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Abstract

We consider the bipartite version of the degree/diameter problem,
namely, given natural numbers d > 2 and D > 2, find the maxi-
mum number N°(d, D) of vertices in a bipartite graph of maximum
degree d and diameter D. In this context, the bipartite Moore bound
Mb(d, D) represents a general upper bound for N%(d, D). Bipartite
graphs of order M®(d, D) are very rare, and determining N°(d, D) still

remains an open problem for most (d, D) pairs.
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This paper is a follow-up to our earlier paper M], where a study on bi-
partite (d, D, —4)-graphs (that is, bipartite graphs of order M®(d, D) —
4) was carried out. Here we first present some structural proper-
ties of bipartite (d,3,—4)-graphs, and later prove there are no bi-
partite (7,3, —4)-graphs. This result implies that the known bipartite
(7,3, —6)-graph is optimal, and therefore N?(7,3) = 80. Our approach
also bears a proof of the uniqueness of the known bipartite (5,3, —4)-
graph, and the non-existence of bipartite (6,3, —4)-graphs.

In addition, we discover three new largest known bipartite (and also
vertex-transitive) graphs of degree 11, diameter 3 and order 190, result

which improves by 4 vertices the previous lower bound for N?(11, 3).
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1 Introduction
Consider the degree/diameter problem for bipartite graphs, stated as follows:

Given natural numbers d > 2 and D > 2, find the largest possible
number N°(d, D) of vertices in a bipartite graph of maximum degree d

and diameter D.

It is well known that an upper bound for N°(d, D) is given by the bipartite
Moore bound M*(d, D), defined below:

M(d,D)=2(14+(d—1)+ -+ (d-1)"").

Bipartite graphs of degree d, diameter D and order M®(d, D) are called bi-
partite Moore graphs. Bipartite Moore graphs are very scarce; when d > 3
and D > 3 they may only exist for D = 3,4 or 6 (see E,]) It has also turned
out to be very difficult to determine N°(d, D) even for particular instances;

in fact, with the exception of N°(3,5) = M®(3,5) — 6 settled in B], the other
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known values of N%(d, D) are those for which a bipartite Moore graph is
known to exist.

Research in this area falls then into two main directions. On one hand, the
efforts to improve the upper bounds for N°(d, D) by studying the existence
or otherwise of bipartite graphs of maximum degree d, diameter D and order
M®(d, D) — € for small € > 0 (that is, bipartite (d, D, —¢)-graphs, where the
parameter € is called the defect). On the other hand, the studies to improve
the lower bounds for N°(d, D) by constructing ever larger bipartite graphs
with given maximum degree and diameter. In spite of these efforts and the
wide range of techniques and approaches used to tackle these problems (see

]), in most cases there is still a significant gap between the current lower
and upper bound for N°(d, D).

In this paper we restrict ourselves to the case of bipartite graphs of di-
ameter 3, and present some modest contributions in both directions. When
D = 3 there is a bipartite Moore graph whenever d — 1 is a prime power
(namely, the incidence graphs of projective planes); however, there is no
Moore bipartite graph of diameter 3 for d = 7 (B]) ord =11 (da]) The
existence of Moore bipartite graphs of diameter 3 for other degrees remains
an open problem. In [1] the authors proved that bipartite (d, 3, —2)-graphs
may only exist for certain values of d; in particular, they do not exist for
d="1.

The results and ideas exposed here are, in a great extent, a continuation
of the precursory work initiated in [4]. We provide structural properties
for bipartite (d, 3, —4)-graphs and, most important, prove the non-existence
of bipartite (7,3, —4)-graphs. Such outcome implies that the only known
bipartite (7,3, —6)-graph — found by Paul Hafner and independently by Eyal
Loz (|7]) — is optimal, and therefore N*(7,3) = 80. This is just the second
value settled for N°(d, D) other than a bipartite Moore bound. Our approach
can also be used to show the uniqueness of the known bipartite (5,3, —4)-

graph, as well as the non-existence of bipartite (6,3, —4)-graphs.



