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Abstract

Designing new physical products and processes requires
enormous experimentation. The scientific simulators
play a fundamental role for such design tasks. To
design a new product with certain target characteristics,
a search is performed in the design space by trying
out a large number of design combinations through
simulators before reaching to the target characteristics.
However, searching for the target design using simulators
is generally expensive and becomes prohibitive when
the target is either revised or only partially specified.
To address this problem, we use a machine learning
model to predict the design in single step using the
target product specifications as input. We overcome
two technical challenges: the first caused due to one-to-
many mapping when learning the inverse problem and
the second caused due to a user specifying the target
specifications only partially. We unify a conditional
variational auto-encoder model (to address the partial
target specification) with mixture density networks (to
address the one-to-many mapping) and train an end-to-
end model to predict the optimum design.

1 Introduction

Scientific innovations relating physical processes require
laborious experimentation as the relationships between
design variables and output characteristics are unknown.
The task of understanding the whole physical process is
often complex and broken down into multiple parts. Each
part is studied separately. To study each part, enormous
number of experiments are performed. The experimental
data is then used to derive laws governing the underlying
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process. These basic laws are often integrated together
to build domain–specific simulators to mimic the whole
physical process. These simulators are key to designing
and developing new products and processes [4].

To design a new product with certain target char-
acteristics, a search is performed in the design space –
a large number of the design combinations (input vari-
ables) are tried in simulators before reaching to the
target characteristics (see Fig. 1a). Typically this search
is guided by design of experiment (DOE) softwares (e.g.
SPSS, Minitab) using some variations of factorial de-
sign. There are several drawbacks of factorial methods.
First, these methods assume the relationship between
the design variables and the output characteristics to be
either linear or quadratic which simply fails to capture
the complex relationship. Second, the search process
uses a finite discretisation of the continuous variables,
which makes the search unscalable due to the number
of experiments growing exponentially with the number
of design variables.

Thanks to the availability of simulators and modern
machine learning algorithms, this search process can
be improved. An effective way to do this is to query
the simulators in an offline mode to sample the data
space sufficiently and then harness this data to build a
machine learning model. Given sufficient data, modern
machine learning (ML) models can approximate the
simulators arbitrarily closely. The ML models can
then be used to convert the search process in a less
expensive optimization. Denoting the function learned
by ML model as f(x), we can discover the target
design by solving the following optimization problem:
xtarget = argmin

x∈X
‖f(x)− ytarget‖. This approach is x∈X

known as model based optimization. A popular instance
of this approach is Bayesian optimization, which uses a
Gaussian process to model f(x) and then uses this model
to find xtarget via optimization [3]. Although model
based optimization approach can reduce the expensive
search via simulators, we still need to solve a fresh global
optimization problem each time we have a new design
goal ytarget. This is often inconvenient and needs to be

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited549

D
ow

nl
oa

de
d 

06
/0

9/
19

 to
 1

28
.1

84
.1

89
.4

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



avoided to accelerate the discovery process.
Fortunately, we can avoid the global optimization

completely by simply flipping our problem of learning
f(x) to the learning of its inverse design function g(x) =
f−1(x). This offers a paradigm shift in modeling as by
learning the function x = g(y), we can directly predict
our design variables in a single step as xtarget = g(ytarget)
without needing any search or global optimization (see
Fig. 1b).However when taking this approach to designing
new products, we face a technical difficulty. The difficulty
is that the forward function f may be many-to-one in
some problem domains, i.e. it might be possible to have
same output for many input combinations. In such cases,
the inverse function will be ill-posed as there would be
multiple x solutions for the same y. Typically machine
learning models would deal with such a scenario by
learning an average x but if the multiple possible outputs
for an input are significantly different from one another
the averaged value might not be close to any of them. We
solve this problem by modifying the output conditional
distributions used by ML algorithms. Typically ML
models use a unimodal distribution to model the output
conditioned on an input e.g. in regression models, a
Gaussian distribution is used. To tackle the problem of
one-to-many function, we use a multimodal distribution
realized through mixture models.

Another practical challenge in designing new product
and processes is partial specification of the target
characteristics. This happens mainly for two reasons: the
first, a user may not be absolutely certain about setting
all the target characteristics, instead he/she might want
to leave some of the target characteristics free; and the
second, he/she may not know precise value of certain
target characteristic. Due to these ytarget may only be
partially specified for a new product. We address this
problem by imputing the missing target specifications
through the data distribution and thus come up with
multiple design possibilities catering for the degree of
freedom caused by the incomplete specification. This
allows the freedom to discover a whole sub-class of
products meeting the partial target specifications.

