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Abstract
In order to prevent the disclosure of privacy-sensitive data, such as names and rela-
tions between users, social network graphs have to be anonymised before publication.
Naive anonymisation of social network graphs often consists in deleting all identify-
ing information of the users, while maintaining the original graph structure. Various
types of attacks on naively anonymised graphs have been developed. Active attacks
form a special type of such privacy attacks, in which the adversary enrols a number of
fake users, often called sybils, to the social network, allowing the adversary to create
unique structural patterns later used to re-identify the sybil nodes and other users after
anonymisation. Several studies have shown that adding a small amount of noise to
the published graph already suffices to mitigate such active attacks. Consequently,
active attacks have been dubbed a negligible threat to privacy-preserving social graph
publication. In this paper, we argue that these studies unveil shortcomings of specific
attacks, rather than inherent problems of active attacks as a general strategy. In order to
support this claim, we develop the notion of a robust active attack, which is an active
attack that is resilient to small perturbations of the social network graph.We formulate
the design of robust active attacks as an optimisation problem and we give definitions
of robustness for different stages of the active attack strategy. Moreover, we introduce
various heuristics to achieve these notions of robustness and experimentally show that
the new robust attacks are considerably more resilient than the original ones, while
remaining at the same level of feasibility.
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1 Introduction

Data is useful. Science heavily relies on data to (in)validate hypotheses, discover
new trends, tune up mathematical and computational models, etc. In other words,
data collection and analysis is helping to cure diseases, build more efficient and
environmentally-friendly buildings, take socially-responsible decisions, understand
our needs and those of the planet where we live. Despite these indisputable benefits,
it is also a fact that data contains personal and potentially sensitive information, and
this is where privacy and usefulness should be considered as a whole.

A massive source of personal information is currently being handled by online
social networks. People’s life is often transparently reflected on popular social net-
work platforms, such as Facebook, Twitter and Youtube. Therefore, releasing social
network data for further study comes with a commitment to ensure that users remain
anonymous. Anonymity, however, is remarkably hard to achieve. Even a simple social
graph, where an account consists of a user’s pseudonym only and its relation to other
accounts, allows users to be re-identified by just considering the number of relations
they have (Liu and Terzi 2008).

The use of pseudonyms is insufficient to guarantee anonymity. An attacker can
cross-reference information from other sources, such as the number of connections, to
find out the real user behind a pseudonym. Taking into account the type of information
an attacker may have, called background or prior knowledge, is thus a common prac-
tice in anonymisationmodels. In a social graph, the adversary’s backgroundknowledge
is regarded as any subgraph that is isomorphic to a subgraph in the original social graph.
Various works bound the adversary’s background knowledge to a specific family of
graphs. For example, the adversary model introduced by Liu and Terzi relies on know-
ing the degrees of the victim vertices, thus in this case the background knowledge is
fully defined by star graphs.1 Others assume that an adversary may know the sub-
graphs induced by the neighbours of their victims (Zhou and Pei 2008), an extended
vicinity (Zou et al. 2009), and so on.

A rather different notion of background knowledge was introduced by Backstrom
et al. (2007). They describe an adversary able to register several (fake) accounts to the
network, called sybil accounts. The sybil accounts establish links between themselves
and also with the victims. Therefore, in Backstrom et al.’s attack to a social graph
G = (V , E), the adversary’s background knowledge is the induced subgraph formed
by the sybil accounts in G joined with the connections to the victims.

The adversary introduced by Backstrom et al. is said to be active, because he
influences the structure of the social network. Previous authors have claimed that active
attacks are either unfeasible or detectable. Such a claim is based on two observations.
First, inserting many sybil nodes is hard, and they may be detected and removed by
sybil detection techniques (Narayanan and Shmatikov 2009). Second, active attacks
have been reported to suffer from low resilience, in the sense that the attacker’s ability
to successfully recover the sybil subgraph and re-identify the victims is easily lost after
a relatively small number of (even arbitrary) changes are introduced in the network (Ji
et al. 2015; Mauw et al. 2016, 2018a, b). As a consequence, active attacks have been

1 A star graph is a tree of depth one.
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largely overlooked in literature. Backstrom et al. argue for the feasibility of active
attacks, showing that proportionally few sybil nodes (in the order of log2 n nodes for
networks of order n) are sufficient for compromising any legitimate node. This feature
of active attacks is relevant in view of the fact that sybil defence mechanisms do not
attempt to remove every sybil node, but to limit their number to no more than log2 n
(Yu et al. 2006, 2008), which entails that sufficiently capable sybil subgraphs are
likely to go unnoticed by sybil defences. The second claim, that of lack of resilience
to noisy releases, is the main focus of this work.

Contributions In this paper we show that active attacks do constitute a serious threat
for privacy-preserving publication of social graphs. We do so by proposing the first
active attack strategy that features two key properties. Firstly, it can effectively re-
identify users with a small number of sybil accounts. Secondly, it is resilient, in the
sense that it resists not only the introduction of reasonable amounts of noise in the
network, but also the application of anonymisation algorithms specifically designed to
counteract active attacks. The newattack strategy is based on newnotions of robustness
for the sybil subgraph and the set of fingerprints, as well as noise-tolerant algorithms
for sybil subgraph retrieval and re-identification. The comparison of the robust active
attack strategy to the original active attack is facilitated by the introduction of a novel
framework of study, which views an active attack as an attacker–defender game.

The remainder of this paper is structured as follows. Section 2 examines the liter-
ature on social network privacy with a clear focus on active attacks. As part of the
problem formulation, we enunciate our adversarial model in the form of an attacker–
defender game in Sect. 3. Then, the new notions of robustness are introduced in Sect. 4,
and their implementation is discussed in Sect. 5. Finally, we experimentally evaluate
our proposal in Sect. 6 and give our conclusions in Sect. 7.

2 Related work

Privacy attacks on social networks exploit structural knowledge about the victims for
re-identifying them in a released version of the social graph. These attacks can be
divided in two categories, according to the manner in which the adversary obtains the
knowledge used to re-identify the victims. On the one hand, passive attacks rely on
existing knowledge,which can be collected frompublicly available sources, such as the
public view of another social network where the victims are known to have accounts.
The use of this type of information was demonstrated by Narayanan and Shmatikov
(2009), who used information from Flickr to re-identify users in a pseudonymised
Twitter graph.

On the other hand, active attacks rely on the ability to alter the structure of the social
graph, in such a way that the unique structural properties allowing to re-identify the
victims after publication are guaranteed to hold, and to be known by the adversary. As
we discussed previously, the active attack methodology was introduced by Backstrom
et al. (2007). They proposed to use sybil nodes to create re-identifiable patterns for
the victims, in the form of fingerprints defined by sybil-to-victim edges. Under this
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strategy, they proposed two attacks, the walk-based attack and the cut-based attack.
The difference between both attacks lies in the structure given to the sybil subgraph for
facilitating its retrieval after publication. In the walk-based attack, a long path linking
all the sybil nodes in a predefined order is created, with remaining inter-sybil edges
randomly generated. In the cut-based attack, a subset of the sybil nodes are guaran-
teed to be the only cut vertices linking the sybil subgraph and the rest of the graph.
Interestingly, Backstrom et al. also study a passive version of these attacks, where fin-
gerprints are used as identifying information, but no sybil nodes are inserted. Instead,
they model the situation where legitimate users turn rogue and collude to share their
neighbourhood information in order to retrieve their own weakly induced subgraph
and re-identify some of their remaining neighbours. However, the final conclusion
of this study is that the active attack is more capable because sybil nodes can better
guarantee to create a uniquely retrievable subgraph and unique fingerprints.

A hybrid attack strategy was proposed by Peng et al. (2012, 2014). This attack
is composed of two stages. First, a small-scale active attack is used to re-identify an
initial set of victims, and then a passive attack is used to iteratively enlarge the set of
re-identified victims with neighbours of previously re-identified victims. Because of
the order in which the active and the passive phases are executed, the success of the
initial active attack is critical to the entire attack. Beyond that interplay between active
and passive attacks, Peng et al. do not introduce improvements over the original active
attack strategy.

There exist a large number of anonymisation methods for the publication of social
graphs that can resist privacy attacks, as those described previously. They can be
divided into three categories: those that produce a perturbed version of the original
graph (Liu and Terzi 2008; Zhou and Pei 2008; Zou et al. 2009; Cheng et al. 2010;
Lu et al. 2012; Casas-Roma et al. 2013, 2017; Chester et al. 2013; Wang et al. 2014;
Ma et al. 2015; Salas and Torra 2015; Rousseau et al. 2017), those that generate a
new synthetic graph sharing some statistical properties with the original graph (Hay
et al. 2008; Mittal et al. 2013; Liu and Mittal 2016; Jorgensen et al. 2016), and those
that output some aggregate statistic of the graph without releasing the graph itself, e.g.
differentially private degree correlation statistics (Sala et al. 2011), degree distributions
(Karwa and Slavković 2012), subgraph counts (Zhang et al. 2015), etc. Active attacks,
both the original formulation and the robust version presented in this paper, are relevant
to the first type of releases. In this context, a number of methods have been proposed
aiming to transform the graph into a new one satisfying some anonymity property
based on the notion of k-anonymity (Samarati 2001; Sweeney 2002). Examples of
this type of anonymity properties for passive attacks are k-degree anonymity (Liu and
Terzi 2008), k-neighbourhood anonymity (Zhou and Pei 2008) and k-automorphism
(Zou et al. 2009). For the case of active attacks, the notion of (k, �)-anonymity was
introduced by Trujillo-Rasua and Yero (2016). A (k, �)-anonymous graph guarantees
that an active attacker with the ability to insert up to � sybil nodes in the network will
still be unable to distinguish any user from at least other k − 1 users, in terms of their
distances to the sybil nodes. Several relaxations of the notion of (k, �)-anonymity were
introduced byMauwet al. (2018b). The notion of (k, �)-adjacency anonymity accounts
for the unlikelihood of the adversary to know all distances in the original graph,
whereas (k, ΓG,�)-anonymity models the protection of the victims only from vertex
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subsets with a sufficiently high re-identification probability and (k, ΓG,�)-adjacency
anonymity combines both criteria.