Finally, we also find three largest known bipartite (and vertex-transitive)
graphs of degree 11 and diameter 3. This settles 190 < N°(11, 3), which im-
proves by 4 vertices the previous lower bound for N°(11, 3). Adjacency lists of
these graphs are available at http://guillermo.com.au/wiki/List_of_Publications
under the name of this paper.
We conclude this introduction by depicting all the known bipartite (d, 3, —4)
graphs. Figure [l shows all the bipartite (3,3, —4)-graphs, Figure [ all the
bipartite (3,3, —4)-graphs, and Figure [ the — after this paper unique — bi-
partite (5,3, —4)-graph.

WG

Figure 1: All the bipartite (3,3, —4)-graphs.

2 Notation and Terminology

Our notation and terminology follows from M], which is standard and con-
sistent with that used in [2].

All graphs considered are simple. The vertex set of a graph I' is denoted
by V(I'), and its edge set by E(I'). For an edge e = {x,y} we write z ~ y.
The set of edges in a graph I' joining a vertex z in X C V(I") to a vertex y
in Y C V(I') is denoted by E(X,Y). A vertex of degree at least 3 is called
a branch vertex of T

A cycle of length k is called a k-cycle. In a bipartite (d, D, —4)-graph we
call a cycle of length at most 2D — 2 a short cycle. If two short cycles C*

and C? are non-disjoint we say that C' and C? are neighbors.
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Figure 3: The unique bipartite (5,3, —4)-graph.
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For a vertex x lying on a short cycle C, we denote by rep®(z) the vertex
2" in C such that d(z,2’) = D — 1, where d(z,2") denotes the distance
between x and x’. In this case, we say 2’ is a repeat of x in C and vice
versa, or simply that x and a2’ are repeats in C. A closed set of repeats in
a bipartite (d, D, —4)-graph I' is a subset of V(I') which is closed under the
repeat relation. A closed set of repeats is minimal if it does not have a proper
closed subset of repeats.

Finally, we introduce some special graphs. The union of three indepen-
dent paths of length ¢t with common endvertices is denoted by ©;. For an
integer m > 5, ®,,, denotes the bipartite graph with vertex set V = {z;|0 <
i <m—1}U{y|0 <1 <m—1} and edge set E = {x; ~ y;, 7 ~ Yiy1,T; ~
yi—1/0 <@ < m — 1}. Note that &, is vertex-transitive. Throughout this

paper we do addition modulo m on the vertex subscripts of a ®,,.

3 Preliminaries
We begin with the regularity condition for bipartite graphs with small defect.

Proposition 3.1 (ﬂ]) Fore <14 (d—1)+(d—1)*+ ...+ (d—1)"2,
d >3 and D > 3, a bipartite (d, D, —e)-graph is regular.

Proposition 3.2 (H]) Fore<2((d—=1)+(d—1*+... 4+ (d—1)P"?),d >
3 and odd D > 3, a bipartite (d, D, —e)-graph is regular.

In particular, we will implicitly use the fact that a bipartite (d,3,—4)-
graph with d > 4 must be regular, and therefore its partite sets must have
the same cardinality. Also note that, since bipartite (d, 3, —¢) graphs with
d > 4 and € = 3,5 are not regular, the above propositions imply their non-
existence.

From the paper M] we borrow the following results:

Proposition 3.3 (M]) The girth of a regular bipartite (d, D, —4)-graph T
with d > 3 and D > 3 is 2D — 2. Furthermore, any vertex x of I' lies on
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the short cycles specified below and no other short cycle, and we have the
following cases:

x is contained in exactly three (2D — 2)-cycles. Then
(1) x is a branch vertex of one ©p_q, or
x is contained in two (2D — 2)-cycles. Then

(17) x lies on exactly two (2D — 2)-cycles, whose intersection is a {-path
with £ € {0,...,D — 1}.