Our proposed framework is built using deep neural
networks. We learn the inverse function relating target
product characteristics to design variables through a
multilayer perceptron (MLP). To tackle the first chal-
lenge we modify the standard MLP using a multimodal
distribution for the network output along the lines of
mixture density networks [2]. To address the second chal-
lenge we use a Conditional Variational Auto-Encoder
(CVAE) [8,18] which imputes missing specification condi-
tioned on the partially specified part. The overall model
is unified by feeding the output of the CVAE network
to the input of the MLP/MDN network and is trained

end-to-end by using backpropagation.
We focus on an alloy design problem and use a

metallurgical model known as CALPHAD implemented
in the Thermo-Calc software [11]. The input to our
model is a partial phase diagram and the output
is an alloy composition. Our goal is to specify a
desired phase diagram that is associated to different
alloy properties, e.g., its strength, weld-ability, its
corrosion resistance etc., and predict an alloy elemental
composition that is highly likely to form the specified
phases and therefore show the intended properties. We
carried out experiments on two datasets acquired by
querying the Aluminum alloy database. The first dataset
was created from 30 Aluminum alloys 1. The second
dataset was created by using Bayesian Optimization and
searching for alloys satisfying a common FCC property
existed in the 30 mentioned Aluminum alloys. We vary
the composition of each alloy in both sets in a window
of ±20% to derive necessary data to train and test our
models. We show that our model can accurately predict
the alloy compositions with an average relative error
of 1.8% and 2.95% for the first and second datasets
respectively. The main contributions of this paper are:

• A new, efficient data-driven approach to design
targeted products. This is done by turning the
traditional simulation-based search for the required
target into a direct prediction using a multimodal
inverse function.

• A deep neural network model capable of taking
either complete or partial target specification to
predict a class of product designs. The model is built
by unifying a conditional variational autoencoder
with a mixture density network.

• Demonstration of our approach for alloy design
inan entirely novel way with a possible speed up by
hundreds of thousands of times.

Our work can be seen as one of the early data mining
work in the emerging field of materials informatics,
the need of which has been greatly emphasized by
the Materials Genome Initiative (MGI) project2. The
significance of our work lies in addressing the limitation
of the third paradigm of materials discovery (using
simulation) through through the use of data–intensive
methodologies, which are in line with the current shift
into the fourth paradigm of science discovery [5].

1Alloy IDs: 2014, 2018, 2024, 2025, 2218, 2219, 2618, 6053,

6061, 6063, 6066, 6070, 6082, 6101, 6151, 6201, 6351, 6463, 6951,
7001, 7005, 7020, 7034, 7039, 7068, 7075, 7076, 7175, 7178, 7475.

2https://www.mgi.gov

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited550

D
ow

nl
oa

de
d 

06
/0

9/
19

 to
 1

28
.1

84
.1

89
.4

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



if
‖ytgt

−y‖<tol.

SimulatorSimulator

ExitExit

Parameters

Yes

No

Target properties
(ytgt

)

Output properties(y )

Set design variables
(x)

(a) Search process for simulation-based design. It may run for

hours or days per one design variable set.

SimulatorSimulator

Parameters

Output
properties (y )

Randomly sample
design variables (x)

Create dataset offline

xtgtytgt

Machine learning

x=g (y )

Training

Test/predict

(b) Machine learning approach, typically costs mini-seconds per

tens of predictions.

Figure 1: Experimental design paradigms for design and discovery of new products. (a) current design paradigm
requiring a long iterative search procedure (b) The proposed design paradigm.

2 Methods

In this section, we present our contributions in
solvinginverse-problems in science discovery through
data–intensive techniques.

2.1 Inverse-problem as data–driven inference
Simulator is an indispensable tool for computational
science. With comprehensive physical laws implemented,
a simulator can accurately compute physical properties
of matters. Let x ∈ X be a vector describing the design
parameters, and y be a set of target properties, which can
have mechanical, thermal, optical, chemical or biological
characteristics. As an example, in alloy discovery, the
design parameters can be the mixture of components
of the alloy, and the target properties can be melting
temperature, hardness, elasticity and surface resistance
against corrosion. Physical laws dictate that there exist a
function of the form y = f(x) . As simulation of realistic
matters is extremely complex3, accurate simulation
of f(x) often demands great computational and time
resources for each x. This may prevent comprehensive
exploration of the huge design space to reach a desirable
target.

Machine learning offers an alternative data–driven
approach to vastly speed up this exploration. On
one hand, we can approximate the function f(x) by
learning a variational fast alternative fπ(x) parametrized
by π (e.g., weights of a deep neural net). Learning
occurs only once on a training set D = {(xi,yi)},
where xi is a sample in X and yi is computed by
running the simulator. Once the function has been
estimated, the search of a desirable target ytarget can

3Quantum computation using DFT takes hours to compute
chemical properties of small molecules, but it is practically

impossible to compute for just one micro-cube of matters even
using the best supercomputer.

be efficiently carried out through global optimization
xtarget = argminx∈X ‖fπ(x)− ytarget‖. On the other
hand, we can eliminate the global optimization entirely
by estimating an inverse-function of f using gη(y)
such as that gη(yi) ≈ xi for all i. With this inverse-
function, searching for target designs xtarget to meet
target properties ytarget is instant.

