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ABSTRACT
Several approaches exist to model interactions between latent variables. However, it is
unclear how these perform when item scores are skewed and ordinal. Research on Type D
personality serves as a good case study for that matter. In Study 1, we fitted a multivariate
interaction model to predict depression and anxiety with Type D personality, operational-
ized as an interaction between its two subcomponents negative affectivity (NA) and social
inhibition (SI). We constructed this interaction according to four approaches: (1) sum score
product; (2) single product indicator; (3) matched product indicators; and (4) latent moder-
ated structural equations (LMS). In Study 2, we compared these interaction models in a
simulation study by assessing for each method the bias and precision of the estimated
interaction effect under varying conditions. In Study 1, all methods showed a significant
Type D effect on both depression and anxiety, although this effect diminished after includ-
ing the NA and SI quadratic effects. Study 2 showed that the LMS approach performed best
with respect to minimizing bias and maximizing power, even when item scores were ordinal
and skewed. However, when latent traits were skewed LMS resulted in more false-positive
conclusions, while the Matched PI approach adequately controlled the false-positive rate.
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Introduction

In the social and behavioral sciences, researchers com-
monly investigate the effect of an interaction between
two predictors on an outcome variable. Traditionally,
such interaction effects have been analyzed by includ-
ing the product of the sum scores of two interaction
constructs in a standard regression analysis. However,
the presence of measurement error in the predictor
variables can lead to biased estimates of the regression
coefficients, especially for interactions between con-
structs both measured with error (Busemeyer & Jones,
1983; Cole & Preacher, 2014; Embretson, 1996; Kang &
Waller, 2005; MacCallum, Zhang, Preacher, & Rucker,
2002). Although latent variable modeling can be used
to take into account this measurement error, there is
no consensus on how to best model interactions in this

context, especially when the item scores are of an
ordinal nature and not normally distributed. In this
article, we investigate this issue based on a Monte
Carlo simulation study and an empirical application.

The construct of Type D personality (Denollet,
2005) serves as a great case study for this matter,
because according to some authors (Smith, 2011), the
Type D effect is hypothesized to constitute a statistical
interaction between the construct’s two subcompo-
nents, which are both measured by items on an
ordinal scale with skewed response distributions. In
this article, we will first give an overview of research
on Type D personality and of the various methods
used to handle nonnormal ordinal data and to investi-
gate interaction effects. As an illustration, we will
study the relation between Type D personality,
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depression, and anxiety according to several statistical
interaction models. As will become clear, such com-
plex statistical modeling involves making choices on
several matters, including the estimation methods, the
interaction model, and the techniques used to handle non-
normal and ordinal data. Therefore, in line with recom-
mendations by Muth�en and Muth�en (2002) and Steiger
(2006a, 2006b), the second part of this article presents the
results of a Monte Carlo simulation study where we
examine the influence of these modeling choices on the
bias and accuracy of estimated interaction effects.

Type D personality

People with a Type D personality have a tendency to:
(1) experience negative emotions (i.e., negative affectiv-
ity) and (2) inhibit the expression of their behavior and
emotions in social interactions (i.e., social inhibition).
Type D personality has been associated with a poor
prognosis of cardiovascular disease (for two meta-anal-
yses see: Grande, Romppel, & Barth, 2012; O’Dell,
Masters, Spielmans, & Maisto, 2011) as well as with
emotional factors such as anxiety and depression (Nefs
et al., 2015; Pedersen, van Domburg, Theuns, Jordaens,
& Erdman, 2004; Schiffer et al., 2005). People experi-
encing depression or anxiety symptoms also show an
increased risk of developing cardiovascular diseases
(Frasure-Smith & Lesp�erance, 2008; Kubzansky, Cole,
Kawachi, Vokonas, & Sparrow, 2006; Roest, Martens,
de Jonge, & Denollet, 2010; Wulsin & Singal, 2003).
The Type D subcomponent Social Inhibition (SI) was
proposed to moderate the effect of the other subcom-
ponent Negative Affectivity (NA) on health problems
(Kupper & Denollet, 2007, 2016). With respect to car-
diovascular disease, this implies that the negative asso-
ciation between NA and cardiovascular health is
stronger for people who score highly on SI. According
to Smith (2011) this implies that the association
between Type D and health seems to constitute a statis-
tical interaction between subcomponents NA and SI,
rather than the separate additive effects of NA and SI.

While some studies testing the interaction between
NA and SI on health outcomes demonstrated a sig-
nificant interaction {Denollet, Pedersen, Vrints, &
Conraads, 2013 [small effect: Odds Ratio (OR)¼1.36];
Kupper, Denollet, Widdershoven, & Kop, 2013 [small
effect: partial g2¼ .04]; Whitehead, Perkins-Porras,
Strike, Magid, & Steptoe, 2007 [small to medium
effect: r¼ .30]}, others failed to demonstrate such an
effect {Coyne et al., 2011 [trivial effect; Hazard Ratio
(HR)¼.90]; Grande et al., 2011 [trivial effect; HR ¼
1.01] and Pelle et al., 2010 [trivial effect; HR ¼ 1.16]}.
In these studies, researchers assessed the interaction

effect by including both the product of the NA and SI
sum scores as well as the separate NA and SI sum
scores as predictors in linear or logistic regression
analysis. Throughout this article, we define a sum
score as the unweighted sum of the scores on individ-
ual items that measure a particular construct. We note
that the unweighted sum score is a linear transform-
ation of the mean score of a set of items.