As in M], often our arguments revolve around the identification of the
elements in the set S, of short cycles containing a given vertex x; we call this
process saturating the vertex x. A vertex z is called saturated if the elements

in S, have been completely identified.

Lemma 3.1 (M], Saturating Lemma) Let C be a (2D — 2)-cycle in a bi-
partite (d, D, —4)-graph T with d > 4 and D > 3, and o, two vertices in
C such that o/ = rep®(a). Let v be a neighbor of a not contained in C, and
[1s fho, - - -5 fhg—2 the meighbors of o' not contained in C. Suppose there is no
short cycle in I' containing the edge o ~ v and intersecting C at a path of
length greater than D — 3.

Then, in T there exist a vertexr u € {pq, 2, ..., pa—2} and a short cycle
C! such that v and p are repeats in C*, and CNC = ().

Lemma 3.2 (M], Repeat Cycle Lemma) Let C be a short cycle in a bi-
partite (d, D, —4)-graph T with d > 4 and D > 3, {C*,C?,...,C*} the set
of neighbors of C, and I; = C*NC for 1 < i < k. Suppose at least one
I;, for j € {1,...,k}, is a path of length smaller than D — 2. Then there
is an additional short cycle C' in T intersecting C' at I = repC (I;), where
1 <1<k,

Proposition 3.4 (M]) The set S(I") of short cycles in a bipartite (d, D, —4)-
graph T with d > 3 and D > 3 can be partitioned into sets Sp_1(I'), Sp_o(T")
and Sp_3(T"), where



Sp_1(T") is the set of short cycles in I whose intersections with neighbor

cycles are (D — 1)-paths,

Sp_o(T") is the set of short cycles in I whose intersections with neighbor

cycles are (D — 2)-paths, and

Sp_3(T") is the set of short cycles in I whose intersections with neighbor

cycles are paths of length at most D — 3.

Proposition 3.5 (M]) The set V(') of vertices in a bipartite (d, D,—4)-
graph T with d > 4 and D > 3 can be partitioned into sets Vp_1(I"), Vp_o(T)
and Vp_3(I"), where

Vb-1(I") is the set of vertices contained in cycles of Sp_1(I'),
Vp_o(T') is the set of vertices contained in cycles of Sp_o(T),

Vp_3(I") is the set of vertices contained in cycles of Sp_3(I'),

and Sp_1(I'), Sp—2(I'), Sp_3(') are defined as in Proposition[3.4)

3.1 On bipartite graphs of diameter 3 and defect 4

In this section we present additional structural properties for bipartite graphs
of diameter 3 and defect 4.

Let I" be a bipartite (d, 3, —4)-graphs with d > 4. We set I'; = UCGSZ,(F) C
for i = 0,1,2. Note that 'y is the union of all graphs in I" isomorphic to ©,;
these graphs are pairwise disjoint, so they are the connected components of
['s. In addition, I'y is the union of all graphs in I' isomorphic to some ®,,, for
m > b; similarly, these ®,, are the connected components of I';.

If G is a connected component in I'y UT'; UTy then V(G) is a closed set
of repeats. The branch vertices of a ©, C 'y constitute a minimal closed set
of repeats, as well as its non-branch vertices. In the case of a ®,, C I';, the
vertices z;’s form a minimal closed set of repeats, the same as the vertices y;’s.

According to the Repeat Cycle Lemma, every minimal closed set of repeats



in [y contains exactly 4 vertices. Observe that all vertices in a minimal closed
set of repeats in I" belong to the same partite set.
Some further observations about I follow from the systematic application

of the Saturating Lemma:

Observation 3.1 Let I' be a bipartite (d,3, —4)-graph with d > 4. There
1s no edge in I' joining a branch vertex in I'y to a non-branch vertex of a

different connected component of I's.

Proof.