Anonymisation methods based on the notions of (k, �)-anonymity, (k, ΓG,�)-
anonymity and (k, ΓG,�)-adjacency anonymity were introduced byMauw et al. (2016,
2018a, b). As we discussed above, despite the fact that these methods only give a theo-
retical privacy guarantee against adversaries with the capability of introducing a small
number of sybil nodes, empirical results show that they are in fact capable of thwarting
attacks leveraging larger numbers of sybil nodes. These results are in line with the
observation that random perturbations also thwart active attacks in their original for-
mulation (Narayanan and Shmatikov 2009; Ji et al. 2015). In contrast, our robust active
attack strategy performs significantly better in the presence of random perturbation,
as we demonstrate in Sect. 6.

In the context of obfuscation methods, which aim to publish a new version of
the social graph with randomly added perturbations, Xue et al. (2012) assess the
possibility of the attacker leveraging the knowledge about the noise generation to
launch what they call a probabilistic attack. In their work, Xue et al. provided accurate
estimators for several graph parameters in the noisy graphs, to support the claim that
useful computations can be conducted on the graphs after adding noise. Among these
estimators, they included one for the degree sequence of the graph. Then, noting that
an active attacker can indeed profit from this estimator to strengthen the walk-based
attack, they show that after increasing the perturbation by a sufficiently small amount
this attack also fails. Although the probabilistic attack presented by Xue et al. features
some limited level of noise resilience, it is not usable as a general strategy, because it
requires the noise to followa specific distribution and the parameters of this distribution
to be known by the adversary. Our definition of robust attack makes no assumptions
about the type of perturbation applied to the graph. It is alsoworth noting, in the context
of noise addition methods, that anonymisation algorithms based on privacy properties
for passive attacks, such as k-degree anonymity or k-neighbourhood anonymity, can
in some cases thwart an active attack. This may happen if such a method introduces a
sufficiently large amount of changes in the graph. However, these anonymity notions
do not offer formal privacy guarantees against active attacks, because they target
adversary models based on different forms of background knowledge. In other words,
if some of these algorithms happen to thwart an active attack, it will be a side effect of
the noise that it introduced rather than a consequence of the privacy property imposed
on the graph.

Finally, we point out that the active attack strategy shares some similarities with
graph watermarking methods (Collberg et al. 2003; Zhao et al. 2015; Eppstein et al.
2016). The purpose of graph watermarking is to release a graph containing embedded
instances of a small subgraph, the watermark, that can be easily retrieved by the graph
publisher, while remaining imperceptible to others and being hard to remove or distort.
Note that the goals of the graph owner and the adversary are to some extent inverted in
graph watermarking, with respect to active attacks. Moreover, since the graph owner
knows the entire graph, he can profit from this knowledge for building the watermark.
However, during the sybil subgraph creation phase of an active attack, only a partial
view of the social graph is available to the attacker. The next section will make it easier
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to understand the exact limitations and capabilities of the active adversary, as well as
those of the defender.

3 Adversarial model

We design a game between an attackerA and a defenderD. The goal of the attacker is
to identify the victim nodes after pseudonymisation and transformation of the graph
by the defender. We first introduce the necessary graph theoretical notation, and then
formulate the three stages of the attacker–defender game.

3.1 Notation and terminology

We use the following standard notation and terminology. Additional notation that may
be needed in other sections of the paper will be introduced as needed.

– A graph G is represented as a pair (V , E), where V is a set of vertices (also called
nodes) and E ⊆ V × V is a set of edges. The vertices of G are denoted by VG
and its edges by EG . As we will only consider undirected graphs, we will consider
an edge (v,w) as an unordered pair. We will use the notation G for the set of all
graphs.

– An isomorphism between two graphsG = (V , E) andG ′ = (V ′, E ′) is a bijective
function ϕ: V → V ′, such that ∀v1, v2 ∈ V : (v1, v2) ∈ E ⇐⇒ (ϕ(v1), ϕ(v2)) ∈
E ′. Two graphs are isomorphic, denoted by G 	ϕ G ′, or briefly G 	 G ′, if there
exists an isomorphism ϕ between them. Given a subset of vertices S ⊆ V , we will
often use ϕS to denote the set {ϕ(v)|v ∈ S}.

– The set of neighbours of a set of nodes W ⊆ V is defined by NG(W ) = {v ∈
V \W | ∃w ∈ W : (v,w) ∈ E ∨ (w, v) ∈ E}. If W = {w} is a singleton set, we
will write NG(w) for NG({w}). The degree of a vertex v ∈ V , denoted as δG(v),
is defined as δG(v) = |NG(v)|.

– Let G = (V , E) be a graph and let S ⊆ V . The weakly-induced subgraph of S
in G, denoted by 〈S〉wG , is the subgraph of G with vertices S ∪ NG(S) and edges
{(v, v′) ∈ E | v ∈ S ∨ v′ ∈ S}).

3.2 The attacker–defender game

The attacker–defender game starts with a graph G = (V , E) representing a snapshot
of a social network. The attacker knows a subset of the users, but not the connections
between them. This is a common scenario in online social networks such as Facebook,
where every user has the choice of not showing her friend list, even to her friends or
potential adversaries who, in principle, do know that the victim is enrolled in the
network. In other types of social networks, e.g. in e-mail networks such as Gmail
or messaging networks such as WhatsApp, the existence of relations (determined in
this case by the action of exchanging messages) is by default not known, even if the
adversary knows the victim’s e-mail address or phone number. Figure 1a exemplifies
the initial state of a small network, where capital letters represent the real identities
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Fig. 1 The attacker–defender game

of the users and dotted lines represent the relations existing between them, which are
not known to the adversary.

Before a pseudonymised graph is released, the attacker manages to enrol sybil
accounts in the network and establish links with the victims, as depicted in Fig. 1b,
where sybil accounts are represented by dark-coloured nodes and the edges known to
the adversary (because they were created by her) are represented by solid lines. The
goal of the attacker is to later re-identify the victims in order to learn information about
them. Coming back to the real-life scenarios discussed before, creating accounts in
Facebook or Gmail is trivial, and social engineering may be used to get the victims to
accept a friend request or answer an e-mail.

When the defender decides to publish the graph, she anonymises it by removing the
real user identities, or replacing them with pseudonyms, and possibly perturbing the
graph. In Fig. 1c we illustrate the pseudonymisation process of the graph in Fig. 1b.
The pseudonymised graph contains information that the attacker wishes to know, such
as the existence of relations between users, but the adversary cannot directly learn
this information, as the identities of all the vertices are hidden, including those of the
sybil nodes themselves. Thus, after the pseudonymised graph is published, the attacker
analyses the graph to first re-identify her own sybil accounts, and then the victims (see
Fig. 1d). This allows her to acquire new information, which was supposed to remain
private, such as the fact that E and F are friends on Facebook, or e-mail each other via
Gmail. Note that by “publishing an anonymised graph”, we do not necessarily mean
publishing the entire graph underlying large networks such as Facebook or Gmail.
This is unlikely to occur in practice. However, sanitised samples from graphs of this
type, covering users in a particular group, such as students of a particular school,
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have indeed been published in the past for research purposes (Guimera et al. 2003;
Panzarasa et al. 2009).

In what follows, we formalise the three stages of the attacker–defender game,
assuming an initial graph G = (V , E).

1. Attacker subgraph creation The attacker constructs a set of sybil nodes S =
{x1, x2, . . . , x|S|}, such that S ∩ V = ∅ and a set of edges F ⊆ (S × S) ∪ (S ×
V )∪ (V × S). It clearly follows that E ∩ F = ∅. We call G+ = (V ∪ S, E ∪ F) the
sybil-extended graph of G. The attacker does not know the complete graph G+,
but he knows 〈S〉wG+ , the weakly-induced subgraph of S in G+. We say that 〈S〉wG+
is the attacker subgraph. The attacker subgraph creation has two substages:

(a) Creation of inter-sybil connections A unique (with high probability) and
efficiently retrievable connection pattern is created between sybil nodes to
facilitate the attacker’s task of retrieving the sybil subgraph at the final stage.

(b) Fingerprint creation For a given victim vertex y ∈ NG+(S)\S, we call the
victim’s neighbours in S, i.e NG+(y) ∩ S, its fingerprint. Considering the set
of victim vertices Y = {y1, . . . , ym}, the attacker ensures that NG+(yi ) ∩ S �=
NG+(y j ) ∩ S for every yi , y j ∈ Y , i �= j .

2. Anonymisation The defender obtains G+ and constructs an isomorphism ϕ from
G+ to ϕG+. We call ϕG+ the pseudonymised graph. The purpose of pseudonymi-
sation is to remove all personally identifiable information from the vertices of G.
Next, given a non-deterministic procedure t that maps graphs to graphs, known by
bothA andD, the defender applies transformation t to ϕG+, resulting in the trans-
formed graph t(ϕG+). The procedure t modifies ϕG+ by adding and/or removing
vertices and/or edges.

3. Re-identificationAfter obtaining t(ϕG+), the attacker executes the re-identification
attack in two stages.

(a) Attacker subgraph retrieval Determine the isomorphism ϕ restricted to the
domain of sybil nodes S.

(b) Fingerprint matching Determine the isomorphism ϕ restricted to the domain
of victim nodes {y1, y2, . . . , ym}.

As established by the last step of the attacker–defender game, we consider the
adversary to succeed if she effectively determines the isomorphism ϕ restricted to the
domain of victim nodes {y1, y2, . . . , ym}. That is, when the adversary re-identifies all
victims in the anonymised graph.