Although linear regression using sum scores is pre-
dominantly used in practice to test interactions, it has
several disadvantages (Busemeyer & Jones, 1983).
First, spurious interactions can arise when the relation
between a latent variable and its observed variables is
nonlinear; for instance, when observed variables are
measured on an ordinal scale (Busemeyer & Jones,
1983; Embretson, 1996; Kang & Waller, 2005;
MacCallum, Zhang, Preacher, & Rucker, 2002). A
second disadvantage of regression using sum scores is
that the model does not account for measurement
errors. Responses to questionnaire items contain
measurement errors and in subsequent analyses these
may attenuate associations with other variables
(Spearman, 1904). This attenuation bias is particularly
problematic in studies that investigate an interaction
between two variables that are both subjected to ran-
dom measurement errors. Indeed, when multiplying
two sum scores having measurement errors the result-
ing product variable contains even more measurement
error than the two separate sum scores, because the
parts of the sum scores that contain measurement
error also are multiplied. Thus, measurements of
interaction effects are less reliable than those of main
effects. As a result, the true strength of the interaction
is under-estimated. Conversely, ignoring measurement
error not only increases the risk of attenuation bias,
in some complex models it can also result in overesti-
mated associations (Cole & Preacher, 2014).

An alternative approach for testing interactions
between imperfectly measured psychological attributes is
latent variable modeling (e.g., Skrondal & Rabe-Hesketh,
2004). A latent variable is not observed, but rather is
believed to underlie a set of observed variables that are
indicators of the construct of interest (e.g., depression;
Borsboom, Mellenbergh, & van Heerden, 2003). For
example, in a latent variable model for depression, the
latent construct “depression” is assumed to be reflected
by the observed item scores of a depression question-
naire. According to one interpretation of latent variable
theory, (co)variation in the item scores is caused by vari-
ation in people’s position on the latent variable
(Borsboom et al., 2003). This interpretation is closely
connected to the local independence assumption, which
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states that the observed item scores are conditionally
independent upon the latent variables scores
(Hambleton, Swaminathan, & Rogers, 1991). Regarding
the latent construct depression, this implies that when
holding the latent depression scores constant, the item
scores on the depression questionnaire become statistic-
ally independent. It is possible to relax this assumption
in confirmatory factor analysis models, by freely estimat-
ing the covariance between the error terms in the meas-
urement model.

In the present study, we adopted the following
terminology regarding the various aspects of latent
variable models. In a latent variable model, the meas-
urement model specifies the relation between a latent
variable and a set of observed item scores intended to

measure that latent variable. In the structural model,
the relations between latent variables are modeled.
Finally, the latent prediction model is the complete
model of interest, including both the structural model
and the measurement models for each latent variable.
Figure 1 visualizes a latent prediction model of Type D
personality, depression, and anxiety. In this figure, circles
correspond to latent variables, rectangles to observed
item scores, e to the measurement error of an item,
and d to the residual error of a latent prediction effect.
Dashed lines refer to covariances between latent
variables and curved lines to residual covariances.

To our knowledge, the relation between Type D
personality, depression, and anxiety has never been
investigated while taking into account measurement

Figure 1. Latent prediction model of Type D personality, depression, and anxiety according to the matched product indicator
approach. Circles correspond to latent variables; rectangles to observed variables; e to measurement error; d to prediction error;
dashed lines to latent covariances.
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error and nonnormally distributed item scores.
Therefore, the aim of the present study was to tackle
these problems in two separate studies. In Study 1, we
aimed to provide less biased estimates of the associ-
ation between Type D, depression and anxiety by
applying a latent prediction model to a data set of
people with diabetes. In Study 2, we aimed to investigate
the accuracy and stability of the estimated Type D effect
in Study 1, by conducting a simulation study. Building
such a latent prediction model, however, requires model-
ing the latent interaction. Therefore, in the next para-
graph we discuss some issues related to building latent
interaction models based on skewed and ordinal data.

Assessing latent variable interactions

How to handle skewed ordinal item scores?
The Type D personality, depression, and anxiety ques-
tionnaires contain items that are all measured on an
ordinal scale. The item score distributions also show
substantial positive skewness, as is common for clin-
ical data (Reise & Waller, 2009). For instance, most
clinical questionnaires ask people to indicate how
often they experience a symptom, with response
indicated on a five-point Likert scale. Especially in the
general population, such questionnaires usually show an
overabundance of low scores indicating that people do
not frequently experience these symptoms. Positively
skewed distributions pose a problem to estimation meth-
ods that assume the data to be normally distributed.

By default, most statistical packages use maximum
likelihood (ML) to estimate the parameters in a latent
prediction model. A standard assumption of ML esti-
mation applied to factor analysis is that the observed
item scores are continuous and normally distributed
(Bollen, 1989, pp. 131–134). However, in practice, fac-
tor analysis is frequently used in conjunction with ML
estimation to model ordinal questionnaire data (ten
Holt, van Duijn, & Boomsma, 2010). Treating the dis-
tributions of items as normal and continuous while
they are in fact skewed and ordinal can lead to under-
estimated standard errors of the parameter estimates
and hence to more false-positive conclusions on the
significance of these estimates, especially if there are
five of fewer response categories (Dolan, 1994;
Muth�en & Kaplan, 1985; Kline, 2011; Rhemtulla,
Brosseau-Liard, & Savalei, 2012). Moreover, if item
response variables have an ordinal measurement level,
then those items are likely not linearly associated,
even when they are fairly normally distributed. Such
linearity is assumed by traditional factor analytic

models that are based on product-moment correla-
tions (Flora, LaBrish, & Chalmers, 2012).

Multiple alternative methods have been proposed
to handle ordinal item scores in latent variable mod-
els. For example, researchers can use item response
models that do not assume that the item scores are
normally distributed (Rasch, 1960; Birnbaum, 1968;
Samejima, 1997). If it is important to stay within a
structural equation modeling framework, then
research can for instance use ML estimation with
robust standard errors and a robust test statistic. This
robustness may result from bootstrapping or jackknife
techniques (Bollen & Stine, 1993), a Satorra-Bentler
correction (Satorra & Bentler, 1988) or a sandwich
estimator (Yuan & Bentler, 2000).