Let G, G’ be two connected components in I'g such that a branch vertex
x in G’ is adjacent to a non-branch vertex yo in G. Let 2}, zo, x1, y1,y2 be
as in Figure [ (a). We apply the Saturating Lemma (by mapping the cycle
ZoYoT1Y12o to C, yo to o, y; to o’ and z{, to v), and obtain that y; is adjacent
to . Similarly, ys is also adjacent to x| (see Figure [ (b)), but then there

is a fourth short cycle zoyi2y2x¢ in I' containing x, a contradiction. a

Figure 4: Auxiliary figure for Observation B.1]

Observation 3.2 Let I" be a bipartite (d, 3, —4)-graph with d > 4. There is

no edge in I' joining a branch vertex in I'y to a vertex in I'y.

Proof.
Let G, G’ be two connected components of I'; and I'y respectively, such

that a branch vertex z(, in G’ is adjacent to a vertex y; in G. Let 2, yit1, Yi—1, Ti, Tig1, Tio1
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be as in Figure [ (a). We apply the Saturating Lemma (by mapping cycle
YiTi1Yi—1x:y; to C, y; to a, y;—1 to o and z to 7), and obtain that y;
is adjacent to z/. Similarly, y;,1 is also adjacent to x| (see Figure [l (b)).
But then, there is a third short cycle y;112;y;—12y;+1 in I' containing x;, a

contradiction. O

Ti-1

(a) (0)

Figure 5: Auxiliary figure for Observation

Observation 3.3 Let I' be a bipartite (d,3, —4)-graph with d > 4. There is

no edge in I' joining a non-branch vertex in I'y to a vertex in T'y.

Proof.

Let G’ be a connected component in I's with a non-branch vertex y;
adjacent to a vertex xg in I'g. Let {zo, x1, 22, 23} be the minimal closed set
of repeats containing xy (x2 not being a repeat of (), and let the vertices
xy, 21, Yy, ys be as in Figure[dl (a). We first apply the Saturating Lemma (by
mapping the cycle xyyyz)y)x; to C, yj to «, y; to o and zy to v), and obtain
that ¢} is adjacent to a repeat of xy (say x1). Similarly, mapping the cycle
YTy s to C, yy to a, yh to o and z; to 7, we obtain that v} is adjacent
to x5 (as it cannot be adjacent to zg). Analogously, y; is adjacent to x3
(see Figure[d (b)), but then there is a third short cycle in I' containing zg, a

contradiction. O
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Figure 6: Auxiliary figure for Observation

Observation 3.4 Let I" be a bipartite (d, 3, —4)-graph with d > 4, and G =
®,,, a connected component in I'y. Given z; € G, if v; ~ y; € E(I') for some

J then xiyy, ~ yjr, € E(I') for every k.

Proof.

This clearly holds when j € {i,i+ 1,7 — 1}; see the description of ®,,.

Suppose j & {i,i+ 1,7 — 1}. Since all the vertices in G are saturated,
we have |i — j| > 4. According to the Saturating Lemma (by mapping the
cycle @y xi1yiix; to C, z; to o, x4y to @ and y; to v) we have either
Tiy1 ~ Y1 € E(I') or 2,41 ~ yj—1 € E(I'). But in case z;41 ~ y;—1 € E(I'),
it is easy to see that, by repeatedly applying the Saturating Lemma (to
the cycles i pYitpTitpr1Yitp1Titp for p = 1,2,...) we obtain there is an
edge =, ~ ys in ' such that 2 < |r — s| < 3, which is not possible. Thus
Tiy1 ~ Yj+1 € E(I') and, by induction, x; ~ y;4x € E(I') for every k. O

Observation 3.5 Let ' be a bipartite (d, 3, —4)-graph with d > 3, and G, G’
two connected components in I'y of order 2m and 2m’ respectively (m < m’).

Suppose there is at least one edge in I' joining a vertex in G to a vertex in
G'. Then m' = km, with 1 <k <d - 3.
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Proof.