4 Robust active attacks

This section formalises robust active attacks. We provide mathematical formulations,
in the form of optimisation problems, of the attacker’s goals in the first and third stages.
In particular, we address three of the subtasks that need to be accomplished in these
stages: fingerprint creation, attacker subgraph retrieval and fingerprint matching.
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4.1 Robust fingerprint creation

Active attacks, in their original formulation (Backstrom et al. 2007), aimed at re-
identifying victims in pseudonymised graphs. Consequently, the uniqueness of every
fingerprint was sufficient to guarantee success with high probability, provided that the
attacker subgraph is correctly retrieved. Moreover, several types of randomly gener-
ated attacker subgraphs can indeed be correctly and efficiently retrieved, with high
probability, after pseudonymisation. The low resilience reported for this approach
when the pseudonymised graph is perturbed by applying an anonymisation method
(Mauw et al. 2016, 2018a, b) or by introducing arbitrary changes (Ji et al. 2015),
comes from the fact that it relies on finding exact matches between the fingerprints
created by the attacker at the first stage of the attack and their images in t(ϕG+). The
attacker’s ability to find such exact matches is lost even after a relatively small number
of perturbations is introduced by t .

Our observation is that setting for the attacker the goal of obtaining the exact same
fingerprints in the perturbed graph is not only too strong, but more importantly, not
necessary. Instead, we argue that it is sufficient for the attacker to obtain a set of
fingerprints that is close enough to the original set of fingerprints, for some notion of
closeness. Given that a fingerprint is a set of vertices, we propose to use the cardinality
of the symmetric difference of two sets to measure the distance between fingerprints.
The symmetric difference between two sets X and Y , denoted by X�Y , is the set of
elements in X ∪ Y that are not in X ∩ Y . We use d(X ,Y ) to denote |X�Y |.

Our goal at this stage of the attack is to create a set of fingerprints satisfying the
following property.

Definition 1 (Robust set of fingerprints) Given a set of victims {y1, . . . , ym} and a
set of sybil nodes S in a graph G+, the set of fingerprints {F1, . . . , Fm} with Fi =
NG+(yi ) ∩ S is said to be robust if it maximises

min
1≤i< j≤m

{d(Fi , Fj )}. (1)

The property above ensures that the lower bound on the distance between any pair
of fingerprints is maximal. In what follows, we will refer to the lower bound defined
by Eq. (1) as minimum separation of a set of fingerprints. For example, in Fig. 1b, the
fingerprint of the vertex E with respect to the set of attacker vertices {1, 2, 3} is {2, 3},
and the fingerprint of the vertex F is {1}. This gives aminimum separation between the
two victim’s fingerprints equal to |{2, 3}�{1}| = |{1, 2, 3}| = 3, which is maximum.
Therefore, given attacker vertices {1, 2, 3}, the set of fingerprints {{2, 3}, {1}} is robust
for the set of victim nodes {E, F}.

Next we prove that, if the distance between each original fingerprint F and the
corresponding anonymised fingerprint ϕF is less than half the minimum separation,
then the distance between F and any other anonymised fingerprint, say ϕF ′, is strictly
larger than half the minimum separation.

Theorem 1 Let S be the set of sybil nodes, let {y1, . . . , ym} be the set of victims and let
{F1, . . . , Fm} be their fingerprintswithminimumseparation δ. Let F ′

i be the fingerprint
of ϕyi in the anonymised graph t(ϕG+), for i ∈ {1, . . . ,m}. Then,
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∀i ∈ {1, . . . ,m}: d(ϕFi , F
′
i ) < δ/2

�⇒ ∀i, j ∈ {1, . . . ,m}: i �= j �⇒ d(ϕFi , F
′
j ) > δ/2

Proof In order to achieve a contradiction, we assume that d(ϕFi , F ′
j ) ≤ δ/2 for

some i, j ∈ {1, . . . ,m} with i �= j . Because d(ϕFj , F ′
j ) < δ/2, we have

d(ϕFi , F ′
j )+d(ϕFj , F ′

j ) < δ. By the triangle inequalityweobtain thatd(ϕFi , ϕFj ) ≤
d(ϕFi , F ′

j ) + d(ϕFj , F ′
j ) < δ. Hence d(ϕFi , ϕFj ) is lower than the minimum sep-

aration of {F1, . . . , Fm}, which yields a contradiction given that d(ϕFi , ϕFj ) =
d(Fi , Fj ) ≥ δ. ��

We exploit Theorem 1 later in the fingerprint matching step through the following
corollary. If δ/2 is the maximum distance shift from an original fingerprint Fi of yi
to the fingerprint F ′

i of yi in the perturbed graph, then for every F ∈ {F ′
1, . . . , F

′
m} it

holds that d(F, ϕFi ) < δ/2 ⇐⇒ F = ϕFi . In other words, given a set of victims
for which a set of fingerprints needs to be defined, the larger the minimum separation
of these fingerprints, the larger the number of perturbations that can be tolerated in
t(ϕG+), while still being able to match the perturbed fingerprints to their correct
counterparts in G+.

As illustrated earlier in our running example, the fingerprints of E and F are {2, 3}
and {1}, respectively, which gives a minimum separation of δ = 3. Theorem 1 states
that, if after anonymisation of the graph, the fingerprints of E and F become, say {2}
and {1, 2}, respectively, then it must hold that |{2, 3}�{1, 2}| > 3/2 and |{1}�{2}| >

3/2, while |{2, 3}�{2}| < 3/2 and |{1}�{1, 2}| < 3/2. This makes it easy tomatch the
original fingerprint, say {2, 3}, with the correct perturbed fingerprint {2} by calculating
their distance and verifying that it remains below the threshold δ/2. In Sect. 5.1, we
will describe an efficient algorithm for addressing this optimisation problem.

4.2 Robust attacker subgraph retrieval

Let C = {〈X〉wt(ϕG+)
| X ⊆ Vt(ϕG+), |X | = |S|, 〈X〉wt(ϕG+)

∼= 〈S〉wG+} be the set of all
subgraphs isomorphic to the attacker subgraph 〈S〉wG+ and weakly induced in t(ϕG+)

by a vertex subset of cardinality |S|. The original active attack formulation assumes
that |C| = 1 and that the subgraph in C is the image of the attacker subgraph after
pseudonymisation. This assumption, for example, holds on the pseudonymised graph
in Fig. 1c, but it rarely holds on perturbed graphs. In fact, C becomes empty by simply
adding an edge between any pair of attacker nodes, whichmakes the attack fail quickly
when increasing the amount of perturbation.

To account for the occurrence of perturbations in releasing t(ϕG+),we introduce the
notion of robust attacker subgraph retrieval. Rather than limiting the retrieval process to
finding an exact match of the original attacker subgraph, we consider that it is enough
to find a sufficiently similar subgraph, thus adding some level of noise-tolerance.
By “sufficiently similar”, we mean a graph that minimises some graph dissimilarity
measure Δ:G × G → R

+ with respect to 〈S〉wG+ . The problem is formulated as
follows.
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Definition 2 (Robust attacker subgraph retrieval problem) Given a graph dissimilarity
measure Δ:G × G → R

+, and a set S of sybil nodes in the graph G+, find a set
S′ ⊆ Vt(ϕG+) that minimises

Δ
(
〈S′〉wt(ϕG+)

, 〈S〉wG+
)

. (2)

A number of graph (dis)similarity measures have been proposed in the literature (San-
feliu and Fu 1983; Bunke 2000; Backstrom et al. 2007; Fober et al. 2013; Mallek et al.
2015). Commonly, the choice of a particular measure is ad hoc, and depends on the
characteristics of the graphs being compared. In Sect. 5.2, we will describe a measure
that is efficiently computable and exploits the known structure of 〈S〉wG+ , by separately
accounting for inter-sybil and sybil-to-non-sybil edges. Along with this dissimilarity
measure, we provide an algorithm for constructively finding a solution to the problem
enunciated in Definition 2.

4.3 Robust fingerprint matching

As established by the attacker–defender game discussed in Sect. 3, fingerprint match-
ing is the last stage of the active attack. Because it clearly relies on the success of the
previous steps, we make the following two assumptions upfront.

1. We assume that the robust sybil subgraph retrieval procedure succeeds, i.e. that
ϕS = S′ where S′ is the set of sybil nodes obtained in the previous step.

2. Given the original set of victims Y , we assume that the set of vertices in the
neighbourhood of S′ contains those in ϕY , i.e. ϕY ⊆ Nt(ϕG+)(S

′)\S′, otherwise S′
is insufficient information to achieve the goal of re-identifying all victim vertices.

Given the correct set of sybil nodes S′ and a set of potential victims Y ′ =
{y′

1, . . . , y
′
n} = Nt(ϕG+)(S

′)\S′, the re-identification process consists in determin-
ing the isomorphism ϕ restricted to the vertices in Y ′. Next we define re-identification
as an optimisation problem, and after thatwe provide sufficient conditions underwhich
a solution leads to correct identification.

Definition 3 (Robust re-identification problem) Let S and S′ be the set of sybil nodes
in the original and anonymised graph, respectively. Let {y1, . . . , ym} be the victims
in G+ with fingerprints F1 = NG+(y1) ∩ S, . . . , Fm = NG+(ym) ∩ S. The robust
re-identification problem consists in finding an isomorphism φ: S → S′ and subset
{z1, . . . , zm} ⊆ Nt(ϕG+)(S

′)\S′ that minimises

‖(d(φF1, Nt(ϕG+)(z1) ∩ S′), . . . , d(φFm, Nt(ϕG+)(zm) ∩ S′))‖∞. (3)

where ‖·‖∞ stands for the infinity norm.

Optimising the infinity norm gives the lowest upper bound on the distance between
an original fingerprint and the fingerprint of a vertex in the perturbed graph. This is
useful towards the goal of correctly re-identifying all victims. However, should the
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adversary aims at re-identifying at least one victim with high probability, then other
plausible objective functions can be used, such as the Euclidean norm.

As stated earlier, our intention is to exploit the result of Theorem 1, provided that
the distance between original and perturbed fingerprints is lower than δ/2, where δ

is the minimum separation of the original set of fingerprints. This is one out of three
conditions that we prove sufficient to infer a correct mapping ϕ from a solution to the
robust re-identification problem, as stated in the following result.