Another method that explicitly models the ordinal
item scores makes use of polychoric correlations. Such
correlations are estimates of the relation between two
ordinal variables. This method assumes that each
ordinal variable has an underlying continuous latent
variable and estimates the correlation between those
underlying latent variables. The two latent variables
are assumed to show a bivariate normal distribution.
Figure 2 illustrates the relation between such an
ordinal variable and its assumed underlying continu-
ous dimension. For each item, the boundary between
each ordinal response category is connected to a latent
continuous distribution through a set of threshold
parameters (sk, where k equals the total number of
response categories minus one). Each threshold marks
a point on this latent indicator scale where values
above and below the threshold correspond to different
responses on the ordinal item. Continuous item scores
between minus infinity and the value of the first
threshold correspond to the lowest ordinal score.

Figure 2. Ordinal item score distribution (top) and the
assumed underlying continuous distribution (bottom),
connected by a set of polychoric threshold parameters (sk).
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Continuous scores between the first and second
threshold correspond to the second lowest ordinal
score, etcetera.

The estimated threshold parameters are subse-
quently combined with the information in the bivari-
ate contingency table of two ordinal variables to
estimate (using maximum likelihood) the correlation
between the two underlying latent variables when they
would have been observed directly (Flora & Curran,
2004). Applying this method to handle the ordinal
item scores in latent prediction models first requires
the matrix of polychoric correlations between all items
in the model. Next, the latent prediction model is fit-
ted to this polychoric correlation matrix. Flora and
Curran (2004) suggested to use a weighted least
squares (WLS) estimation procedure (Browne, 1984)
to estimate the model parameters, because using ML
estimation results in biased test statistics and standard
errors (Babakus, Ferguson, & J€oreskog, 1987; Dolan,
1994). This WLS method uses the asymptotic varian-
ces and covariances of these polychoric correlations to
estimate a weight matrix. This matrix is subsequently
used in the WLS fit function to weigh the squared dif-
ference between the sample statistics and the model-
implied population parameters (Muth�en, 1984). Given
that this method takes into account the skewness and
kurtosis of the raw data, it is not necessary to specify
distributional assumptions for the observed variables,
making WLS an asymptotically distribution free esti-
mator (Browne, 1984). A disadvantage of this method
is that this asymptotic covariance matrix quickly gets
larger as the number of observed variables increases,
which can result in computational problems.
Furthermore, it is well-established that WLS requires
very large samples and under small sample sizes this
method might produce inflated chi-square statistics
(Dolan, 1994) and negatively biased standard errors
(Potthast, 1993). In such a scenario, it is recommended
to use unweighted least-squares (ULS) or diagonally
weighted least-squares (DWLS or robust WLS) because
these methods do not suffer from these limitations (Flora
& Curran, 2004; Flora, LaBrish, & Chalmers, 2012).

An assumption of the polychoric correlation
method is that the observed bivariate distributions
between ordinal indicators can be explained from
underlying bivariate normally distributed continuous
variables (Olsson, 1979). This conveniently shifts the
distributional assumption from the observed scores to
the latent indicator level. Even then, this bivariate
normality assumption is under some circumstances
not necessary. Indeed, WLS estimation of a confirma-
tory factor analysis based on the polychoric

correlation matrix is robust-to-moderate violations of
this normality assumption (Flora & Curran, 2004).
Furthermore, Muth�en and Kaplan (1985) showed that
WLS estimation in general is robust to nonnormality
when sample size is larger than 1000. A final advan-
tage of this WLS method based on polychoric correla-
tions is that it is much more efficient than full
information ML estimation, especially when modeling
multiple correlated traits (Forero & Maydeu-Olivares,
2009). Given these advantages, we aim to test the fit
of our latent prediction model to the polychoric cor-
relation matrix and estimate our parameters with
DWLS estimation. This method results in a less parsi-
monious model because it requires estimation of add-
itional threshold parameters for each item. We will
therefore also investigate whether ML estimation with
the Satorra-Bentler correction for robust standard
errors (MLR estimation) works equally well.

How to construct a latent interaction model?
To investigate the effect of Type D personality on
depression and anxiety within a latent prediction
model, one has to decide on how to extract informa-
tion from the observed scores to draw inferences
about the interaction between the NA and SI traits at
a latent level. In methods based on sum scores, the
interaction variable results from a multiplication of
the two sum scores. An alternative is to multiply—
rather than sum—item scores, resulting in one or
more multiplied item pairs serving as indicators of a
latent interaction construct.

We can test latent interaction effects according to
multiple methods. When the indicant product
approach is utilized, all items of the first construct are
multiplied with all possible combinations of items of
the second construct (Kenny & Judd, 1984). With an
increasing number of items that measure each con-
struct, this method quickly results in a very large
number of indicators of the latent interaction variable.
For example, both NA and SI are measured with seven
items by the 14-item Type D Scale (DS14; Denollet,
2005), resulting in a total of 49 (7 multiplied by 7) add-
itional indicators. These new indicator variables share a
lot of information because they are all based on the
same collection of observed variables. This large number
of overlapping indicators might result in convergence
problems and is computationally very demanding (Ping,
1995). The method also requires adding complex param-
eter constraints to the model. Therefore, it is preferable
to use methods that both require a smaller number of
indicator variables and that do not require complex par-
ameter constraints.
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Marsh, Wen, and Hau (2004) proposed an uncon-
strained method to model latent interaction effects
using less indicator variables than the indicant prod-
uct approach. Two examples of such unconstrained
approaches are the single product indicator (Single PI)
approach and the matched product indicator (Matched
PI) approach. These methods differ with respect to
the number of new indicators loading on the latent
interaction construct. The Single PI approach uses a
Single PI, while the Matched PI uses two or more
new product indicators. Each indicator is the result of
a multiplication of two items—one of each construct.
Items sets can either be chosen at random or based
on the ranking of the standardized factor loadings.
For example, first the items are ranked according to
their reliability based on the standardized factor load-
ings, and then the product of items with a similar
standardized factor loading ranking is computed
(Marsh, Wen, & Hau, 2004).