Denote the vertices of G = ®,, by xo,...,Zm_1,%0,---,Ym_1, and the
vertices of G’ = ®,,, by z(,.... 2, 1, Y, ..., Y- With an appropriate
labelling we may assume there is an edge zp ~ y(, in I and, by the Saturating
Lemma (on the cycle xoyox1y170), also an edge 1 ~ y] in I

Suppose m' = km +r, with 1 <r < m — 1 and k > 1. Then, by re-
peatedly applying the Saturating Lemma on the cycles z;y;x; 1y 12; with
i=1,...,m—1, we find the edges x; ~ y} for i = 2,...,m are all present
in I In particular, y/, is a neighbor of zy and, inductively, the vertices
Yoms -+ s Y Ynm—rs Yom—rs - - - also are. But similarly, x,,_, has also neigh-
bors y/, . and 5, .; this way, we obtain there is in I' a third short cycle
Y Ty Y _-To containing xg, a contradiction.

Since a vertex in G has at least 3 neighbors in G, it follows that k£ < d—3.
O

Observation 3.6 Let ' be a bipartite (7,3, —4)-graph. If Ty # 0 then |Ty| =
8k, with k > 3.

Proof.

If ¢t is the number of short cycles in I'y then, by a simple counting argu-
ment, 'y has 2t vertices, half of them in each partite set. Recall that V' (I'y)
is a closed set of repeats. Since a minimal closed set of repeats in I'y contains
exactly 4 vertices belonging to the same partite set, we have t = 4k and then
|To| = 8k.

Also, the Repeat Cycle Lemma ensures that the graph G depicted in
Figure [ is a subgraph of I'y. Since any vertex in I'y must have at least 4
neighbors in I'g, we have |I'g| > 16 and k& > 3. O

Observation 3.7 Let I' be a bipartite (d, 3, —4)-graph with d > 4, G a con-
nected component in I's, and G' a connected component in I'y of order 2m/.

Suppose there is in I at least one edge joining a vertex in G to a vertex in
G'. Thenm' =3k with2 <k <d— 2.
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Figure 7: Auxiliary figure for Observation

Proof.

Let xg,x1,x5 be the non-branch vertices of G = ©O,, and denote by
Ty ooy Thr 13 Yoy - s Yr—q the vertices of G' = @,

By Observation any edge between 'y and I'y involves only non-branch
vertices of I'y. We may assume there are edges zo ~ y, and x; ~ y in I
Suppose m’ = 3k +r, with 1 < r < 2 and k& > 1. Then, by repeatedly
applying the Saturating Lemma on the three short cycles of G, we obtain
that x¢ has neighbors y{, 5, Vg, - - - s Ysk, Ys—r» Yo—rs - - - But similarly, z3_, has
also neighbors y4_ . and y§_,; hence, we obtain there is in I' a third short
cycle xoyh_, 3 ,ys_,xo containing xo, a contradiction.

Since each x; has 2 neighbors in G and m’ > 5, it follows that 2 < k <
d—2. O

Observation 3.8 Let I' be a bipartite (d,3, —4)-graph with d > 4 and G’
a connected component in I'y of order 2m’. Suppose there is in ' an edge

joining a vertex in L'y to a vertex in G'. Then m' = 4k with 2 < k < d — 4.

Proof.

Let zy € V(I'y) and let {zy, x1, x2, 23} be the minimal closed set of repeats
containing xy (z2 not being a repeat of zy). Denote by x(, ..., 20, 1, Y4 Yhy 1
the vertices of G' = ®,,,,. We may assume there are edges xy ~ y, and x; ~ y;

in I'. Suppose m' = 4k +r, with 1 <r < 3 and k£ > 1. Then, by repeatedly
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applying the Saturating Lemma on the cycles @iy}, y; @} (1 = 1,2,...)

of G, we obtain that xy has neighbors y{, v, Y&, - - - Y Yir Ys_ps - - - But
analogously, x4, has also neighbors vy, and y§_,; hence, we obtain there is
in I' a third short cycle zoy)_,z4_,y5_,x¢ containing xy, a contradiction.
Since xy has at least 4 neighbors in Iy and m’ > 5, it follows that 2 <
k<d-—4. O
The statements in Observations B.1], 3.3] B.5] B.7 and are better sum-

marized in the following, more compact assertion.