Theorem 2 Letφ: S → S′ and {z1, . . . , zm} be a solution to the robust re-identification
problem defined by the set of sybil nodes S in the original graph G+, the set of sybil
nodes S′ in the anonymised graph t(ϕG+), and the set of victims {y1, . . . , ym} in
G+. Let {F1, . . . , Fm} be the set of fingerprints of {y1, . . . , ym} and δ its minimum
separation. If the following three conditions hold:
1. ∀x ∈ S:φ(x) = ϕ(x)
2. {ϕ(y1), . . . , ϕ(ym)} = Nt(ϕG+)(S

′)\S′
3. For every yi ∈ {y1, . . . , ym}, d(ϕFi , F ′

i ) < δ/2 where F ′
i = Nt(ϕG+)(ϕ(yi )) ∩ S′,

then ϕ(yi ) = zi for every i ∈ {1, . . . ,m}.
Proof From the third condition we obtain that the correct mapping ϕ satisfies

max{d(ϕF1, F
′
1), . . . , d(ϕFm, F ′

m)} < δ/2.

Now, the second condition gives that {ϕ(y1), . . . , ϕ(ym)} = {z1, . . . , zm}. This
means that, for every i ∈ {1, . . . ,m}, F ′

i = Nt(ϕG+)(z j )∩S′ for some j ∈ {1, . . . ,m}.
Let f be an automorphism in {1, . . . ,m} such that F ′

i = Nt(ϕG+)(z f (i)) ∩ S′ for
every i ∈ {1, . . . ,m}. We use f −1 to denote the inverse of f . Then, considering
that φFi = ϕFi for every i ∈ {1, . . . ,m} (first condition), we obtain the following
equalities.

max
{
d(φF1, Nt(ϕG+)(z1) ∩ S′), . . . , d(φFm, Nt(ϕG+)(zm) ∩ S′)

}

= max
{
d(ϕF1, Nt(ϕG+)(z1) ∩ S′), . . . , d(ϕFm, Nt(ϕG+)(zm) ∩ S′)

}

= max
{
d(ϕF1, F

′
f −1(1)), . . . , d(ϕFm, F ′

f −1(m)
)
}

Considering Theorem 1, we obtain that for every i, j ∈ {1, . . . ,m} with i �= j
it holds that d(ϕFi , F ′

j ) > δ/2. Therefore, if f is not the trivial automorphism, i.e.
f (i) = i ∀i ∈ {1, . . . ,m}, then max{d(ϕF1, F ′

f −1(1)
), . . . , d(ϕFm, F ′

f −1(m)
)} > δ/2.

This implies that,

max{d(φF1, Nt(ϕG+)(z1) ∩ S′), . . . , d(φFm, Nt(ϕG+)(zm) ∩ S′)} > δ/2,

However, this contradicts the optimality of the solution φ and {z1, . . . , zm}. There-
fore, f must be the trivial automorphism, which concludes the proof. ��

In Theorem 2, the first condition states that the adversary succeeded on correctly
identifying each of her own sybil nodes in the perturbed graph. That is to say, the
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adversary retrieved the mapping ϕ restricted to the set of victims. This is clearly an
important milestone in the attack as victim’s fingerprints are based on such mapping.
The second condition says that the neighbours of the sybil vertices remained the same
after perturbation. As a result, the adversary knows that {z1, . . . , zm} is the victim
set in the perturbed graph, but she does not know yet the isomorphism ϕ restricted
to the set of victims {y1, . . . , ym}. Lastly, the third condition states that δ/2 is an
upper bound on the distance between a victim’s fingerprints in the pseudonymised
graph ϕG+ and the perturbed graph t(ϕG+), where δ is the minimum separation
between the victim’s fingerprints. In other words, the transformation method did not
perturb a victim’s fingerprint “too much”. If those three conditions hold, Theorem 2
shows that the isomorphism ϕ restricted to the set of victims {y1, . . . , ym} is the trivial
isomorphism onto {z1, . . . , zm}.

Summing up In this section we have enunciated the three problem formulations for
robust active attacks, namely:

– Creating a robust set of fingerprints.
– Robustly retrieving the attacker subgraph in the perturbed graph.
– Robustly matching the original fingerprints to perturbed fingerprints.

Additionally, we have defined a set of conditions under which finding a solution
for these problems guarantees a robust active attack to be successful. Each of the
three enunciated problem has been stated as an optimisation task. Since obtaining
exact solutions to these problems is computationally expensive, in the next section we
introduce heuristics for finding approximate solutions.

5 Heuristics for an approximate instance of the robust active attack
strategy

In this section we present the techniques for creating an instance of the robust active
attack strategy described in the previous section. Since finding exact solutions to
the optimisation problems in Eqs. (1)–(3) is computationally expensive, we provide
efficient approximate heuristics.

5.1 Attacker subgraph creation

For creating the internal links of the sybil subgraph,wewill use the same strategy as the
so-calledwalk-based attack (Backstrom et al. 2007), which is the most widely-studied
instance of the original active attack strategy. By doing so, we make our new attack
as (un)likely as the original to have the set of sybil nodes removed by sybil defences.
Thus, for the set of sybil nodes S, the attack will set an arbitrary (but fixed) order
among the elements of S. Let x1, x2, . . . , x|S| represent the vertices of S in that order.
The attack will firstly create the path x1x2 . . . x|S|, whereas the remaining inter-sybil
edges are independently created with probability 0.5.

For creating the set of fingerprints, we will apply a greedy algorithm for max-
imising the minimum separation defined in Eq. (1). The idea behind the algorithm
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Fig. 2 The fingerprint graphs (P({1, 2, 3})\{∅}, {(X , Y ) | X , Y ∈ P({1, 2, 3})\{∅}, X �= Y , d(X , Y ) ≤
i}) for a i = 1 and b i = 2

is to arrange all possible fingerprints in a grid-like auxiliary graph, in such a way
that nodes representing similar fingerprints are linked by an edge, and nodes repre-
senting well-separated fingerprints are not. Looking for a set of maximally separated
fingerprints in this graph reduces to a well-known problem in graph theory, namely
that of finding an independent set. An independent set I of a graph G is a subset of
vertices from G such that E〈I 〉G = ∅, that is, all vertices in I are pairwise not linked
by edges. If the graph is constructed in such a way that every pair of fingerprints
whose distance is less then or equal to some value i , then an independent set repre-
sents a set of fingerprints with a guaranteed minimum separation of at least i + 1.
For example, the fingerprint graph shown in Fig. 2a represents the set of fingerprints
{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, with edges linking all pairs X ,Y of fin-
gerprints such that d(X ,Y ) ≤ 1, whereas Fig. 2b represents an analogous graphwhere
edges link all pairs X ,Y of fingerprints such that d(X ,Y ) ≤ 2. Note that the vertex set
of both graphs is the power set of {1, 2, 3}, except for the empty set, which does not
represent a valid fingerprint, as every victimmust be linked to at least one sybil node. A
set of fingerprints built from an independent set of the first graph may have minimum
separation 2 (e.g. {{1}, {2}, {1, 2, 3}}) or 3 (e.g. {{1, 3}, {2}}), whereas a set of finger-
prints built from an independent set of the second graph will haveminimum separation
3 (the independent sets of this graph are {{1}, {2, 3}}, {{1, 2}, {3}} and {{1, 3}, {2}}).

Our fingerprint generation method iteratively creates increasingly denser finger-
print graphs. The vertex set of every graph is the set of possible fingerprints, i.e. all
subsets of S except the empty set. In the i th graph, every pair of nodes X ,Y such that
d(X ,Y ) ≤ i will be linked by an edge. Thus, an independent set of this graph will
be composed of nodes representing fingerprints whose minimum separation is at least
i +1. A maximal2 independent set of the fingerprint graph is computed in every itera-

2 The maximum independent set problem is NP-hard, so it is infeasible to exactly compute a maximum
independent set of every graph. Alternatively, we use a well known greedy approximation, which consists in
iteratively finding a minimum-degree non-isolated vertex, and removing all its neighbours, until obtaining
an empty graph, whose vertex set is an independent set of the original graph.
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tion, to have an approximation of a maximum-cardinality set of uniformly distributed
fingerprints with minimum separation at least i + 1. For example, in the graph of
Fig. 2a, the method will find {{1}, {2}, {3}, {1, 2, 3}} as a maximum-cardinality set of
uniformly distributed fingerprints with minimum separation 2; whereas for the graph
of Fig. 2b, themethodwill find, for instance, {{1}, {2, 3}} as amaximum-cardinality set
of uniformly distributed fingerprints with minimum separation 3. Themethod receives
as a parameter a lower bound b on the number of fingerprints to generate. It iterates
until the maximal independent set Ii obtained at the i th step satisfies |Ii | < b, and
gives Ii−1 as output. Clearly, bmust satisfy b ≥ m, as every victim should be assigned
a different fingerprint. Note that the algorithm does not guarantee to obtain exactly as
many fingerprints as victims, so the output Ii−1 is used as a pool, fromwhich the attack
randomly draws m fingerprints. Algorithm 1 lists the pseudo-code of this method.

Algorithm 1 Given a set S of sybil nodes and a positive integer b, compute a uniformly
distributed set of fingerprints F ⊆ P(S) such that |F | ≥ b.