In a simulation study, Marsh et al. (2004) showed
that the Matched PI approach results in the same
amount of bias in the estimated interaction as the
indicant product approach, while the Single PI
approach is more biased than both other approaches.
Of the two approaches with the least amount of bias,
the Matched PI approach is preferable over the indi-
cant product approach, because it is easier to imple-
ment, does not require complex constraints and is
computationally less demanding.

Another way to model latent interactions is the
latent moderated structural equations approach (LMS;
Klein & Moosbrugger, 2000; see also Maslowsky,
Jager, & Hemken, 2015). Compared to the Single PI
and Matched PI approaches, LMS does not multiply
item scores, nor does it model the interaction term as
a latent variable. Instead, LMS directly takes into
account the nonnormality of nonlinear effects by rep-
resenting the joint distribution of all indicator varia-
bles as a mixture of normal distributions. Interactions
are inherently nonlinear and tend to have nonnormal
distributions, even when the latent variables constitut-
ing the interaction are themselves normally distrib-
uted. LMS assumes that the indicators of the
exogenous latent variables conform to a multivariate
normal distribution. Given the nonnormally distrib-
uted item scores of the Type D questionnaire, we
expect in line with earlier research (Kelava &
Nagengast, 2012; Kelava, Nagengast, & Brandt, 2014),
that the LMS approach shows bias in the estimation
of the latent interaction. Furthermore, we expect the
Single PI and Matched PI approach to show less bias
than the LMS method because earlier research showed

that these approaches, especially the Matched PI
approach, were less biased than LMS when the data
are not normally distributed (Marsh et al., 2004;
Cham, West, Ma, & Aiken, 2012).

Study overview

In Study 1, we used a latent prediction model to
investigate the association of Type D personality with
depression and anxiety. Type D personality was mod-
eled as an interaction between its components nega-
tive affectivity and social inhibition (Smith, 2011). All
constructs are positively skewed and measured with
multiple items measured on an ordinal scale. Given
that earlier simulation studies on latent interaction
modeling did not investigate the performance of the
Single PI, Matched PI and LMS approaches under
these specific circumstances, we applied all three
approaches and compared their performance in a
simulation study. Therefore, in Study 2, we performed
a Monte Carlo simulation to investigate to what
extent the models used in Study 1 provided accurate
and stable parameter estimates given the specific char-
acteristics of Study 1 (i.e., large sample size, large
positive skewness, and ordinal item scores).

Study 1: Latent prediction model in adults
with diabetes

Method

Participants
Data were used from the Diabetes MILES study (Nefs,
Bot, Browne, Speight, & Pouwer, 2012), containing a
sample of 3314 Dutch adults with type 1 or 2 diabetes.
The psychological research ethics committee of
Tilburg University approved of the study protocol
(EC-2011-5). All participants gave informed consent.

Measures
DS14. The traits underlying Type D personality (NA
and SI) were measured using the DS14 questionnaire
(Denollet, 2005). Each trait was measured with a scale
consisting of seven questions with five ordinal
response categories ranging from “false” (0) to “true”
(4). The DS14 has been validated in several popula-
tions (Denollet, 2005). In our sample, the coefficient
alpha of NA and SI were 0.89 and 0.90, respectively.

PHQ-9. Depressive symptoms were measured using
the nine-item Patient Health Questionnaire (PHQ-9;
Kroenke, Spitzer, & Williams, 2001), with each item
having four ordinal response categories ranging from
“not at all” (0) to “nearly every day” (3). The PHQ-9
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has been validated in both the general- and the dia-
betes population (Martin, Rief, Klaiberg, & Braehler,
2006; van Steenbergen-Weijenburg et al., 2010). In our
sample, the coefficient alpha of the PHQ-9 was 0.86.

GAD-7. Anxiety symptoms were measured using
the seven-item General Anxiety Disorder question-
naire (GAD-7; Spitzer, Kroenke, Williams, & L€owe,
2006), with each item having four ordinal response
categories, ranging from “not at all” (0) to “nearly
every day” (3). The GAD-7 has been validated in the
general population (L€owe et al., 2008). In our sample,
the coefficient alpha of the GAD-7 was 0.90. The
item correlation matrices and skewness and kurtosis
estimates are reported in Appendix A (DS14) and
Appendix B (PHQ-9 and GAD-7).

Software
We performed all analyses in the freely available R
programing software (version 3.2.3; R development
Core Team, 2008) and used Mplus software (version
8; Muth�en & Muth�en, 1998, 2010) to build our latent
interaction models. The Mplus syntax files are avail-
able at this project’s open science framework page:
https://osf.io/kf6d5/.

Model building
To identify our model, we fixed the first factor load-
ing of each latent trait to a value of one. The latent
prediction model was built in several steps. We first
created separate measurement models for Type D per-
sonality, depression, and anxiety. These measurement
models were then used to evaluate whether the data
fitted a predetermined factor structure. Both the
depression and anxiety questionnaires should exhibit a
one-factor structure (Kroenke, Spitzer, & Williams,
2001; Spitzer et al., 2006), whereas the Type D ques-
tionnaire should show a two-factor structure.

In the next step, we connected these measurement
models by including a structural model. We took a
multivariate approach by first regressing depression
and anxiety on both NA and SI, thereby investigating
the main effects of Type D on depression and anxiety.
Subsequently, we added the latent interaction between
NA and SI, thereby testing whether the interaction
between NA and SI explains any additional variance
in depression or anxiety above and beyond the vari-
ance explained by the additive effects of NA and SI.

Our model selection procedure involved the com-
parison of three nested models. The first model is a
baseline model where all regressions between latent
constructs were fixed to zero. This model served as a
reference model against which we compared the fit of

our second model. In Model 2, we estimated the main
effects of NA and SI on both depression and anxiety.
Finally, in Model 3 we included the interaction between
NA and SI on both depression and anxiety. Lastly, we
tested the quadratic effects of both NA and SI to deter-
mine whether a possible interaction effect was merely
picking up an unmodeled quadratic effect rather than a
true interaction (MacCallum & Mar, 1995).