Proposition 3.6 Let T be a bipartite (d, 3, —4)-graph with d > 4, and M, M’
two minimal closed set of repeats in T such that E(M, M) # (). Then |M|
divides |M'| or |M'| divides |M|, except when M U M’ is the set of five the

vertices in a Oy .

4 Non-existence of bipartite (7,3, —4)-graphs

In this section we prove that there are no bipartite (7,3, —4)-graphs, and
consequently that N°(7,3) = 80.

Proposition 4.1 Let ' be a bipartite (7,3, —4)-graph. Then I'y cannot be a
spanning subgraph of T'.

Proof.
Since the connected components of I'y are graphs isomorphic to ©,, we
have that 5 must divide |T's| = 82, a contradiction. O

Proposition 4.2 Let I" be a bipartite (7,3, —4)-graph. Then I'y cannot be a
spanning subgraph of T'.

Proof.

This is a computer-assisted proof.

14



Suppose that I'; contains exactly one connected component G, isomor-
phic to ®4;. Denote by xq, ..., 240, v0,--.,ys0 the vertices of G. By virtue
of Observation 3.4 if the vertex z¢ has neighbors yo, Y1, Y—1, Vi, Yiss Yiss Yis
in G then xj has neighbors Y, Y1, Yk—1, Yktirs Yk+iss Yktiss Yk+ig fOT every
k. Exhaustive computer search through the feasible choices for the vertices
Yiys Vi, Yis, Yiy yields no graph of diameter 3, and so there is more than one
conected component in I';.

Now suppose then that I'; has exactly n connected components G1, G, . .., G,
isomorphic to ®,,,,P,,, ..., P, , respectively. Note that 5 < m; < 36,
2<n<8and m;+...+m, =41. We define the graph H(Gy,Gy,...,G,)
as follows: every G contracts to a vertex v; in H, and there is an edge v; —v;
in H if and only if — according to Observation — there could be an edge
from G; to G; in I' (that is, if m; divides m; or vice versa). Clearly, if I" has
diameter 3 then H has diameter at most 2. However, we could verify that
none of the feasible values for n and the m;’s yields a graph H of diameter
at most 2.

Consequently, V (I';) cannot span I'. O

Proposition 4.3 Let I" be a bipartite (7,3, —4)-graph. Then Iy cannot be a
spanning subgraph of T'.

Proof.
From Observation B.6l we have 82 = |I'y| = 8k, a contradiction. O

Proposition 4.4 Let I" be a bipartite (7,3, —4)-graph. Then I's Uy cannot
be a spanning subgraph of T'.

Proof.

Suppose 'y # () and I’y # (). On one hand, from a branch vertex in I'y
it is possible to reach in exactly two steps at most 15 vertices of I'; (see
Observations BJ] and B.2)). Therefore, [I';] < 30. On the other hand, from
a vertex in I'y it is possible to reach in exactly two steps at most 8 branch

vertices of I'y, and |I'y| < 40. This means |I'| < 70, a contradiction. O
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Proposition 4.5 Let I" be a bipartite (7,3, —4)-graph. Then I's UTy cannot
be a spanning subgraph of T'.

Proof.

Suppose I'y # () and I'y # (). From a non-branch vertex in I'y it is possible
to reach in two steps at most 8 vertices of I'y (see Observations B.1] and B.3]).
Therefore, |I'g| < 16, which contradicts Observation B.6l O

Proposition 4.6 Let I" be a bipartite (7,3, —4)-graph. Then I'y UTy cannot
be a spanning subgraph of T'.

Proof.