1: i ← 1
2: G(1)

F ← (P(S)\∅, {(X , Y ) | X , Y ∈ P(S)\∅, X �= Y , d(X , Y ) ≤ 1})
3: I1 ← MaxIndSet

(
G(1)
F

)

4: repeat
5: F ← Ii
6: i ← i + 1
7: G(i)

F ← (P(S)\∅, {(X , Y ) | X , Y ∈ P(S)\∅, X �= Y , d(X , Y ) ≤ i})
8: Ii ← MaxIndSet

(
G(i)
F

)

9: until |Ii | < b
10: return F

1: function MaxIndSet(G = (VG , EG ))
2: repeat
3: v ← argminv∈VG ,δG (v) �=0 {δG (v)}
4: EG ← EG\{(v, w) | w ∈ NG (v)}
5: VG ← VG\NG (v)

6: until EG = ∅
7: return VG
8: end function

InAlgorithm1, the order of every graphG(i)
F is 2|S|−1. Thus, the time complexity of

every graph construction isO
((
2|S|)2) = O (

22|S|). Moreover, the greedy algorithm

for finding a maximal independent set runs in quadratic time with respect to the order
of the graph, so in this case its time complexity is also O (

22|S|). Finally, since the
maximum possible distance between a pair of fingerprints is |S|, the worst-case time
complexity of Algorithm 1 isO (|S| · 22|S|). This worst case occurs when the number
of victims is very small, as the number of times that steps 4–9 of the algorithm are
repeated is more likely to approach |S|. While this time complexity may appear as
excessive at first glance, we must consider that, for a social graph of order n, the
algorithm will be run for sets of sybil nodes having at most cardinality |S| = log2 n.
Thus, in terms of the order of the social graph, the worst-case running time will be
O(n2 log2 n).
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5.2 Attacker subgraph retrieval

Asdiscussed in Sect. 4.2, in the original formulation of active attacks, the sybil retrieval
phase is based on the assumption that the attacker subgraph can be uniquely and exactly
matched to a subgraph of the released graph. This assumption is relaxed by the for-
mulation of robust attacker subgraph retrieval given in Definition 2, which accounts
for the possibility that the attacker subgraph has been perturbed. The problem formu-
lation given in Definition 2 requires a dissimilarity measure Δ to compare candidate
subgraphs to the original attacker subgraph. We will introduce such a measure in this
section. Moreover, the problem formulation requires searching the entire power set of
Vt(ϕG+), which is infeasible in practice. In order to reduce the size of the search space,
we will establish a perturbation threshold ϑ , and the search procedure will discard any
candidate subgraph X such that Δ(〈X〉wt(ϕG+)

, 〈S〉wG+) > ϑ .
We now define the dissimilarity measure Δ that will be used. To that end, some

additional notation will be necessary. For a graph H , a vertex set V ⊆ VH , and a
complete order ≺⊆ V × V , we will define the vector v≺ = (vi1 , vi2 , . . . , vi|V |), as
the one satisfying vi1 ≺ vi2 ≺ · · · ≺ vi|V | . When the order ≺ is fixed or clear from
the context, we will simply refer to v≺ as v. Moreover, for the sake of simplicity in
presentation, wewill in some cases abuse notation and use v for V , 〈v〉wH for 〈V 〉wH , and
so on. The search procedure assumes the existence of a fixed order ≺S on the original
set of sybil nodes S, which is established at the attacker subgraph creation stage, as
discussed in Sect. 5.1. In what follows, we will use the notation s = (x1, x2, . . . , x|S|)
for the vector s≺S .

Given the original attacker subgraph 〈S〉wG+ and a subgraph of t(ϕG+) weakly
induced by a candidate vector v = (v1, v2, . . . , v|S|), the dissimilarity measure Δ will
compare 〈v〉wt(ϕG+)

to 〈S〉wG+ according to the following criteria:

– The set of inter-sybil edges of 〈S〉wG+ will be compared to that of 〈v〉wt(ϕG+)
. This is

equivalent to comparing E(〈S〉G+) and E(〈v〉t(ϕG+)). To that end, we will apply
to 〈S〉G+ the isomorphism ϕ′: 〈S〉G+ → 〈v〉t(ϕG+), which makes ϕ′(xi ) = vi for
every i ∈ {1, . . . , |S|}. The contribution of inter-sybil edges to Δ will thus be
defined as

Δsyb

(
〈S〉wG+ , 〈v〉wt(ϕG+)

)
= ∣∣E(ϕ′〈S〉G+)�E(〈v〉t(ϕG+))

∣∣ , (4)

that is, the symmetric difference between the edge sets of ϕ′〈S〉G+ and 〈v〉t(ϕG+).
– The set of sybil-to-non-sybil edges of 〈S〉wG+ will be compared to that of 〈v〉wt(ϕG+)

.
Unlike the previous case, where the orders ≺S and ≺v allow to define a trivial
isomorphism between the induced subgraphs, in this case creating the appropriate
matching would be equivalent to solving the re-identification problem for every
candidate subgraph, which is considerably inefficient. In consequence, we intro-
duce a relaxed criterion, which is based on the numbers of non-sybil neighbours of
every sybil node, which we refer to asmarginal degrees. The marginal degree of a

sybil node x ∈ S is thus defined as δ′
〈S〉w

G+
(x) =

∣∣∣N〈S〉w
G+

(x)\S
∣∣∣. By analogy, for a
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x1 x2 x3 x4 x5
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y4

v1 v2 v3 v4 v5
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z4z5

〈S〉w
G+ 〈v〉w

t(ϕG+)

Fig. 3 An example of possible graphs 〈S〉w
G+ and 〈v〉w

t(ϕG+)
. Vertices in S and v are coloured in gray

vertex v ∈ v, we define δ′
〈v〉w

t(ϕG+)

(v) =
∣∣∣∣N〈v〉w

t(ϕG+)

(v)\v
∣∣∣∣. Finally, the contribution

of sybil-to-non-sybil edges to Δ will be defined as

Δneigh

(
〈S〉wG+ , 〈v〉wt(ϕG+)

)
=

|S|∑
i=1

∣∣∣∣δ′
〈v〉w

t(ϕG+)

(vi ) − δ′
〈S〉w

G+
(xi )

∣∣∣∣ (5)

– The dissimilarity measure combines the previous criteria as follows:

Δ
(
〈S〉wG+ , 〈v〉wt(ϕG+)

)
= Δsyb

(
〈S〉wG+ , 〈v〉wt(ϕG+)

)
+ Δneigh

(
〈S〉wG+ , 〈v〉wt(ϕG+)

)
(6)

Figure 3 shows an example of the computation of this dissimilarity measure,
with s = (x1, x2, x3, x4, x5) and v = (v1, v2, v3, v4, v5). In the figure, we can
observe that (x1, x3) ∈ E〈S〉w

G+
and (v1, v3) /∈ E〈v〉w

t(ϕG+)

, whereas (x3, x4) ∈ E〈S〉w
G+

and (v3, v4) /∈ E〈v〉w
t(ϕG+)

. In consequence, Δsyb

(
〈S〉wG+ , 〈v〉wt(ϕG+)

)
= 2. More-

over, we can also observe that δ′
〈S〉w

G+
(x2) = |∅| = 0, whereas δ′

〈v〉w
t(ϕG+)

(v2) =
|{y′

1, y
′
5}| = 2. Since δ′

〈S〉w
G+

(xi ) = δ′
〈v〉w

t(ϕG+)

(vi ) for i ∈ {1, 3, 4, 5}, we have

Δneigh

(
〈S〉wG+ , 〈v〉wt(ϕG+)

)
= 2, so Δ

(
〈S〉wG+ , 〈v〉wt(ϕG+)

)
= 4. It is simple to see

that the value of the dissimilarity function is dependent on the order imposed by the
vector v. For example, consider the vector v′ = (v5, v2, v3, v4, v1). We can verify3

3 We now have that (x1, x2) ∈ E〈S〉w
G+

and (v5, v2) /∈ E〈v′〉w
t(ϕG+)

; (x1, x3) ∈ E〈S〉w
G+

and (v5, v3) /∈
E〈v′〉w

t(ϕG+)

; (x2, x5) /∈ E〈S〉w
G+

and (v2, v1) ∈ E〈v′〉w
t(ϕG+)

; and (x3, x4) ∈ E〈S〉w
G+

whereas (v3, v4) /∈

E〈v′〉w
t(ϕG+)

. Moreover, now

∣∣∣∣∣δ
′
〈v′〉w

t(ϕG+)

(v5) − δ′
〈S〉w

G+
(x1)

∣∣∣∣∣ = 1,

∣∣∣∣∣δ
′
〈v′〉w

t(ϕG+)

(v2) − δ′
〈S〉w

G+
(x2)

∣∣∣∣∣ = 2

and

∣∣∣∣∣δ
′
〈v′〉w

t(ϕG+)

(v1) − δ′
〈S〉w

G+
(x5)

∣∣∣∣∣ = 1.
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that now Δsyb

(
〈S〉wG+ , 〈v′〉wt(ϕG+)

)
= 4, whereas Δneigh

(
〈S〉wG+ , 〈v′〉wt(ϕG+)

)
= 4, so

the dissimilarity value is now Δ
(
〈S〉wG+ , 〈v′〉wt(ϕG+)

)
= 8.

The search procedure assumes that the transformation t did not remove the image
of any sybil node from ϕG+, so it searches the set of cardinality-|S| permuta-
tions of elements from Vt(ϕG+), respecting the tolerance threshold. The method
is a breadth-first search, which analyses at the i th level the possible matches to
the vector (x1, x2, . . . , xi ) composed of the first i components of s. The toler-
ance threshold ϑ is used to prune the search tree. A detailed description of the
procedure is shown in Algorithm 2. Ideally, the algorithm outputs a unitary set
C̃∗ = {(v j1, v j2 , . . . , v j|S|)}, in which case the vector v = (v j1 , v j2 , . . . , v j|S|) is
used as the input to the fingerprint matching phase, described in the following sub-
section. If this is not the case, and the algorithm yields C̃∗ = {v1, v2, . . . , vt }, the
attack randomly picks an element vi ∈ C̃∗ and proceeds to the fingerprint matching
phase. Finally, if C̃∗ = ∅, the attack is considered to fail, as no re-identification is
possible.

To conclude the discussion of Algorithm 2, we point out that if it is executed
with ϑ = 0, then C̃∗ contains exactly the same candidate set that would be recov-
ered by the attacker subgraph retrieval phase of the original walk-based attack. In
fact, in choosing a value for the parameter ϑ , the practitioner must assess the trade-
off between the retrieval capability of the attack and its computational cost. On
the one hand, a low tolerance threshold leads to a fast execution of the retrieval
method, at the cost of a higher risk of failing to retrieve a largely perturbed sybil
subgraph. On the other hand, by making the tolerance threshold arbitrarily large,
one can guarantee that the sybil subgraph will not be discarded during the search
process.4 However, in this case the retrieval method may end-up performing a near-to-
exhaustive search, which is prohibitively expensive in terms of memory and execution
time.