Interaction models
We assessed the interaction between NA and SI
according to six different methods: (1) Regression of
sum scores, (2) LMS using robust maximum likeli-
hood (MLR) estimation, (3) Matched PI using MLR
estimation, (4) Single PI using MLR estimation, (5)
Matched PI based on the polychoric correlation
matrix using diagonally weighted least squares
(DWLS) estimation, and (6) Single PI based on the
polychoric correlation matrix using DWLS estimation.
For the matched and Single PI approaches, the pairing
of the NA and SI indicators (constituting the latent
interaction term) was based on the ranking of the esti-
mated standardized factor loadings of the Type D
measurement model. For the Matched PI approach,
we used seven indicator pairs and for the Single PI
approach one indicator pair.

Model fit
Model fit was assessed by inspecting the v2 test, the
Bayesian Information Criterion (BIC; Schwarz, 1978),
as well as the Comparative Fit Index (CFI), the
Tucker-Lewis Index (TLI), and Root Mean Square
Error of Approximation (RMSEA). For both the TLI
and CFI, we assumed values above 0.95 to indicate
adequate fit (Hu & Bentler, 1999). For the RMSEA,
we considered values above 0.10 as unacceptable
and values below 0.06 as indicating good model fit
(Chen et al., 2008). For some of the investigated
methods, not all of these fit indices were available.1 In
these situations, all available fit indices were reported.
Nested models were compared using a chi-square or
log-likelihood difference test, depending on the type
of interaction model. For the PI MLR methods, we
used the Satorra and Bentler (2010) scaled v2 differ-
ence between two models against their difference in

1For instance, because the BIC is based on the log likelihood, Mplus only
reports this fit index for models involving maximum likelihood estimation.
Consequently, this fit index is not reported for our models involving
weighted least squares estimation. Furthermore, when numerical
integration is required (e.g., with the LMS method), means, variances, and
covariances are not sufficient statistics for model estimation and chi-
square and related fit statistics are not available. As a result, Mplus does
for the LMS method not report the chi-square statistics and related
indices (RMSEA, CFI, and TLI).
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degrees of freedom (df). For the PI DWLS, we used
the T3 test (Asparouhov & Muth�en, 2010), a nested
model comparison test developed specifically for
ordinal nonnormal data. Lastly, for the LMS method,
we used the chi-square difference test based on log
likelihood values and scaling correction factors
obtained with MLR estimation.

Results

Of all 3314 participants, 3 (0.1%) did not complete
the PHQ-9 questionnaire and 9 (0.27%) did not com-
plete the GAD-7 questionnaire. We excluded these
participants from our latent prediction model. Tables
1–3 show the fit statistics and parameter estimates for
several tested models according to the six different
ways to model the interaction effect between NA and
SI on depression and anxiety. Table 1 focuses on the
Sum score approach, while Tables 2 and 3 focus on
the latent variable approaches.

Sum score approach
According to the Sum score approach, the models
including the interaction between NA and SI fitted
the data better than the models without the
interaction term. There was a significant interaction
between NA and SI on both depression [b¼ 0.561,
t(3308)¼ 9.807, p< .001, b¼ 0.126] and anxiety
[b¼ 0.329, t(3302)¼ 7.481, p< .001, b¼ 0.093].
However, first including the NA and SI quadratic
resulted in significant quadratic effects and rendered
the interaction between the two constructs nonsignifi-
cant, both with respect to depression [b¼ 0.048,
t(3308)¼ 0.678, p¼ .498, b¼ 0.012] and anxiety
[b¼�0.052, t(3302)¼�0.95, p¼.342, b¼�0.017].
Moreover, the model including the interaction term
did not significantly explain additional variance in
both depression and anxiety, above and beyond the
NA and SI main and quadratic effects. This suggests
that the Type D effect might be confounded by
quadratic NA and SI effects.

Single PI (MLR) approach
Table 2 shows that for the Single PI approach with
MLR estimation, all three nested models resulted in a
significant v2 value, indicating that the model-implied
covariance matrix deviated from the observed covari-
ance matrix, a sign of poor exact model fit. The BIC
favored the model including the interaction between
NA and SI (Model 3) above the model without
interaction effects (Model 3). The RMSEA suggested
that both Models 2 and 3 showed good fit, because Ta
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the upper bound of the 95% confidence interval was
below 0.06. According to the CFI and TLI, none of
the models showed acceptable fit, although the model
including interaction effects showed better fit than the
other two models.

The chi-square difference tests indicated an
improved fit of a model over its predecessor. Of par-
ticular interest is the significant difference in fit
between Models 2 and 3, indicating that the model
including the interaction effect significantly explained
additional variation in anxiety and depression scores
above and beyond the model with the NA and SI
main effects only. The Single PI MLR approach
showed significant regression coefficients for the inter-
action between NA and SI for both depression
(b¼ 0.13, z¼ 6.29, p< .001, b¼ 0.24) and anxiety
(b¼ 0.09, z¼ 4.70, p< .001, b¼ 0.16).

To investigate whether the interaction effect merely
reflected unmodeled quadratic effect, Table 3 shows
the comparison of a model including the NA and SI
main- and quadratic effects with a model also includ-
ing the interaction effect. As the RMSEA, CFI and
TLI almost always resulted in similar fit measures for
both models, we decided to only report these results
in Table 3. It turned out that based on the BIC and
chi-square differences test, the model including main,
quadratic and interaction effect fitted the data signifi-
cantly better than the model with main and quadratic
effects only, suggesting that the interaction effect did
not merely reflect quadratic NA and SI effects. After
including the quadratic effects, the estimated
interaction effects remained statistically significant for
both depression (b¼ 0.10, z¼ 4.01, p< .001, b¼ 0.19)
and anxiety (b¼ 0.05, z¼ 2.35, p¼ .019, b¼ 0.10).

