class (OSC) (occupl and occup2, compared to lowest OSC, i.e.,
occup¥), and health professional visit in the last 12 months are identified as
relevant regressors for BMI, but the two lower levels of OSC (occup3 and
occup4, compared to occupb), working arrangement, working hours, house
ownership, health insurance coverage and medical care expenditure are ir-
relevant to BMI. Among all other factors, indicators on duration of living
in the U.S. (i.e., born in the U.S. and living in the U.S. more than 15 years,
compared to living in the U.S. less than 5 years), living in the south (com-
pared to living in the west), marital status and mental health problems are
robust factors for BMI, however living in the US more than 5 years but less
than 15 years (compared to less than 5 years), citizenship, living in either
the north east or the middle west (compared to living in the west) have no
impact on BMI.

For comparison purposes, in this BMI study we also estimate the other
five models applied in Section 3, i.e., group LASSO method, LASSO method
applied to models (3.1) and (3.2), respectively, and stepwise method applied
to models (3.1) and (3.2), respectively. X and Z in models (3.1) and (3.2)
have the same specification as what has been discussed in Section 4.1. It
is worthwhile to mention that such variables selected by our method are
exactly the same as those selected by group LASSO method. To compare
model performance, we calculate root leave-one-out mean squared prediction
errors (RME) RME = (Zf\il(g),l — 1;)?/N)'/2 for each model in Table 68,
where y_; denotes the leave-one-out prediction for the ith individual. It
can be seen that our method outperforms all the other five models with the
lowest RME. It is also interesting to see that group LASSO method performs
as the second best, followed by LASSO methods applied to model (3.2) (the
one taking account of varying impacts of X on BMI through interaction
terms between X and Z). The LASSO method applied to model (3.1) (i.e.,
no varying impact is accounted for) performs worse than its counterpart.
Performance of stepwise method is the worst amongst all options. Besides
the superior performance of our method, these results also demonstrate, to
some extent, that the varying impacts of potential factors on BMI are widely

8We also calculate RME for each of the 32 demographic groups from each method.
Because of space limitation, these results are provided in the supplementary file (Gao
et al., 2017).
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TABLE 6. Model Comparison on RME

Vary-Coeff GroupL LASSO1 SW1 LASSO2 SW2
RME 0.1562 0.1609 0.1657  0.2714  0.1646  0.2846

presented.

4.2.2. Varying Impacts. To quantify the effects of relevant regressors on
BMI, we conduct a post-selection estimation using the unregularized esti-
mation method for the varying-coefficient model only including the relevant
regressors (i.e., equation (2.9)). For the sake of space limitation, in the sup-
plementary file (Gao et al., 2017) we provide the full estimation results,
including point and confidence interval estimates for the relevant deter-
minants’ impacts on BMI across demographic groups. Generally speaking,
these estimated coeflicients confirm that the selected variables are truly rel-
evant to BMI. Because none of these regressors have their effects over all 32
groups to be constant zero, given zero is not consistently covered by the, at
least 95%, ClIs? of the 32 varying-effects of each regressor.

Taking the regressor of us_born as an example, its varying effects on BMI
cross 32 demographic groups are shown in Figure 1. The demographic groups
are indicated in the horizontal axis (for details, see Table 3). “x” represents
the point estimate from the post-selection estimation, and the vertical line
represents the 95% CI estimate. Two results emerge from this figure. First,
the post-selection results show that the estimated effects of us_born on BMI
are positive for all groups, which confirms that the regressor of us_born is
truly relevant to BMI. Second, the effects of us_born on BMI are apparently
varying across the 32 demographic groups. In particular, the effects are
higher for males (groups 1-16) than females (groups 17-32) when age and race
are the same, i.e., group 1 vs group 17, 2 vs 18, and so forth. Furthermore,
the differences are more significant for Asian groups. As shown in Figure 1,
there is almost no overlap between the two corresponding CI estimates, i.e.,
group 3 vs group 19, 7 vs 23, 11 vs 27, and 15 vs 31. Comparing across groups
having the same gender and age range, us_born normally has higher impacts

9We cannot obtain CI’s for the estimates provided in (2.7). After using the procedure
of variable selection, following Wang and Xia (2009), we are able to calculate the 95% Cls
through bootstrap for the post-selection estimates. See Theorem 2 and the discussions
under Theorem 4 of Li, Ouyang and Racine (2013) for details. We point out that these
CP’s should be interpreted with caution. Indeed, these CI estimates might not be reliable
without further justifying the variable selection bias issue. One sufficient condition for the
validity of post-selection Cls is that all true relevant regressors are successfully identified
by (2.7). We refer readers to Dezeure et al. (2015) and Bithlmann and Mandozzi (2014)
for other sufficient conditions with further theoretical justification.
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for Asian people. Taking the four youngest male groups as an example, being
born in US increases BMI by 12.78% for Asians, which is higher than the
increases of 6.11%, 11.24%, and 8.69% for white, black and all other races,
respectively.

0z 95% Cls of the Estimates of the Coefficients of us born

0.15

HHMH .