Algorithm 2 Given the graphs G+ and t(ϕG+), the set of original sybil nodes S ⊆
VG+ , and the maximum distance threshold ϑ , obtain the set C̃∗ of equally-likely best
candidate sybil sets.

1: � Find suitable candidates to match x1
2: PartialCandidates1 ← ∅
3: d ← ϑ

4: for v ∈ Vt(ϕG+) do

5: if Δ
(
〈(x1)〉wG+ , 〈(v)〉w

t(ϕG+)

)
< d then

6: PartialCandidates1 ← {(v)}
7: d ← Δ

(
〈(x1)〉wG+ , 〈(v)〉w

t(ϕG+)

)

8: else if Δ
(
〈(x1)〉wG+ , 〈(v)〉w

t(ϕG+)

)
= d then

9: PartialCandidates1 ← PartialCandidates1 ∪ {(v)}
10: end if
11: end for

4 Note that it is still possible that the sybil subgraph is excluded from the final output. This would be the
case if, after perturbation, some other subgraph (a false positive) happens to be more similar to the original
sybil subgraph.
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12: if PartialCandidates1 = ∅ then
13: return ∅
14: else if |S| = 1 then
15: return PartialCandidates1
16: else
17: � Find rest of matches for candidates
18: return Breadth- First- Search(2, PartialCandidates1)
19: end if

1: function Breadth- First- Search(i , PartialCandidatesi−1)
2: � Find suitable candidates to match (x1, x2, . . . , xi )
3: s′ ← (x1, x2, . . . , xi )
4: PartialCandidatesi ← ∅
5: d ← ϑ

6: for (v j1 , v j2 , . . . , v ji−1 ) ∈ Ci−1 do
7: ExtendedCandidates ← ∅
8: d ′ ← ϑ

9: for w ∈ Vt(ϕG+)\(v j1 , v j2 , . . . , v ji−1 ) do
10: v′ ← (v j1 , v j2 , . . . , v ji−1 , w)

11: if Δ
(
〈s′〉w

G+ , 〈v′〉w
t(ϕG+)

)
< d ′ then

12: ExtendedCandidates ← {v′}
13: d ′ ← Δ

(
〈s′〉w

G+ , 〈v′〉w
t(ϕG+)

)

14: else if Δ
(
〈s′〉w

G+ , 〈v′〉w
t(ϕG+)

)
= d ′ then

15: ExtendedCandidates ← ExtendedCandidates ∪ {v′}
16: end if
17: end for
18: if d ′ < d then
19: PartialCandidatesi ← ExtendedCandidates
20: d ← d ′
21: else if d ′ = d then
22: PartialCandidatesi ← PartialCandidatesi ∪ ExtendedCandidates
23: end if
24: end for
25: if PartialCandidatesi = ∅ then
26: return ∅
27: else if i = |S| then
28: return PartialCandidatesi
29: else
30: � Find rest of matches for candidates
31: return Breadth- First- Search(i + 1, PartialCandidatesi )
32: end if
33: end function

5.3 Fingerprint matching

Now, we describe the noise-tolerant fingerprint matching process. Let Y =
{y1, . . . , ym} ⊆ VG+ represent the set of victims. Let S be the original set of sybil
nodes and S̃′ ⊆ Vt(ϕG+) a candidate obtained by the sybil retrieval procedure described
above. As in the previous subsection, let s = (x1, x2, . . . , x|S|) be the vector containing
the elements of S in the order imposed at the sybil subgraph creation stage. More-
over, let 〈v〉wt(ϕG+)

, with v = (v1, v2, . . . , v|S|) ∈ C̃∗, be a candidate sybil subgraph,
retrieved using Algorithm 2. Finally, for every i ∈ {1, . . . ,m}, let Fi ⊆ S be the orig-
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inal fingerprint of the victim yi and φFi ⊆ v its image by the isomorphism mapping
s to v.

We now describe the process for finding Y ′ = {y′
1, . . . , y

′
m} ⊆ Vt(ϕG+), where

y′
i = ϕ(yi ), using φF1, φF2, . . . , φFm , s and v. If the perturbation t(G+) had caused
no damage to the fingerprints, checking for the exact matches is sufficient. Since, as
previously discussed, this is usually not the case, we will introduce a noise-tolerant
fingerprint matching strategy that maps every original fingerprint to its most similar
candidate fingerprint, within some tolerance threshold β.

Algorithm 3 describes the process for finding the set of optimal re-identifications.
For a candidate victim z ∈ Nt(ϕG+)(v)\v, the algorithm denotes as F̃z,v =
Nt(ϕG+)(z) ∩ v its fingerprint with respect to v. The algorithm is a depth-first search
procedure. First, the algorithm finds, for every φFi , i ∈ {1, . . . ,m}, the set of most
similar candidate fingerprints, and keeps the set of matches that reach the minimum
distance. From these bestmatches, one or several partial re-identifications are obtained.
The reason why more than one partial re-identification is obtained is that more than
one candidate fingerprint may be equally similar to some φFi . For every partial re-
identification, the method recursively finds the set of best completions and combines
them to construct the final set of equally likely re-identifications. The search space is
reduced by discarding insufficiently similar matches. For any candidate victim z and
any original victim yi such that d(F̃z,v, φFi ) < β, the algorithmdiscards allmatchings
where ϕ(yi ) = z.

To illustrate how the method works, recall the graphs 〈S〉wG+ and 〈v〉wt(ϕG+)
depicted

in Fig. 3. The original set of victims is Y = {y1, y2, y3, y4} and their fingerprints
are F1 = {x1}, F2 = {x1, x3}, F3 = {x3, x5}, and F4 = {x3}, respectively. In con-
sequence, we have φF1 = {v1}, φF2 = {v1, v3}, φF3 = {v3, v5}, and φF4 = {v3}.
The set of candidate victims is Nt(ϕG+)(v)\v = {z1, z2, z3, z4, z5}. The method will
first find all exact matchings, that is ϕ(y2) = z2, ϕ(y3) = z3, and ϕ(y4) = z4,
because the distances between the corresponding fingerprints is zero in all three cases.
Since none of these matchings is ambiguous, the method next determines the match
ϕ(y1) = z1, because d(F̃z1 , φF1) = d({v1, v2}, {v1}) = 1 < 2 = d({v2}, {v1}) =
d(F̃z5 , φF1). At this point, the method stops and yields the unique re-identification
{(y1, z1), (y2, z2), (y3, z3), (y4, z4)}. Now, suppose that the vertex z5 is linked in
t(ϕG+) to v3, instead of v2, as depicted in Fig. 4. In this case, the method will
unambiguously determine the matchings ϕ(y2) = z2 and ϕ(y3) = z3, and then will
try the two choices ϕ(y4) = z4 and ϕ(y4) = z5. In the first case, the method will
make ϕ(y1) = z1 and discard z5. Analogously, in the second case the method will
also make ϕ(y1) = z1, and will discard z4. Thus, the final result will consist in
two equally likely re-identifications, namely {(y1, z1), (y2, z2), (y3, z3), (y4, z4)} and
{(y1, z1), (y2, z2), (y3, z3), (y4, z5)}.
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x1 x2 x3 x4 x5

y1
y2 y3

y4

v1 v2
v3

v4 v5

z1
z2 z3

z4z5

〈S〉w
G+ 〈v〉w

t(ϕG+)

Fig. 4 Alternative example of possible graphs 〈S〉w
G+ and 〈v〉w

t(ϕG+)

Algorithm 3 Given the graphs G+ and t(ϕG+), the original set of victims Y =
{y1, y2, . . . , ym}, the original fingerprints F1, F2, . . . , Fm , a candidate set of sybils
v, and the maximum distance threshold β, obtain the set ReIdents of best matchings.

1: (ReIdents, d) ← GreedyMatching(Y , Nt(ϕG+)(v)\v)
2: return ReIdents

1: function GreedyMatching(Y , M)
2: � Find best matches of some unmapped victim(s) to one or more candidate victims
3: MapPartial Best ← ∅
4: d ← β

5: for yi ∈ Y do
6: for z ∈ M do
7: if d(F̃z,v, φFi ) < d then
8: MapPartial Best ← {(yi , {z})}
9: d ← d(F̃z,v, φFi )
10: else if d(F̃z,v, φFi ) = d then
11: if (yi , P) ∈ MapPartial Best then
12: MapPartial Best ← (MapPartial Best\(yi , P)) ∪ {(yi , P ∪ {z})}
13: else
14: MapPartial Best ← MapPartial Best ∪ {(yi , P ∪ {z})}
15: end if
16: end if
17: end for
18: end for
19: if MapPartial Best = ∅ then
20: return (∅, +∞)

21: else
22: � Build partial re-identifications from best matches
23: Pick any (y, P) ∈ MapPartial Best
24: Partial ReIdents ← {(y, z) | z ∈ P}
25: for (y′, P ′) ∈ MapPartial Best\(y, P) do
26: Partial ReIdents ← {R ∪ {y′, z′} | R ∈ Partial ReIdents ∧ z′ ∈ P ′}
27: end for
28: if |Y | = 1 then
29: return (Partial ReIdents, d)

30: else
31: � Recursively call the method to find best completions for partial re-identifications
32: BestComplReIdent ← ∅
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33: dbest ← β

34: for R ∈ Partial ReIdents do
35: (CompletedReIdents, d) ← GreedyMatching(Y\{y | (y, z) ∈ R}, M\{z | (y, z) ∈

R})
36: if d < dbest then
37: BestComplReIdent ← CompletedReIdents
38: dbest ← d
39: else if d = dbest then
40: BestComplReIdent ← BestComplReIdent ∪ CompletedReIdents
41: end if
42: end for
43: return ({P ∪ R | P ∈ Partial ReIdents ∧ R ∈ BestComplReIdent}, dbest )
44: end if
45: end if
46: end function

Ideally, Algorithms 2 and 3 both yield unique solutions, in which case the sole
element in the output of Algorithm 3 is given as the final re-identification. If this is not
the case, the attack picks a random candidate sybil subgraph from C̃∗, uses it as the
input of Algorithm 3, and picks a random re-identification from its output. If either
algorithm yields an empty solution, the attack fails. Finally, it is important to note that,
if Algorithm 2 is run with ϑ = 0 and Algorithm 3 is run with β = 0, then the final
result is exactly the same set of equally likely matchings that would be obtained by
the original walk-based attack. As for the case of sybil subgraph retrieval, in choosing
the value of the parameter β for robust fingerprint matching, the practitioner must
consider the trade-off between efficiency and noise tolerance, in a manner analogous
to the one discussed for the selection of the parameter ϑ in Algorithm 2.