Single PI (DWLS) approach
Table 2 shows the results for the Single PI approach
with WLS estimation based on the polychoric correl-
ation matrix. Again, all three nested models resulted
in a significant v2 value, a sign of poor exact model
fit. The RMSEA suggested that both Models 2 and 3
showed reasonable fit with the upper bound of the
95% confidence interval below 0.08. For both models
2 and 3, the CFI and TLI were just below 0.95,
suggesting good fit.

The two nested model comparison tests indicated
an improved fit of Model 2 over Model 1 and of
Model 3 over Model 2, suggesting that both the NA
and SI main effects, as well as their interaction is of
added value to the model. The Single PI DWLS
approach showed significant regression coefficients for
the interaction between NA and SI for both

depression (b¼ 0.14, z¼ 11.34, p<.001, b¼ 0.16) and
anxiety (b¼ 0.09, z¼ 7.21, p<.001, b¼ 0.11).

Table 3 shows that based on the nested model
comparison test, the model including main, quadratic
and interaction effects fitted the data significantly bet-
ter than the model including main and quadratic
effects only. After including the quadratic effects, the
estimated interaction effects remain statistically sig-
nificant for both depression (b¼ 0.18, z¼ 10.07,
p<.001, b¼ 0.21) and anxiety (b¼ 0.14, z¼ 6.77,
p<.001, b¼ 0.16).

Matched PI (MLR) approach
Table 2 shows the results of the Matched PI approach
with MLR estimation. All three models resulted in a
significant v2 value, a sign of poor exact model fit.
However, the BIC favored the model with the interac-
tions (Model 3) above the model without the interac-
tions (Model 2). According to the RMSEA, CFI and
TLI, the model including the interactions fitted the
data best. The RMSEA of both Model 2 and 3 showed
an upper bound of the 95% confidence interval of
0.05. According to both the CFI and TLI, all models
showed suboptimal fit with values of approxi-
mately 0.88.

The chi-square difference tests indicated an improved
fit of a model over its predecessor. Hence, including the
interactions (Model 3) resulted in significantly better fit
than fixing the interactions to zero (Model 2). The esti-
mated regression coefficients in Model 3 showed a sig-
nificant interaction between NA and SI for both
depression (b¼ 0.09, z¼ 7.77, p<.001, b¼ 0.16) and
anxiety (b¼ 0.05, z¼ 4.59, p<.001, b¼ 0.09).

Table 3 shows that based on the BIC and the
nested model comparison test, the model including
main, quadratic and interaction effects did not signifi-
cantly fit the data better than the model including
main and quadratic effects only. After including the
quadratic effects, the estimated interaction effects did
no longer reach statistical significance for both depres-
sion (b¼ 0.00, z¼�0.14, p¼ .892, b¼ 0.00) and anx-
iety (b¼�0.02, z¼�1.40, p¼ .163, b¼�0.04).

Matched PI (DWLS) approach
Table 2 shows the results of the Matched PI approach
with DWLS estimation based on the polychoric correl-
ation matrix. All three models resulted in a significant
v2 value, a sign of poor exact model fit. According to
the RMSEA, CFI and TLI, the model including the
interactions fitted the data best. Both Models 2 and 3
showed RMSEA 95% confidence intervals around 0.06.
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According to both the CFI and TLI, Models 2 and 3
showed good fit with values of approximately 0.95.

The nested model comparison tests indicated an
improved fit of a model over its predecessor. Hence,
including the interactions (Model 3) resulted in signifi-
cantly better fit than fixing the interactions to zero
(Model 2). The estimated regression coefficients in
Model 3 showed a significant interaction between NA
and SI for both depression (b¼ 0.10, z¼ 12.00, p<.001,
b¼.13) and anxiety (b¼.06, z¼ 6.95, p<.001, b¼.07).

Table 3 shows that based on the nested model
comparison test, the model including main, quadratic
and interaction effects fitted the data significantly bet-
ter than the model including main and quadratic
effects only. After including the quadratic effects, the
estimated interaction effect no longer reached statis-
tical significance for depression (b¼�0.02, z¼�1.53,
p¼ .126, b¼�0.05) yet remained significant for anx-
iety (b¼�0.04, z¼�2.17, p¼.03, b¼�0.07).

LMS approach
Table 2 shows the results of the LMS approach using
MLR estimation. According to the BIC, the model
with the interaction term (Model 3) fitted the data
better than the model without the interaction term
(Model 2) for both outcome variables. The likelihood
ratio test too indicated that inclusion of the inter-
action terms resulted in a significantly improvement
in model fit. Model 3 showed a significant interaction
between NA and SI for both depression (b¼ 0.21,
z¼ 8.93, p<.001, b¼ 0.21) and anxiety (b¼ 0.13,
z¼ 6.02, p<.001, b¼ 0.14). Table 3 shows that based
on the nested model comparison test, the model
including main, quadratic and interaction effects fitted
the data significantly better than the model including
main and quadratic effects only [Wald(2)¼12.55,
p¼.002).2 After including the quadratic effects, the
estimated interaction effects remained statistically sig-
nificant, but switched signs both for depression
(b¼�0.09, z¼�2.7, p¼ .007, b¼�0.15) and anxiety
(b¼�0.11, z¼�3.54, p<.001, b¼�0.19).

Factor scores
Figure 3 shows in four separate plots for both
NA and SI the association with depression and

anxiety. Each plot shows the effect of NA or SI for
three different levels of the other construct
(low<�1 SD< average<þ1 SD< high). All axes
show factor scores estimated with the Maximum A
Priori method in Mplus. Visual inspection of these
plots suggest two competing interpretations: either the
effects of NA or SI on depression and anxiety get
stronger at higher levels of the other construct, or NA
and SI show quadratic effects on depression and anx-
iety, where the association gets stronger at higher lev-
els of each construct. The estimated factor scores
show good factor indeterminacy values (NA ¼ 0.964;
SI ¼ 0.952; Depression ¼ 0.959; Anxiety ¼ 0.965).