However, estimating gη(y) is challenging for the
following reasons. First, the inverse function f−1 may
not exist since f can be a many-to-one mapping, that is,
one target output y can be satisfied by multiple input
designs x. Second, in practice the target output may
not be fully specified by the scientist. Sometimes this
incomplete specification can be due to ignorant (we do
not know exactly what we want in the first place), or
on purpose (we want not an exact design, but a class of
designs). A partial specification of y further increases
the uncertainty about the input design x. Given the
uncertainty in the target designs x, the inverse-problem
is best reformulated as estimating an entire conditional
density spectrum P (x | v), where y is either fully or
partially specified.

2.2 Multimodal density estimation given in-
complete conditions Let y = (v,h) where v denotes
the specified target component and h the unspecified
counterpart. Assume that h is generated by a latent
variable z. We aim to model a conditional density of
the design x given the specified v target component:

P (x | v) =

∫
h

∫
z

P (x,h, z | v) dhdz (2.1)

The joint density P (x,h, z | v) is further factorized as:

P (x,h, z | v) = P (x | v,h)P (h | v, z)P (z | v)
(2.2)
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z h

v

x

Figure 2: Graphical model of the proposed method.
x: input design, v: specified target component, h:
unspecified part, and z: latent variable.

This leads to

P (x | v) =

∫
h

∫
z

P (x | v,h)P (h | v, z)P (z | v)dhdz

≈ 1

N

N∑
i=1

EP(h|v,z(i)) [P (x | v,h)] (2.3)

where z ∼ P (z | v).
However, integrating over h is still intractable. As-

sume further that the imputation of the missing compo-
nent via P (h | v, z) takes a simple Gaussian form, that
is, h ∼ N

(
µ(v, z); Iσ2(v, z)

)
. For simplicity, we ap-

proximate the expectation EP(h|v,z(i)) [f(h)] by a func-

tion evaluation at the mode, i.e., EP(h|v,z(i)) [f(h)] ≈
f
(
h̄
)

where h̄ = µ(v, z). This leads to

P (x | v) ≈ 1

N

N∑
i=1

P
(
x | v,µ

(
v, z(i)

))
(2.4)

As µ
(
v, z(i)

)
serves as a reconstruction of the

missing component h, this somewhat resembles the
technique of multiple imputations in the literature [17].
The graphical model of the factorization in Eq. (2.2) is
depicted in Fig. 2.

2.2.1 Multimodal density Due to the one-to-many
mapping in the inverse problem, the conditional density
P
(
x | v, h̄

)
may be multimodal, that is, we may have

multiple classes of solution. For example, in the case of
alloy design, this is naturally the case as alloys seem to
concentrate around rather separate modes each of which
has a dominant metal. To account for multiple modes,
we propose to use the mixture model:

Pγ
(
x | v, h̄

)
=

K∑
k=1

αkPk
(
x | v, h̄

)
(2.5)

with mixture components αk subject to αk ≥ 0 and∑K
k=1 αk = 1.

The mixture components are implemented using a

softmax neural network as follows:

αk =
exp

(
fk
(
v, h̄

))∑
j exp

(
fj
(
v, h̄

))
where fk are feedforward neural networks.

Using the re-parametrization trick (e.g., see [8]) we
model Pk (x | y) as a Gaussian of mean µk = gµk

(
v, h̄

)
and isotropic covariance matrix Iσ2

k for identity matrix I
and σ2

k = exp
(
gσk
(
v, h̄

))
. Here gµk

(
v, h̄

)
and gσk

(
v, h̄

)
are parametrized as deep neural networks, making this
model resemble the mixture density network (MDN) [2].

2.3 Model training

2.3.1 Evidence lower bound (ELBO) Now what
remains is a model to account for the generation of the
missing target P (h | v) =

∫
z
P (h | v, z)P (z | v) dz.

Adapting the formulation of the Conditional Variational
AutoEncoder (CVAE) [8, 18], the evidence lower bound
(ELBO) is maximized:

LCVAE (θ, φ) = −DKL (Qφ (z | h,v) ‖P (z)) +

+ Ez∼Qφ [logPθ (h | z,v)] (2.6)

where Qφ (z | h,v) denotes the recognition model that
approximates the posterior P (z | h,v). More precisely
Qφ (z | h,v) is a multivariate Gaussian of mean µφ (h,v)
and diagonal covariance Iσ2

φ (h,v), where µφ (h,v) and

σ2
φ (h,v) are neural networks. Hence sampling from Qφ

is straightforward, that is z = µφ (h,v) + σφ (h,v) ε for
ε ∼ N (0, I).