0.05 %
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

| | | | | | | |
123456 7 8 91011121314151617 181920 21 22 23 24 25 26 27 28 29 30 31 32
Group Index

Fi1G 1. The post-selection estimates for a relevant regressor of us_born

5. Conclusions with Discussions. In order to solve some challenging
modelling and statistical issues existing in the literature of BMI studies, we
propose a variable selection procedure for the categorical varying-coefficient
model. We examine the impacts of a wide range of potential factors pro-
posed in the huge literature on BMI and obesity by using data from the
2013 NHIS in the United States. Specifically, (1) we allow for and quantify
the varying impacts of determinants on BMI by using a varying-coefficient
setting; (2) we systematically justify the relative importance of demographic
variables in differencing potential determinants’ impacts on BMI by looking
at the optimal bandwidths of demographic group variables; (3) we iden-
tify the relatively important determinants of BMI by using a group LASSO
technique.

Correspondingly, we also derive some asymptotic properties for the data-
driven procedure documented in this paper. Our theoretical results show
that true model can be successfully detected with probability going to 1 un-
der certain mild conditions. In addition, the proposed estimator also achieves
asymptotic normality on the true (oracle) model, whenever there is no irrel-
evant covariate.

In this study, we have not investigated any asymptotic behaviour for
the case where both p and r diverge to infinity. If we ignore the optimal
bandwidth selection by using the indicator function to replace all kernel
functions and let p and r diverge to infinity (let alone the fact that the
number of demographic groups grows exponentially with r), the theoretical
study reduces to that investigated by Lounici et al. (2011). However, to the
best knowledge of authors, how to achieve the optimal bandwidths for model
(2.2) remains unknown for the high-dimensional case. We will pursue this
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in a future study.

In the end, as suggested by one referee, it is worthwhile to mention that
quantile regression model (Koenker, 2005) is an alternative approach if the
interest is in some specific range (e.g., low or high) of BMI observations.
In fact, a similar variable selection problem under the quantile categori-
cal varying-coefficient model is considered by Zhao, Zhang and Liu (2014).
Through using a penalized approach with both LASSO and fused LASSO
(Tibshirani et al., 2005) penalties, their method particularly advocates the
fusion of categories of determinants for each regressor, hence less empha-
sizing varying impacts among different categories, which is the focus of our
approach via a group LASSO penalty. The major difference between the
proposed quantile regression procedure in Zhao, Zhang and Liu (2014) and
our method is that the former cannot justify the relative importance of
demographic variables while our method achieves this goal by adopting a
kernel function to select optimal bandwidth in (2.5). For studies particularly
interested in specific ranges of BMI, it would be more interesting to enable
the corresponding quantile categorical varying-coefficient model to retrieve
the information of demographic variables by properly marrying a bandwidth
selection procedure and group LASSO type penalty. We leave it as a future
project.

Appendix A: Assumptions.

Assumption 1:

1. {Xi, Z;, Y;}¥, are i.i.d. In addition, max;cp ||80(2)]| < oo.

2. E[Y*X; =,Z; = %] is bounded on (z, z) € R? x D.

3. Let 02(z,2) = Ele}|X; = ,Z; = 2] and 02(2) = El0?(X;,2)|Z; = Z).
Then E[0?(X;,2)X;X[|Z; = Z] is positive definite for all z € D.

4. For s =1,...,r, the sth component of z = (z1,...,2.) takes ¢, differ-
ent values in {0, 1,...,cs—1}. Moreover, 2 < min ¢; < max ¢ < 00.
1<s<r 1<s<r

Assumption 2:

1. Relevant Covariate Case: i.e., 7 =r
Define Lijo = L(Z;, Z;,0), m(Z;) = E[X;X]|Z;] and

n5(Z;) = (BIXiXLije| Zj]) " E[X:XiB(Zi) Lij el Z;].
Then © = 0,1 are the only values of © = (6y,...,0,)" that make

S Pr(2)ns(2) — Bo('m()ns(2) — Bo(z)] = 0.

z€D
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2. Irrelevant Covariate Case: i.e., 7 <7
For Z; = (Zis+1,..-.Ziy), {Zi;1 < i < N} is independent of all
other variables and has no impact on Sy(-). Define Li; e, 18(Z; ) =
(EIXiXILy, 0l %)) ELX:XIB(Z) L,y 617;) and m(Z:) — BIX:X!|Z).
Then the only values of © = (61,...,07)" that make

3" Pr(2)[75(2) — Bo(2)]'m(2)75(2) — Bo(2)] =

zeD

are © = 05x1. 0 € [0,1] for s=7+1,...,7r
Assumption 3:

1. For a random variable Z; € D and (y(Z;) = (BOI(Zi),...,ﬁop(Z ),
suppose there exists an integer 0 < p* < p such that 0 < E|B8y;(Z;)|? <
oo for j =1,...,p* and E|Bo;(Z;)]? =0for j =p*+1,...,p

2. For any z € D, 0< a < Pmin < Pmax < @y < 00, where ppi, and
Pmax denote the minimum and maximum eigenvalues of E[X;X|Z]

respectively, and a1, as are two universal positive constants.

Assumptions 1 and 2 are identical to those in Li, Ouyang and Racine (2013).
Note that since the support D is finite, we automatically have Pr(z) =
Pr(Z; = z) > as > 0 with some universal constant ag for any z € D.
Assumption 3.2 ensures all eigenvalues of F[X;X/|z] are bounded uniformly.

SUPPLEMENTARY MATERIAL

Supplement to “Variable Selection for a Categorical Varying-

Coefficient Model with Identifications for Determinants of Body
Mass Index”
(doi: COMPLETED BY THE TYPESETTER). In this supplementary file,
we provide a detailed presentation and discussion on (1) mathematical proofs
of the main results, (2) estimation procedure of our method, (3) extra sim-
ulation results, and (4) other estimation results from the BMI study.
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