Summary

To summarize, according to all six methods, the inter-
action between NA and SI was significantly associated
with both depression and anxiety, although the size of
this interaction varied across the tested methods.
Moreover, when first adding the quadratic effects to
the model, all methods produced smaller estimates
of the interaction effects. For both Single PI methods,
the interaction effects remained significant, while for
other methods the interaction reduced to zero (Sum
score; Matched PI MLR; Matched PI DWLS), or even
changed the effect in the opposite direction (LMS).
Because the estimates of both the quadratic and inter-
action effects vary not only across the method used to
model the nonlinear effects, but also across the esti-
mation method (e.g., MLR versus DWLS), we doubt
the robustness of the models including both quadratic
and interaction terms and we advise readers to inter-
pret the results of these models with care. Given these
conflicting results, we need additional evidence to
support the robustness of the findings in Study 1.
Therefore, in Study 2, we conducted a simulation to
compare these six methods to model interactions on
the bias and precision of the estimated inter-
action effect.

Study 2: Simulation study

Method

Procedure
In our simulation study, we varied four different
design parameters: scale (continuous, ordinal), item
skewness (0, 2 and 3), the size of the interaction (0,
.10, .20 and .40) and sample size (250, 500 and 3000).
All possible combinations of these four design param-
eters resulted in a factorial design with
2� 3�4� 3¼72 conditions. The anxiety (GAD-7) and

2Originally, we compared these two models with a log-likelihood
difference test. However, the resulting chi-square difference value was
negative, and thus the test is invalid as these tests should result in a
positive chi-square difference. We may add that such negative chi-square
values can arise when using MLR estimation. As an alternative, we used
the Wald test, which is available in MPLUS, to test the constraint that
both interaction effects are equal to zero.
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depression (PHQ-9) questionnaires showed similar
psychometric properties. For reasons of clarity, we
decided to focus our simulation on estimating the
interaction effect of NA and SI on depression.

Design Parameter 1: Scale Level. The first design
parameter was the scale level of the simulated DS14
and PHQ-9 items. We either simulated continuous or
ordinal item scores. For ordinal scores, the number of
response categories depended on the type of

questionnaire (PHQ-9¼ 0–3 Likert scale; DS14¼ 0–4
Likert scale).

Design Parameter 2: Skewness. The second design
parameter was the amount of skewness in the distri-
bution of the latent traits NA and SI. We used the
method of Vale and Maurelli (1983) as implemented
in the R-package fungible (version 1.5; Waller, 2016),
to simulate a multivariate distribution of NA and SI.
We varied across three skewness values (0, 2 and 3;

Figure 3. Plots showing the association between NA and depression (upper left), between NA and anxiety (upper right), between
SI and depression (lower left), and between SI and anxiety (lower right). Each plot shows the effect of NA or SI for three different
levels of the other construct (low<�1 SD< average<þ1 SD< high). All axes show factor scores estimated with the Maximum A
Priori method in Mplus.
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with corresponding kurtosis values 0, 7 and 21), while
retaining the product moment correlation between
NA and SI (Study 1 estimate of .553),

Design Parameter 3: Size of Interaction. The third
design parameter indicated the strength of the inter-
action between NA and SI on depression. We based
the true size of the interaction on the standardized
regression coefficient of the estimated interaction
effect in Study 1 according to the LMS approach
(b¼ 0.20). In our simulation, we allowed the inter-
action to be either absent (0), half the size of the
Study 1 interaction (0.10), the exact size of the Study
1 interaction (0.20), or twice the size of the Study 1
interaction (0.40).

Design Parameter 4: Sample size. The fourth design
parameter indicated the sample size of the simulated
data set. We varied between a small, medium and
large sample size condition. In the large sample condi-
tion, we used a sample size of 3000 participants,
resembling the sample size of the data set used in
Study 1. In the medium sample condition we simu-
lated data for 500 participants, representing sample
sizes commonly encountered when analyzing latent
variable models. Lastly, in the small sample condition
we simulated a sample size of 250 participants.

Data simulation
For each of the 72 conditions, we simulated 500 data
sets containing scores on items measuring the con-
structs depression (9 items), NA (7 items) and SI (7
items). We generated data using the parameter esti-
mates (i.e., factor loadings, latent (co)variances,
regression coefficients, thresholds and error variances)
of the latent prediction model in Study 1.3 First, we
randomly sampled vectors of NA and SI latent trait
scores according to the multivariate skew distribution,
given the NA and SI (co)variance(s) from Study 1 and
given the skewness design parameter. Second, we used
Equation (1) to calculate the continuous item scores
for each individual (i) and for each item (j) measuring
the traits (t) NA or SI:

Yij ¼ kjt gti þ eij (1)

In this equation, kjt denotes the factor loading of
item j loading on trait t. gti represents the score of
individual i on latent trait t, and eij the residual error
of individual i on item j. When generating the con-
tinuous item scores, we used as input a matrix with
individual NA and SI trait scores (W), the factor load-
ing matrix retrieved from Study 1 (K), and a residual

error matrix (H) based on a multivariate normal dis-
tribution with a mean vector of zeroes and a diagonal
covariance matrix with variances retrieved from the
output in Study 1. In line with earlier research (Flora
& Curran, 2004), for ordinal scenarios, we trans-
formed these continuous item scores into ordinal
scores using the case 1 thresholds proposed by
Muth�en and Kaplan (1985).