2.3.2 Hybrid objective Finally, both the the MDN
in Eq. (2.5) and CVAE in Eq. (2.6) can be jointly trained
using the following hybrid objective:

L (θ, φ, γ) = LCVAE +λEz∼Qφ [logPγ,θ (x | v, z)] (2.7)

for some λ > 0 to ensure the matching scale for
both objective terms. Note that the density function
Pγ,θ (x | v, z) has two parameter sets (γ, θ), where θ
is from the network underlying the generation model
Pθ (h | z,v) (as part of CVAE in Eq. (2.6)) and γ is
from the network underlying the multimodal density
function Pγ

(
x | v, h̄

)
(as part of MDN in Eq.(2.5)).

The two networks connect through the mean function
h̄ = µ(v, z). This enables backprop of gradient from x
to v.

2.3.3 Remarks We also experimented with Condi-
tional GAN (CGAN) as an alternative for CVAE but
CVAE is more competitive, suggesting that for CVAE is
more suitable in explorative settings such as materials
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discovery. We also noted that there are more advanced
versions based on the normalizing flow framework [16]
where the Gaussian distribution is replaced by a more
complex posterior. Our framework can be directly ex-
tended to use these more flexible approximation tech-
niques but we leave this for future work and consider
here the basic variational version.

2.4 Prediction At test time, we often wish to sample
specific design parameters from the conditional distribu-
tion P (x | v) given in Eq. (2.4). For each sample of the
prior z we have a MDN of the form P

(
x | v, µ

(
v, z(i)

))
.

Since each MDN is a mixture model, there are also mul-
tiple ways to sample x for each zj . For evaluation, we
use Gumbel sampling [12] for identify major modes of
significant mass for each mixture model. The collection
of all such modes constitutes our prediction set.

3 Experiments

We now demonstrate the effectiveness of the new
methods presented in Section 2 in the domain of alloy
discovery. In particular, we focus on Aluminum alloys,
i.e., those mixed materials in which aluminum (Al) is
the predominant metal. This represents one of the most
important classes of alloys widely used in engineering and
everyday products thanks to its light weight or corrosion
resistance. We use Thermo-Calc4 as simulator. The
primary use of this software is to compute the phase
diagram (representing target properties) for each alloy
(representing design parameters). In our setting, a phase
diagram is a distribution of phases of matters at each
temperature. We use phase diagram as a proxy because
materials designers can infer target properties from it.

3.1 Alloy composition An Aluminum alloy compo-
sition consists of Aluminum as the main metal with
highest proportion and the remaining metal elements
used in this research are Cr, Cu, Mg, Ti, Zn, Zr, Mn,
Si, and Ni. As a result, they have a mixture of metallic
phases up to the melting point for all compounds. For
example Aluminum alloy 2024 (see Fig. 3) has 7 metallic
phases at temperature range 0-300 °C, then 6, 5, 3, and
2 metallic phases at temperature 350, 400-500, 550, and
600 °C respectively, and finally only 1 liquid phase from
650 °C onwards.

3.2 Description of input phase diagram We give
as input the elements and its fractions into the Thermo-
Calc software and get it to simulate and generate
distribution of the metallic phases across temperatures
as output. The temperature is varied from 0 to 1500°C

4http://www.Thermo-Calc.com

Figure 3: Phase diagram alloy 2024. The phases
are square-root scaled then re-normalized for plotting
purpose. Best viewed in color.

with step 50°C resulting in 31 temperature points. There
are 49 unique phases across our dataset. This makes the
phase diagram a matrix of size 49 × 31. Fig. 3 shows
the phase diagram of a sample alloy mentioned above.
We can see that only a small subset of metallic phases
(compound solutions) are active at each temperature.

3.3 Datasets We created two datasets for our exper-
iments. The first dataset is of size 15,000 alloys from
the following 30 known series of Aluminum alloys: 2014,
2018, 2024, 2025, 2218, 2219, 2618, 6053, 6061, 6063,
6066, 6070, 6082, 6101, 6151, 6201, 6351, 6463, 6951,
7001, 7005, 7020, 7034, 7039, 7068, 7075, 7076, 7175,
7178, and 7475. The dataset was generated as follows.
First, for each base alloy, we varied its 9 auxiliary ele-
ments (Cr, Cu, Mg, Ti, Zn, Zr, Mn, Si, Ni) by a relative
amount of ±20% and make sure that the total propor-
tion of the 10 elements is 100%. Second, we fed these
alloy compositions into the Thermo-Calc software and
ran the physical simulation. The simulation pressure
parameter was set to 1 atmosphere, and temperature
was varied from 0 to 1500°C with step 50°C. Finally, the
distribution of phases across 31 temperature points for
each element composition was generated as output.

The second dataset is also of size 15,000 alloys and
is created by searching via Thermo-Calc for a desired
property in FCC phase by Bayesian optimization. In
alloy design, the FCC phase proportion should be low
(< 95%) at low temperature and high (> 98%) at high
temperature. We investigated the FCC phases of known
alloys at 200°C and 500°C in Fig. 4. It shows that these
FCC phases have roughly a linear trend. Let y200 and
y500 denote the FCC phases at 200°C and 500°C. We
simply fit a regression line y500 = ay200 + b to estimate
[a, b] = [0.45, 0.56].