Let G = ®,, be a connected component in I'y. We prove that m is even.
If G has a neighbor in T’y then, by Observation B.8 we have m € {8,12}.
If instead G' has no neighbor in I'y and m is odd, then there must be a
connected component G’ in I'y isomorphic to some ®,,, such that G has a
neighbor in G" and G’ has a neighbor in ['y. But again we have m’ € {8, 12}
and, according to Observation B.5, m > 5 must be an odd divisor of m/,
which is not possible.

From the above and Observation it follows that |I'| = 0 (mod 4),
which contradicts |I'| = 82. O

Proposition 4.7 Let I be a bipartite (7,3, —4)-graph. Then I's UT; U T

cannot be a spanning subgraph of T".

Proof.

Let I'; # () for i = 0,1, 2.
Claim 1. Every connected component of ['; has a neighbor in T'y.
Proof of Claim 1.

Suppose there is a connected component G of I'; with no neighbors in
Iy, and take a vertex x in G. According to Observation [3.2] = must have at
least one non-branch neighbor in I'y for it can reach in 2 steps the branch

vertices of I'y belonging to its partite set. But then from x it is possible to
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Figure 8: Auxiliary figure for Claiml

reach at most 9 vertices of 'y in exactly 2 steps (see Figure [§). This implies
|T'g| < 18, which contradicts Observation O
Claim 2. Every connected component of I'; has a neighbor in I's.

Proof of Claim 2.

Suppose there is a connected component G of I'y with no neighbors in I's.
First note that I'y; must have the same number of vertices in each partite set
of I', so [I's| > 10. From a vertex x in G we must reach in exactly two steps
at least three non-branch vertices in a connected component of I's, and other
two branch vertices in a different connected component of I'y. However, it is

only possible to reach from z at most 4 of such 5 vertices (see Figure[@). O

Figure 9: Auxiliary figure for Claim 2
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From Claim 1 and Observation we can deduce that if G = ®,, is
a connected component of I'y then m € {8,12}. But from Claim 2 and
Observation B.7 it follows that m = 0 (mod 3), and therefore m = 12. In
other words, every connected component of I'; has 24 vertices.

In addition, since |I'g| > 24 and |I'y]| > 24 we have that |I'y| < 34. But 5
(and hence 10) must divide |['5|, and |T'g| = |I'1] =0 (mod 8); consequently,
|Ty| = 10.

To complete the proof we only need to consider two possibilities left. If
IT'y| = 10, |I'y| = 48 and |I'y| = 24 then from a branch vertex z in I'y it is
possible to reach in exactly two steps at most 23 vertices of I'; in the same
partite set as x, a contradiction (see Figure [0l (a)). Similarly, if |T's| = 10,
II'y| = 24 and |I'g| = 48 then from a non-branch vertex y in I'y it is possible

to reach in exactly two steps at most 23 vertices of 'y in the same partite

set as ¥, a contradiction as well (see Figure 10 (b)). O

Figure 10: Auxiliary figure for Proposition [.7]
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From Proposition L7 it immediately follows the main result of this sec-

tion.
Theorem 4.1 There is no bipartite (7,3, —4)-graph.

Theorem [ Tlsettles the optimality of the known bipartite (7, 3, —6)-graph,
and therefore N°(7, 3) = 80.

5 Three largest known bipartite graphs of di-

ameter 3

In this section we present three new largest known bipartite graphs of degree
11, diameter 3 and order 190. This improves by 4 vertices the former lower
bound for N°(11, 3).

To obtain such graphs we were inspired by Observation 3.4l which tells
us about the overall structure of a —hypothetical — bipartite (d, 3, —4)-graph
I' in the particular case of I'; being a spanning subgraph of I' with exactly

one connected component ®,,.

Corollary 5.1 Let I' be a bipartite (d, 3, —4)-graph such that 'y has ezactly
one connected component G = ®g2_yq 1 and V(G) spans I'. If the vertex x

in G has neighbors yo, Y1, Y—1, Yir» Yigs - - - Yiy_s 1 G then xyp has neighbors

Yks Yk+15 Yke—15 Yk+iy > Yk+ios - - -5 Yk+ig_s fOT every k.