6 Experiments

The purpose of our experiments5 is threefold. Firstly, we show the considerable gain
in resilience of robust active attacks, in comparison to the original walk-based attack.
Secondly, we assess the contributions of different components of the robust active
attack strategy to the success of the attacks. Finally, we analyse the weaknesses shared
by the robust and the original active attacks, and discuss how they may serve as the
basis for the development of new privacy-preserving graph publication methods. Each
run of our experiments is determined by the selection of a graph type, a perturbation
method and an active attack strategy. In what follows, we first describe the choices for
each of these three components, and conclude the section by discussing the empirical
results obtained.

5 We performed our experiments on the HPC platform of the University of Luxembourg (Varrette et al.
2014). In particular, we ran our experiments on the Gaia cluster of the UL HPC. A detailed description
of the Gaia cluster is available at https://hpc.uni.lu/systems/gaia/. Leveraging the high level of parallelism
achievable on that platform, we obtained the results discussed in this section in approximately 240h for each
graph model. The implementations of the graph generators, anonymisation methods and attack simulations
are available at https://github.com/rolandotr/graph.
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6.1 Threemodels of synthetic graphs and two real-life networks

In order to make the results reported in this section comparable to those reported for
the walk-based attack on anonymised graphs (Mauw et al. 2018b), we first study the
behaviour of the attacks under evaluation on Erdős–Rényi (ER) random graphs (Erdős
and Rényi 1959) of order 200. We generated 200,000 ER graphs, 10,000 featuring
every density value in the set {0.05, 0.1, . . . , 1.0}.

We also study the behaviour of the attacks on Watts–Strogatz (WS) small world
graphs (Watts and Strogatz 1998) and Barabási–Albert (BA) scale-free graphs
(Barabási and Albert 1999). The WS model has two parameters, the number K of
neighbours originally assigned to every vertex, and the probability 
 that an edge of
the initial K -regular ring lattice is randomly rewritten. In our experiments, we gener-
ated 10,000 graphs of order 200 for every pair (K , 
), where K ∈ {10, 20, . . . , 100}
and 
 ∈ {0.25, 0.5, 0.75}. In the case of BA graphs, we used seed graphs of order 50
and every graph was grown by adding 150 vertices, and performing the corresponding
edge additions. The BA model has a parameter m defining the number of new edges
added for every new vertex. Here, we generated 10,000 graphs for every value of m
in the set {5, 10, . . . , 50}. In generating every graph, the seed graph was chosen to be,
with probability 1/3, a complete graph, an m-regular ring lattice, or an ER random
graph of density 0.5.

Finally, in order to complement the results obtained on randomly generated graphs,
and to showcase the behaviour of the attacks in larger, real-life social networks, we
additionally study the attacks in the context of two benchmark social graphs. The
first one, which is commonly referred to as the Panzarasa graph, after one of its
creators (Panzarasa et al. 2009), was collected from an online community of students
at the University of California, Irvine. In the Panzarasa graph, a directed edge (A, B)

represents that student A sent at least one message to student B. In our experiments,
we use a processed version of this graph, where edge orientation, loops and isolated
vertices were removed. This graph has 1893 vertices and 20,296 edges. The second
real-life social graph that we use was constructed from a collection of e-mail messages
exchanged between students, professors and staff at Universitat Rovira i Virgili (URV),
Spain (Guimera et al. 2003). For the construction of the graph, the data collectors
added an edge between every pair of users that messaged each other. In doing so,
they ignored group messages with more than 50 recipients. Moreover, they removed
isolated vertices and connected components of order 2. The URV graph has 1133
vertices and 5451 edges.

6.2 Graph perturbation

In our experiments we considered existing anonymisation methods against active
attacks and random perturbation. Although the latter does not provide formal privacy
guarantees, it is a useful benchmark for evaluating resilience against noisy releases.
The graph perturbation methods used in our experiments are the following:

(a) An algorithm enforcing (k, �)-anonymity for some k > 1 or some � > 1 (Mauw
et al. 2016).
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(b) An algorithm enforcing (2, ΓG,1)-anonymity (Mauw et al. 2018b).
(c) An algorithm enforcing (k, ΓG,1)-adjacency anonymity for a given value of k

(Mauw et al. 2018b). Here, we run the method with k = |S| (i.e. the number
of sybil nodes), since it has been empirically shown that the original walk-based
attack is very likely to be thwarted in this case (Mauw et al. 2018b).

(d) Randomly flipping 1%of the edges inG+. Each flip consists in randomly selecting
a pair of vertices u, v ∈ VG+ , removing the edge (u, v) if it belongs to EG+ , or
adding it in the opposite case. In the case of synthetic graphs, since every instance

of G+ has order n = 208, this perturbation performs
⌊
0.01 · n(n−1)

2

⌋
= 215 flips.

In the case of the Panzarasa graph, the order of G+ is 1904, so this perturbation
performs 18,116 flips. Finally, in the case of the URV graph, the order of G+ is
1144, so this perturbation performs 6537 flips.

(e) Randomly flipping 5% of the edges in G+ (that is 1076 flips on synthetic graphs,
90,582 on the Panzarasa graph and 32,689 on the URV graph), in a manner anal-
ogous to the one used above.

(f) Randomly flipping 10% of the edges inG+ (that is 2153 flips on synthetic graphs,
181,165 on the Panzarasa graph and 65,379 on the URV graph), in a manner
analogous to the one used above.

6.3 Attack variants

We compare the behaviour of the original walk-based attack to four instantiations of
the robust attack described in Sect. 5. All four instantiations have in common the use of
noise-tolerant sybil subgraph retrieval and fingerprint matching, since noise tolerance
is the basis of the notion of robustness of the new attacks. The differences between
the instances are given by the combination of choices in terms of two features: (1)
the use of high versus low noise-tolerance thresholds, and (2) the use of maximally
separated fingerprints versus the use of randomly generated fingerprints. In both cases,
each choice represents the alternative between attacks featuring higher robustness at
the cost of an overhead in computation (higher noise tolerance, maximally separated
fingerprints) and attackswhich aremore efficient but sacrifice some robustness features
(lower noise tolerance, randomly generatedfingerprints). Table 1 summarises the list of
attack variants to be compared. Note that the attacks labelled as Robust-High-Max and
Robust-Low-Max in Table 1 are both instances of the robust active attack featuring all
its components, and only differ in the tolerance levels used in sybil subgraph retrieval
and fingerprint matching. Also note that attack variants using maximally separated
fingerprints are run with a random component as well, because a set of maximally
separated fingerprints may be larger than the number of victims and in this case the
fingerprints used for every run of the attacks are randomly selected from this pool.

As discussed by Backstrom et al. (2007), for a graph of order n, it suffices to insert
log2 n sybil nodes for being able to compromise any possible victim, whereas even
the so-called near-optimal sybil defences (Yu et al. 2006, 2008) do not aim to remove
every sybil node, but to limit their number to around log2 n. In light of these two
considerations, when evaluating every attack variant on the collections of synthetic
graphs, we use 8 sybil nodes, as

⌈
log2 200

⌉ = 8. For the same reason, we use 11
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Table 1 Descriptions of the attacks to be compared

Attack id Noise-tolerant sybil
subgraph retrieval and
fingerprint matching

Tolerance threshold
levels

Maximally
separated
fingerprints

Original No Not applicable Not applicable

Robust-Low-Rand Yes Low No

Robust-High-Rand Yes High No

Robust-Low-Max Yes Low Yes

Robust-High-Max Yes High Yes

sybil nodes on the Panzarasa and URV graphs. In all cases, we use the same number
of victims as sybil nodes, to make the results comparable to those reported for the
walk-based attack on anonymised graphs (Mauw et al. 2018b).

Finally, we set the tolerance thresholds to be ϑ = β = 8 for the attacks Robust-
High-Rand andRobust-High-Max, andϑ = β = 4 for Robust-Low-Rand andRobust-
Low-Max, when executed on synthetic graphs. In the case of the Panzarasa and URV
graphs, due to their considerably larger size, and in order to keep the execution time
and memory consumption of Algorithms 2 and 3 within reasonable limits, we set
the tolerance thresholds to be ϑ = β = 4 for the attacks Robust-High-Rand and
Robust-High-Max, and ϑ = β = 2 for Robust-Low-Rand and Robust-Low-Max.

6.4 Probability of success of the attacks

Following the attacker–defender game in Sect. 3, for every graph and every attack
variant in Table 1, we first run the attacker subgraph creation stage. Then, for every
resulting graph, we obtain six variants of anonymised graphs, which differ from each
other in the perturbation method applied [items (a)–(f) listed in Sect. 6.2]. Finally,
for each perturbed graph, we simulate the execution of the re-identification stage and
compute its probability of success as follows:

Pr =
{ ∑

X∈X pX
|X | if X �= ∅

0 otherwise
(7)

where X is the set of equally-likely possible sybil subgraphs retrieved in t(ϕG+) by
the third phase of the attack, and

pX =
{ 1

|YX | if Y ∈ YX

0 otherwise

withYX containing all equally-likely fingerprint matchings according to X . Note that,
for the original walk-based attack, X is the set of subgraphs of t(ϕG+) isomorphic

to 〈S〉wG+ , whereas for the robust attack we have X =
{
〈v〉wt(ϕG+)

| v ∈ C̃∗
}
, being

123



S. Mauw et al.

C̃∗ the output of Algorithm 2. Moreover, for the original walk-based attack, YX =
{{y1, y2 . . . , ym} ⊆ Vt(ϕG+) | ∀i ∈ {1, . . . ,m}: Fyi ,X = Fi }, whereas for the robust
attack YX is the output of Algorithm 3.