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited553

D
ow

nl
oa

de
d 

06
/0

9/
19

 to
 1

28
.1

84
.1

89
.4

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



0.90 0.92 0.94 0.96 0.98
FCC 200°C

0.92

0.94

0.96

0.98

1.00

FC
C 

50
0°

C

          2014

          2018

          2024

          2025

          2218

          2219

          2618

          6053
          6061

          6063

          6066

          6070          6082

          6101

          6151
          6201

          6351

          6463          6951

          7001

          7005
          7020

          7034

          7039

          7068

          7075          7076          7175

          7178

          7475

Figure 4: FCC phase at 200°C and 500°C of 30 known
alloys.

We use Bayesian optimization and search
in the domain of 9 auxiliary elements E =
{Cr, Cu, Mg, Ti, Zn, Zr, Mn, Si, Ni} for the phases
close to this regression line, the shaded region in Fig. 4.
The Bayesian algorithm inputs the composition into
Thermo-Calc and gets an objective as a function of the
Thermo-Calc output. We carried out the search for
one week period and yielded 120 search results. We
randomly collect 1000 trajectory points satisfying the
mentioned condition and vary their composition by
±20%, each point 15 times, resulting in a dataset of size
15000 data points.

For our inverse problem, we used the phase diagram
as input y and trained models to predict the element
composition output x. We use k-fold validation, that
is, the dataset is randomly split into 5 folds, among
which 4 folds are used for training and 1 fold is used for
testing. The folds are alternated and the experiment is
repeated 5 times. Mean and standard deviation of errors
are reported.

3.4 Models setup We use 7 different models:

1. Baseline 1 : A Random Forests (RF). This model
fits 30 randomized decision trees on random sub-
samples, then uses averaging to avoid over-fitting.
The max-features parameter is set to 100.

2. Baseline 2 : A standard multi-layer perceptron
(MLP) with three hidden layers of size 500, 100,
and 50 respectively. The ReLU activation function
is used for the hidden layers.

3. A mixture density network (MDN). This model
has three sub-networks for the component means,
variances, mixing weights respectively to make a
mixture of Gaussians as output. These networks

have the same hidden sizes as the MLP above.

4. The proposed conditional variational autoencoder
MLP (CVAE-MLP). There are three components
corresponding to the three conditional distributions
(Eq. (2.3): 1) the recognition model P (z|v) to es-
timate the hidden posterior, this model has inside
two sub-networks for the mean and standard de-
viation of the latent vector z; 2) the generation
network P (h|v, z) to generate the unspecified prop-
erty given the specified one and random noise; and
3) the prediction network P (x|v,h) to predict the
design parameters. These component networks have
similar hidden sizes to the above MLP except that
the second component has reverse order of layers.
The latent size 30.

5. The proposed CVAE-MDN. This model is similar to
CVAE-MLP except the prediction network is MDN.

6. The alternative conditional generative adversarial
network MLP (CGAN-MLP). This also has three
components: 1) the generator P (h|v, z); 2) the
discriminator to decide whether h is real; and 3)
the prediction network P (x|v,h). The networks
also have similar hidden sizes as above.

7. The CGAN-MDN. This model is similar to CGAN-
MLP except the prediction network is MDN.

All neural network models were trained using ADAM
optimizer with learning rate 0.001 until convergence with
mini-batch size of 50.

3.5 Performance measures Alloys vary in their
composition, not just the proportion of elements, but
also the existence of elements. On average the proportion
of zeros of the alloy elements is about 20% in our dataset.
That is, each alloy is composed of about 8 out of 10
elements. Given this fact, we reported two prediction
errors: Relative Error for those elements which are
nonzero and Absolute Error for those which are zero.
Let xi = (xi1, xi2, ..., xiM ) be the true composition for
instance i, and x̂i be the predicted composition. Then
the relative error (for non-zero element xij > 0) and
absolute error (for zero element xij = 0) are defined by:

rij =
|x̂ij − xij |

xij
; aij = x̂ij (3.8)

The relative and absolute errors for the test set are
computed as:

r =
1

N

N∑
i=1

1

Mi1

M∑
j=1

rij ; a =
1

N

N∑
i=1

1

Mi0

M∑
j=1

aij
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where Mi0, Mi1 are the number of zeros and non-zeros
elements of xi respectively.

3.6 Prediction accuracy We carried out several
experimental settings to study the model ability in
predicting alloy compositions. In the first experiment,
we tried the prediction using the full phase matrix as
input, see Fig. 3. In the following experiments, we
compared different models and investigated whether they
can generalize given an imprecise input.