When d = 4 or d = 5 we have as examples the existing graphs depicted
in Figures @ (b) and Bl It is then natural to ask if similar graphs exist for

greater values of d.

Problem 1 Is there a a bipartite (d,3,—4)-graph with d > 5 such that T';

has exactly one connected component G = ®g2_y4 1 and V(G) spans I'?

By computer search we obtained that for small degrees (d = 6,7,8,9)
such graphs do not exist. This is a strong indication that for all d > 6 the
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answer to the above problem is no. Thus, we shift our interest to a more
general problem.

We first introduce an extension to the construction of a ®,,. Let d > 4
and ay,as,...,a4-3 be such that 2 < a; < m — 2 and a; # a, when
j # k. Then ®,,(ay,as,...,aq_3) denotes the graph with vertex set V' =
{zo, 21, ., Tm-1} U {Y0,y1,.-.,Ym_1} and edge set £ = {z; ~ y;,z; ~
Yirls Ti ™~ Yim1, Ti ~ Yira, |0 <3 <m — 1,1 < j <d—3}. As before, we do
addition modulo m on the vertex subscripts. Note that ®,,(aq,as, ..., a4_3)

is a bipartite vertex-transitive graph.

Problem 2 Given a natural number d > 6, find the largest natural number
m(d) for which there exist natural numbers ay,as, ... ,aq-3 (2 < a; <m—2)

such that the graph ®,,q) (a1, as, ..., aq—3) has diameter 3.

If we take a vertex xg of a ®,,q)(ay,as,...,aq-3) and assume that x
has neighbors yo, ¥1,Y-1,Yass Yas, - - - s Ya,_, then zo can reach in at exactly
two steps the — not necessarily distinct — vertices xg, 1, -1, T2, T_2, T4, T_q,,
Ta41, Toa;—15 Ta;—15 T—a;+1 AN T, 4, and no other vertex. Since @, (a1, ag,
is vertex-transitive, Problem 2] amounts to the following congruence-related

problem:

Problem 3 Given a natural number d > 6, find the largest natural number
m(d) for which there exist natural numbers ai, as, .. .,aq_3 such that the col-
lection 0,1,—-1,2, -2, a;, —a;,a; + 1, —a; — 1,0, — 1, —a; + 1, a; — a; of (not

necessarily distinct) numbers contains a full set of residues modulo m(d).

It is not difficult to verify that m(d) < d?> —d — 1 = (Mb(d, 3) — 4)/2.

With the aid of computer search we found the non-isomorphic bipartite

(11,3, —32)-graphs ®os (4, 7, 16, 27, 38, 52, 62, 81), ®gs (4, 16, 30, 43, 51, 62, 71, 89)

and $g5(11,15,21,28,37,40,45,63). This discovery implies that m(11) >
95 and N°(11,3) > 190. Adjacency lists of these graphs are available at
http://guillermo.com.au/wiki/List_of_Publications| under the name

of this paper.
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6 Conclusions

In this paper we offered several structural properties for bipartite graphs
of diameter 3 and defect 4. Using these properties we showed the non-
existence of bipartite (7,3, —4)-graphs, which proves the optimality of the
known bipartite (7,3, —6)-graph on 80 vertices. This is just the second non-
Moore bipartite graph known to be optimal.

We would also like to emphasize that, using the results of Section [3] and
reasoning as in Section Ml it is possible to prove as well the uniqueness of
the only known bipartite (5, 3, —4)-graph depicted in Figure 3, and the non-
existence of bipartite (6,3, —4)-graphs.

In addition, some of the results in Section ] could have been stated for any
bipartite (d, 3, —4)-graph by providing a more elaborate proof. However, we
decided to omit this extension as it does not lead to any conclusive outcome
on the existence or otherwise of bipartite graphs of diameter 3 and defect 4

in general. We nevertheless feel that the following conjecture is valid.

Conjecture 6.1 There is no bipartite (d, 3, —4)-graph with d > 6.
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