In the case of synthetic graphs, in order to obtain the scores used for comparing
the different approaches, we computed, for every combination of an attack variant and
a perturbation strategy, the average of the success probabilities over every group of
10,000 graphs sharing the same set of parameter choices (as described in Sect. 6.1).
In the case of the two real networks, we executed, for every combination of an attack
variant and a perturbation strategy, 10 runs on the Panzarasa graph and 10 runs on the
URV graph. In each of these runs, a different set of victims was randomly chosen. The
final scores used for comparisons were the averaged success probabilities over every
group of runs.

6.5 Analysis of results

Figure 5 shows the averaged success probabilities of the five attack variants on the
set of Erdős–Rényi random graphs, after applying the perturbation strategies (a)–(f).
Every chart represents the behaviour of the attacks on graphs perturbed with a specific
method.The x axis displays density values and the y axis displays success probabilities.
Analogous results are shown in Figs. 6, 7 and 8 for Watts–Strogatz random graphs
with 
 = 0.25, 
 = 0.5 and 
 = 0.75, respectively. In this case, in every chart the x
axis displays the values of K . Likewise, Fig. 9 shows analogous results for Barabási–
Albert random graphs. Here, in every chart the x axis displays the values ofm. Finally,
Table 2 shows the averaged success probabilities of the five attack variants on the two
real-life networks. In the table, every row represents the combination of a network
and a perturbation method, and every column represents an attack variant. Success
probabilities are rounded to four significant figures.

From the analysis of all results, an important and consistently occurring first obser-
vation is that the robust attack, in all its variants, displays a larger success probability
than the original walk-based attack. In fact, for many parameter settings in ER and
WS synthetic graphs, the difference is extreme, as the best-performing robust attack
(Robust-High-Max) displays an average success probability close to 1, whereas the
original attack displays an average success probability close to 0. Another important
observation that holds in all collections of synthetic graphs [see Figs. 5, 6, 7, 8, 9, items
(d) and (e)] is that even 1% of random noise completely thwarts the original attack,
whereas different variants of the robust attack still perform at around 0.4–0.6 average
success probabilities. In fact, the attack variants Robust-High-Max and Robust-High-
Rand, that is the ones featuring large tolerance thresholds, still perform acceptablywell
on all synthetic graphs with a 5% random perturbation. An extreme case of resilience
in the presence of noise is observed on real-life networks. Because of the large sizes
of these graphs, the percentages of noise injected in these experiments translate into
an enormous amount of modifications, and even in this case the robust attack variants
manage to be successful in a small, but non-zero, fraction of cases in the URV graph,
whereas the original attack is again completely thwarted. Also note that, in the case of
the anonymisation methods (a)–(c), which also perform a considerably large number
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(a) (k, �)-anonymity, k > 1 or � > 1
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(b) (2, ΓG,1)-anonymity
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(c) (|S|, ΓG,1)-adjacency anonymity
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(d) 1% random perturbation
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(e) 5%’ random perturbation
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(f) 10% random perturbation

Fig. 5 Success probabilities of every attack variant on the collection of Erdős–Rényi random graphs, after
publishing the graphs perturbed by the methods listed above

of perturbations on the real-life graphs, all variants of the robust attack display success
probabilities ranging from medium to high, and continue to largely outperform the
original walk-based attack.

Summing up the findings discussed in the previous paragraph, on the one hand
we corroborate the previously reported fact that the original walk-based attack shows
low resilience against the addition of even small amounts of random noise. On the
other hand, and more importantly, the results obtained here support our claim that low
resilience is not an inherent property of the active attack strategy itself, and that it is
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Fig. 6 Success probabilities of every attack variant on the collection ofWatts–Strogatz small-world random
graphs, with 
 = 0.25, after publishing the graphs perturbed by the methods listed above

possible to design active attackswhich are considerablymore robust and thus represent
a more serious threat in the context of noise addition approaches to privacy-preserving
graph publication.

We now focus on the suitability of robust active attacks as a more appropriate
benchmark, in comparison with the original attack, for evaluating anonymisation
methods based on formal privacy guarantees. By analysing the results in items (a),
(b) and (c) of Figs. 5, 6, 7 and 8 and items (b) and (c) of Fig. 9, we can see that
the anonymisation methods were almost fully ineffective against the best performing
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Fig. 7 Success probabilities of every attack variant on the collection ofWatts–Strogatz small-world random
graphs, with 
 = 0.5, after publishing the graphs perturbed by the methods listed above

robust attack (Robust-High-Max in most cases and Robust-High-Rand in the remain-
ing cases). These results are consistent with the formal privacy guarantees provided
by the anonymisation algorithms, since in all cases they only guarantee full protection
from an attacker leveraging one sybil node, whereas all attacks displayed in these
figures were conducted with 8 sybil nodes. On the other hand, the original walk-
based attack is easily thwarted by most instances of all anonymisation algorithms.
This behaviour of the original attack had already been reported (Mauw et al. 2016,
2018b), and its causes discussed. As the authors of these studies explain, this better-
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Fig. 8 Success probabilities of every attack variant on the collection ofWatts–Strogatz small-world random
graphs, with 
 = 0.75, after publishing the graphs perturbed by the methods listed above

than-expected performance of the anonymisation methods was a side effect of the
disruptions they caused in the graph, rather than a consequence of the formal pri-
vacy guarantees themselves. In other words, the low resilience of the attack played a
more important role in the apparent effectiveness of the anonymisation methods than
their formal privacy guarantees. Another undesirable effect of this problem is that it
may enable misleading conclusions in comparing formally equivalent algorithms. For
example, Mauw et al.’s algorithms for obtaining a (k, �)-anonymous graph with k > 1
or � > 1 (Mauw et al. 2016) and a (2, ΓG,1)-anonymous graph (Mauw et al. 2018b)
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Fig. 9 Success probabilities of every attack variant on the collection of Barabasi–Albert scale-free random
graphs, after publishing the graphs perturbed by the methods listed above

provide equivalent formal privacy guarantees. However, as seen in items (a) and (b)
of Fig. 7 and, to a lesser extent, in items (a) and (b) of Fig. 5, there are some graph
families where one of the two algorithms performs better than the other in terms of
resistance to the original walk-based attack. These differences are not a consequence
of the privacy guarantees provided by the algorithms. Instead, they are a consequence
of the number of modifications that each method performs. As can be observed in
the figures, the performance of both algorithms in terms of resistance to the robust
attack Robust-High-Max is the same, which is consistent with the fact that both meth-
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ods provide equivalent formal privacy guarantees. In scenarios like the one described
here, researchers studying both methods would benefit from using the attack Robust-
High-Max as comparison benchmark, since that would largely attenuate potentially
misguiding side effects.

Next, we will discuss the effectiveness of the robust active attack variants in
different types of graphs. From the analysis of Figs. 5, 6, 7 and 8, items (a), (b)
and (c), we can see that, on anonymised Erdős–Rényi and Watts–Strogatz graphs,
the tolerance threshold plays a discrete role in differentiating the attacks leverag-
ing maximally separated fingerprints. On the contrary, a high tolerance threshold
does improve the effectiveness of the attack leveraging randomly generated fin-
gerprints. Furthermore, in the case of randomly perturbed synthetic graphs of all
types [see Figs. 5, 6, 7, 8, 9, items (d) and (e)], the choice of a high tolerance
threshold does lead to larger success probabilities in all cases. These observations
highlight the central role of noise tolerance as a resilience-improving factor in robust
attacks, especially when dealing with perturbation techniques based on noise addi-
tion.

To conclude our analysis, we focus on the behaviour of all robust attack variants
on two scenarios: Barabási–Albert synthetic graphs anonymised with Mauw et al.’s
method for enforcing (k > 1, � > 1)-anonymity (Mauw et al. 2016) (see Fig. 9a), and
the Panzarasa and URV graphs anonymised with Mauw et al.’s method for enforcing
(k = |S|, ΓG,1)-anonymity (Mauw et al. 2018b) (see Table 2). These two scenarios are
the only cases where all variants of the robust attack are collectively thwarted to a rea-
sonable extent by an anonymisation method based on a formal privacy guarantee. The
relevance of these observations lies in the hints that they provide for the design of new
anonymisation algorithms to successfully counteract robust active attacks. Analysing
the causes for the lower success probability of the robust attacks in these scenarios,
we observed that in both cases the number of vertices which were structurally similar
to some of the sybil nodes was larger. Moreover, this trend was reinforced by the
anonymisation methods, which resulted in the retrieval of a much larger number of
false positives during the sybil subgraph retrieval stage of the attack. That is, even
though the attacks succeeded in finding the correct sybil subgraph, the number of
subgraphs at the same edit distance from the original sybil subgraph was larger, which
made the probability of selecting the correct one smaller. Intuitively, this observation
suggests that enforcing indistinguishability of potential sybil nodes in the perturbed
graph may be a better countermeasure against robust active attacks than injecting
noise, since even in the case that the attack retrieves the sybil subgraph, it will not be
able to distinguish it from the (potentially numerous) equally similar false positives,
thus reducing the success probability.

7 Conclusions

In this study, we have re-assessed the capabilities of active attackers in the setting of
privacy-preserving publication of social graphs. In particular,we have given definitions
of robustness for different stages of the active attack strategy and have shown, both
theoretically and empirically, scenarios under which these notions of robustness lead
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to considerably more successful attacks. One particular criticism found in the litera-
ture, that of active attacks lacking resilience even to a small number of changes in the
network, has been shown in this paper not to be an inherent problem of the active attack
strategy itself, but rather of specific instances of it. In light of the results presented here,
we argue that active attacks should receive more attention by the privacy-preserving
social graph publication community. In particular, existing privacy properties and
anonymisation algorithms designed to counteract active attacks should be revised,
and new ones should be devised, to account for the capabilities of robust active
attackers.
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