Predicting element compositions Table 1
shows the error rate for this task using RF, MLP, and
MDN. With the present of full phase matrices, predicted
compositions has low error rates. For the known-alloy
dataset RF can achieve 3.21% relative error, while MLP
performs better at 1.1%. MDN has the lowest error,
0.5%. For the BO-search dataset RF, MLP and MDN
achieve 6.37%, 3.41%, and 2.95% relative errors respec-
tively. This supports the hypothesis that the output
have multiple modes.

Predicting element compositions using par-
tially known phases Table 2 compares different meth-
ods in predicting element compositions when the input
phases are partially known, only 50% of the phases are
presented to the model. Since the CVAE layer outputs a
distribution instead of a single vector, we take 20 samples
z’s (z ∼ N (0, I)) for each partial input v and output
20 fully reconstructed h̄’s at the CVAE layer. Then
these 20 reconstructions, combined with v, are then
passed to the MLP/MDN layer to predict 20 output x̄’s.
The minimum, mean, and maximum errors for these x̄’s
against the single target x are reported. The effect of
reconstruction using CVAE is clearly demonstrated. For
the first dataset the error of MLP drops by 0.93%, from
3.43% (without reconstruction) to 2.50% (with recon-
struction). Likewise, the error of MDN drops from 2.28%
(without reconstruction) to 2.08% (with reconstruction).
Similarly, for the second dataset the error of MLP drops
by 4.49%, from 11.91% to 7.42%. The error of MDN
drops by 3.6%, from 7.83% to 4.23%. The CGAN-based
models also reduce the errors for the basic MLP and
MDN but not as good as the CVAE-based models.

We also experimented with different missing phase
ratio for the MLP model and found that the error rate
is still low (<10%) even at 70% missing rate. Only at
80% missing rate the error becomes significant (about
70%). This suggests that there is a small number of
phases (mainly the compounds) that contains most of
the element composition information.

Example of phase diagrams having mixture
outputs Given an imprecise input (a partial designed
phase diagram) there can be multiple alloy compositions
satisfying this design. Fig. 4 depicts some examples

where a design FCC phase at 200°C and 500°C has
several possible alloy compositions. The data points are
very close in this FCC plots. For an example, let the
design phase be (fcc200 = 0.915, fcc500 = 0.99), then
this is satisfied by three different alloys 7075, 7076, and
7175. The 7075 and 7175 have Cr proportion of 0.55
and no Mn element. while the 7076 has Mn=0.33 and
no Cr. Also the 7075 has double the Ti proportion
compared to the 7175. Similarly, for the design phase
with (fcc200 = 0.985, fcc500 = 0.998) there are several
6000 series alloys satisfying it.

3.7 Verifying the error in Thermo-Calc Al-
though the prediction of design parameters have been
fairly accurate with 2− 3% relative error, it is possible
that the design may be at the edge of the plausible design
region. Thus it is important to verify whether we can
reconstruct the original specification given the predic-
tion using the simulator itself. In this experiment, the
predicted element compositions (20 output samples for
one partial input phase diagram) for the partially known
phases are fed back into Thermo-Calc for simulating the
new phase diagrams. The phase diagrams, combined
from the predicted property h̄ and the specified property
v, are then compared to the original phase diagram y
to check whether the variational method has produced
consistent elements for these phases. We expect the
observed error to be small.

The absolute error for 1 phase diagram and 1
Thermo-Calc simulated diagram from the predicted alloy
(using MLP) is:

∥∥h− h̄∥∥ = 0.03 (each phase of the
diagram is scaled to have the global range [0, 1] across the
dataset). The relative and absolute errors for observed
phases between one partial input phase diagram and 20
simulated diagram from 20 predicted alloy compositions
are 2.94% and 0.00% respectively (3,000 test examples).
The relative error for phases are calculated similarly to
the relative error for element compositions for nonzero
phases in Section 3.5.

3.8 Computational efficiency and comparisons
with the search-based methods Recall that we can
perform extensive search for the best design parameters
x for a given target properties y by running repeatedly
the simulator to produce y from each x. The time
cost is the product of the time per simulator call,
and the total number of calls. For this we compare
our method with popular black-box search methods
(i.e., genetic algorithm) for this inverse design problem.
As a demonstration, we carried out the search for a
random desired phase diagram, its true composition
is {Cr=0.24, Mg=2.96, Ti=0.06, Zn=4.29, Mn=0.2,
Si=0.12, Al=92.14}. For this, the trained CVAE-
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Known-alloy dataset BO-search dataset
Method Relative (%) Absolute (%) Relative (%) Absolute (%)

RF 3.21± 0.02 0.00± 0.00 6.37± 2.13 0.01± 0.00
MLP 1.10± 0.03 0.00± 0.00 3.41± 1.48 0.01± 0.01
MDN 0.52± 0.00 0.00± 0.00 2.95± 1.32 0.00± 0.01

Table 1: Errors for completed phases input, averaged across 5 folds. For MDN, the mode with lowest error is
reported.

Known-alloy dataset BO-search dataset
Method Relative (%) Absolute (%) Relative (%) Absolute (%)

RF 4.38± 0.01 0.00± 0.00 8.49± 1.34 0.01± 0.01
MLP 3.43± 0.07 0.00± 0.00 11.91± 2.54 0.03± 0.02
MDN 2.28± 0.22 0.00± 0.00 7.83± 1.11 0.01± 0.01

CVAE-MLP 2.50± 0.24 (a) 0.00± 0.00 7.42± 2.03 (e) 0.01± 0.01 (i)
CVAE-MDN 2.08± 0.12 (b) 0.00± 0.00 4.23± 0.67 (f) 0.00± 0.00 (j)
CGAN-MLP 3.18± 0.18 (c) 0.00± 0.00 8.39± 2.33 (g) 0.00± 0.00 (k)
CGAN-MDN 2.30± 0.18 (d) 0.00± 0.00 7.38± 0.70 (h) 0.00± 0.00 (l)

Table 2: Errors for partial phases input (50% phases missing). (a) ave: 3.41± 0.26, max: 4.45± 0.28; (b) ave:
2.50± 0.11, max: 3.34± 0.39; (c) ave: 3.33± 0.20, max: 3.5± 0.22 (d) ave: 2.58± 0.17, max: 4.52± 0.15; (e) ave:
8.62± 1.83, max: 10.71± 2.76; (f) ave:6.28± 1.34, max: 8.82± 3.52; (g) ave:10.45± 3.17, max: 12.85± 6.46; (h)
ave: 9.68± 0.48, max: 11.39± 2.22; (i) ave: 0.01± 0.01, max: 0.01± 0.01; (j) ave: 0.0± 0.0, max: 0.01± 0.01; (k)
ave: 0.02± 0.01, max: 0.05± 0.07; (l) ave: 0.02± 0.02, max: 0.02± 0.04. .

Known-alloy dataset BO-search dataset
Method Relative (%) Absolute (%) Relative (%) Absolute (%)

RF 4.38± 0.01 0.00± 0.00 8.49± 1.34 0.01± 0.01
MLP 3.43± 0.07 0.00± 0.00 11.91± 2.54 0.03± 0.02
MDN 2.28± 0.22 0.00± 0.00 7.83± 1.11 0.01± 0.01

CVAE-MLP 2.50± 0.24 (a) 0.00± 0.00 7.42± 2.03 (e) 0.01± 0.01 (i)
CVAE-MDN 2.08± 0.12 (b) 0.00± 0.00 4.23± 0.67 (f) 0.00± 0.00 (j)
CGAN-MLP 3.18± 0.18 (c) 0.00± 0.00 8.39± 2.33 (g) 0.00± 0.00 (k)
CGAN-MDN 2.30± 0.18 (d) 0.00± 0.00 7.38± 0.70 (h) 0.00± 0.00 (l)

Table 2: Errors for partial phases input (50% phases missing). (a) ave: 3.41± 0.26, max: 4.45± 0.28; (b) ave:
2.50± 0.11, max: 3.34± 0.39; (c) ave: 3.33± 0.20, max: 3.5± 0.22 (d) ave: 2.58± 0.17, max: 4.52± 0.15; (e) ave:
8.62± 1.83, max: 10.71± 2.76; (f) ave:6.28± 1.34, max: 8.82± 3.52; (g) ave:10.45± 3.17, max: 12.85± 6.46; (h)
ave: 9.68± 0.48, max: 11.39± 2.22; (i) ave: 0.01± 0.01, max: 0.01± 0.01; (j) ave: 0.0± 0.0, max: 0.01± 0.01; (k)
ave: 0.02± 0.01, max: 0.05± 0.07; (l) ave: 0.02± 0.02, max: 0.02± 0.04. .

3.8 Computational efficiency and comparisons
with the search-based methods Recall that we
can, in theory, perform extensive search for the best
design parameters x for a given target properties y by
running repeatedly the simulator to produce y from
each x. The time cost is the product of the time
per simulator call, and the total number of calls. For
this we compare our method with popular black-box
search methods (i.e., genetic algorithm) for this inverse
design problem. As a demonstration, we carried out
the search for a random desired phase diagram, its true
composition is {Cr=0.24, Mg=2.96, Ti=0.06, Zn=4.29,
Mn=0.2, Si=0.12, Al=92.14}. For this, the trained
CVAE-MDN gives immediately (in milliseconds) a set
of 20 compositions, and accordingly 20 simulated phase
diagrams by Thermo-Calc with a minimum of 0.7%, a
mean of 2.0% , and a maximum of 3.36% relative error
respectively.

Fig. 5 shows the error versus search time for the
random search and genetic algorithm (GA). Random
search fails to get any noticeable improvement after 1000
iterations. GA shows progress but after 1000 steps, the
relative error is still far above the 50% mark.

It took CVAE-MDN 1.825ms to find a solution
without any search. Thermo-Calc took 80s for one
run but the simulation-based search did not find any
significant solution after 1000 runs (10+ hours, which is
already 3-order of magnitude slower). We expect that
it may takes days to achieve solutions of similar quality
that is found with our learning-based solutions. The
speed up by learning-based techniques (our methods)
can be increased many folds for free since our methods
can be run in batch (e.g., 100 examples) without a
significant increase in time, thanks to the modern GPU
architectures. For example, a batch of 30 alloys took only
2ms on the GPU in our experiment. The experiments
were taken on the system with Intel Xeon E5-1650 v4
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Figure 5: Error versus search time comparisons. The
search did not reach any meaningful solution after 1000
(expensive) steps. This is opposed to meaningful machine
learning prediction in one (cheap) step.

3.60 GHz CPU, Nvidia GeForce GTX 1080 Ti GPU, and
32GB RAM.

4 Related Work

The third paradigm in science discovery involves com-
puter simulation of physical processes [5]. Each scientific
domain uses its own suite of simulators. For example,
density function theory based simulators are commonly
used in physics, chemistry and materials science to inves-
tigate the electronic structure of many-body systems [6].
The CALPHAD (Calculation of Phase Diagrams) simula-
tors are used to calculate properties of multi-element sys-
tems using databases of thermodynamic descriptions [11].
Simulators offer a test-bed to perform a search or op-
timization to discover products with intended target
properties [9, 13,14,19].

However, the third paradigm is changing. The
availability of massive data sets collected from all

Figure 5: Error versus search time comparisons. The
search did not reach any meaningful solution after 1000
(expensive) steps. This is opposed to meaningful machine
learning prediction in one (cheap) step.

MDN gives immediately (in milliseconds) a set of
20 compositions, and accordingly 20 simulated phase
diagrams by Thermo-Calc with a minimum of 0.7%, a
mean of 2.0% , and a maximum of 3.36% relative error
respectively.

Fig. 5 shows the error versus search time for the
random search, genetic algorithm (GA), and Bayesian
optimization (BO). Random search fails to get any
noticeable improvement after 1000 iterations. GA shows
progress but after 1000 steps, the relative error is still

far above the 50% mark. BO shows better performance
than random search and GA.

It took CVAE-MDN 1.825ms to find a solution
without any search. Thermo-Calc took 80s for one
run but the simulation-based search did not find any
significant solution after 1000 runs (10+ hours, which is
already 3-order of magnitude slower). We expect that
it may takes days to achieve solutions of similar quality
that is found with our learning-based solutions. The
speed up by learning-based techniques (our methods)
can be increased many folds for free since our methods
can be run in batch (e.g., 100 examples) without a
significant increase in time, thanks to the modern GPU
architectures. For example, a batch of 30 alloys took only
2ms on the GPU in our experiment. The experiments
were taken on the system with Intel Xeon 3.60 GHz
CPU, Nvidia GeForce GTX 1080 Ti GPU, and 32GB
RAM.

4 Related Work

The third paradigm in science discovery involves com-
puter simulation of physical processes [5]. Each scientific
domain uses its own suite of simulators. For example,
density function theory based simulators are commonly
used in physics, chemistry and materials science to inves-
tigate the electronic structure of many-body systems [6].
The CALPHAD (Calculation of Phase Diagrams) simula-
tors are used to calculate properties of multi-element sys-
tems using databases of thermodynamic descriptions [11].
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Simulators offer a test-bed to perform a search or op-
timization to discover products with intended target
properties [9, 13,14].

However, the third paradigm is changing. The avail-
ability of massive data collected from all experimental
and simulation activities has led to the rise of the fourth
paradigm: data–intensive discovery using machine learn-
ing [1, 5, 7, 10, 15]. In this paper, we leverage the data
produced by simulators to derive an inverse-function
that maps the simulation output back to design parame-
ters. To this end, we have proposed a set of techniques
to address inverse problem in data-intensive materials
discovery. We addressed the following newly formulated
problems: 1) Replacing expensive simulation optimiza-
tion by machine learning; 2) Allowing imprecise target
specification; and 3) Handling multiple output modes.

5 Conclusion

We have proposed a novel data–driven framework for
designing new materials and products. Using the power
of data mining, our framework has shifted the current
design paradigm of searching for the target design to
instant prediction. In day-to-day life of an experimental
designer, this may easily bring a speed up of thousands
(if not millions) of times. Although in this paper, we have
demonstrated the applicability of our work mainly for
designing alloys, our work is broadly applicable to most
of the scientific design applications where it is possible to
query simulators in offline mode or collect experimental
design data in an ongoing basis. In the future, it would
be useful to advance the scope of this research further
by allowing qualitative specification of target properties
(e.g. allowing specifications in term of preferences of
component). Additionally, since the basic physical and
chemical laws are often shared across different class of
products, it may be interesting to use transfer learning
across different classes to achieve better prediction with
smaller sized datasets.
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