To simulate PHQ-9 (depression) item scores, we
had to take into account that the scores on the
depression measure depended on the scores of the NA
and SI traits, their interaction, and prediction error.
Therefore, we used Equation (2) to first compute the
latent depression scores:

wDi ¼ bSIwSIi þ bNAwNAi þ bNA�SIwNAiwSIi þ di (2)

We then used Equation (1) to compute the con-
tinuous depression item scores and if appropriate we
used the case 1 thresholds (Muth�en & Kaplan, 1985)
to transform them into ordinal item scores. In
Equation (2), wDi denotes the latent depression score
of individual i, the three b0s represent the regression
coefficients of the latent regression of depression on
NA (wNAi), SI (wSIi) and the interaction between NA
and SI (wNAi � wSIi). Lastly, di denotes the prediction
residual of individual i, based on normal distribution
with mean zero and a variance retrieved from the out-
put of Study 1.

Statistical methods
After simulating 500 data sets in each of the 72 condi-
tions, we analyzed each data set according to the same
methods used in Study 1: (1) Regression of sum
scores; (2) LMS with MLR estimation; (3) Single PI
with MLR estimation; (4) Matched PI with MLR
estimation; (5) Single PI with DWLS estimation based
on the polychoric correlation matrix; and (6) Matched
PI with DWLS estimation based on the polychoric
correlation matrix. Note that we only applied methods
5 and 6 to data sets with ordinal item scores, because
the polychoric thresholds could not be estimated for
data with continuous measurement levels. We imple-
mented all latent interaction models in Mplus and
conducted the simulation using the R-package
MplusAutomation (Hallquist & Wiley, 2011). The
R-script of this simulation study is available at this
project’s open science framework page: https://osf.
io/kf6d5/.

Outcome measures
We aggregated the parameter estimates over 500 repli-
cations and used the mean and standard deviation to

3We used the parameter estimates resulting from the LMS method,
because this is the default method in Mplus to model interaction effects.
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compute a 95% confidence interval for the parameters
of interest. Our main outcome was the bias and preci-
sion of the parameter estimates. The amount of bias
was computed as the difference between the mean of
a parameter estimate and the true value (i.e., the b
values of used to generate the data; see Equation (2)).
We also assessed the mean squared error, defined as
the squared distance between the estimated value of
the interaction effect and the true value of the inter-
action, averaged across 500 replications. We used the
width of the 95% confidence interval as a measure of
precision in the parameter estimate.

Expectations
With respect to simulation conditions with continuous
item scores, we expected in line with earlier research
(Kelava & Nagengast, 2012; Kelava, Nagengast, &
Brandt, 2014), that LMS would perform best when the
latent traits are normally distributed and that it would
get more biased as skewness increased. Furthermore,
we expected the PI approaches to show less bias in
skewed conditions than the LMS method because ear-
lier research showed that these approaches, especially
the Matched PI approach, were less biased than LMS
when the data is not normally distributed (Marsh
et al., 2004; Cham, West, Ma, & Aiken, 2012). With
respect to simulation conditions with ordinal item
scores, we expected the WLS approach that used the
polychoric correlation matrix to outperform the MLR
approach based on the product moment correlation
matrix, because the former method directly models
skewness by estimating threshold parameters for each
item. Finally, we expected the Sum score approach to
underestimate the interaction effects because the pres-
ence of measurement error attenuates the true associ-
ation between the latent constructs.

Results

All methods except LMS showed a 100% convergence
rate. In conditions without skewness, LMS also
reached 100% convergence, but as skewness increased
the convergence rate decreased to approximately 90%
for N¼ 500, and 85% for N¼ 250 conditions.
Nonconverged solutions have been excluded from fur-
ther analyses.

For all 72 conditions in our stimulation study,
Appendices C and D show respectively for continuous
and ordinal item score conditions the mean parameter
estimates of the interaction (including 95% confidence
interval). Appendix E presents for all simulation con-
ditions the bias in the estimated interaction effect in
terms of the squared distance between the estimated
interaction and the true interaction, averaged across
all 500 replications (mean squared error). Table 4
summarizes these statistics by reporting the total
mean squared error for each level of every design fac-
tor used in our simulation study. Lastly, Table 5
shows for each scenario the percentage of significant
interaction effects across all 500 replications, given a
significance level of 0.05.

Figures 4 and 5 illustrate respectively for continu-
ous and ordinal item score conditions, the mean bias
in the estimate of the interaction between NA and SI
for each of the 72 scenarios in our simulation study.
Each figure shows nine plots, divided over three rows
and three columns. The rows represent different
sample sizes and the columns different amounts of
skewness. Within each plot, the x-axis shows varying
sizes of the true interaction between NA and SI. The
y-axis shows the bias in the estimate of the standar-
dized regression coefficients of the interaction between
NA and SI. In each plot, the colors and shape of the
data points correspond to different methods to model

Table 4. For all methods, the total mean squared error across conditions involving specific design factors.

Design factor

Continuous item scores Ordinal item scores

Single PI Matched PI

Sum score
regression LMS MLR

Single
PI MLR

Matched
PI MLR

Sum score
regression LMS MLR MLR DWLS MLR DWLS

All simulation conditions 0.145 0.058 5.723 0.291 0.110 0.085 0.530 0.494 0.117 0.116
N ¼ 250 0.059 0.028 2.018 0.107 0.048 0.041 0.185 0.175 0.059 0.057
N ¼ 500 0.048 0.019 2.261 0.095 0.036 0.028 0.176 0.164 0.037 0.037
N ¼ 3000 0.039 0.012 1.445 0.089 0.026 0.017 0.169 0.155 0.021 0.021
Skewness ¼ 0 0.012 0.012 0.022 0.045 0.014 0.013 0.083 0.090 0.038 0.031
Skewness ¼ 2 0.043 0.023 0.881 0.083 0.044 0.034 0.206 0.186 0.036 0.040
Skewness ¼ 3 0.091 0.023 4.820 0.163 0.052 0.038 0.241 0.219 0.043 0.045
b ¼ 0 0.011 0.008 0.114 0.013 0.018 0.021 0.007 0.008 0.019 0.022
b ¼ .1035 0.032 0.015 0.972 0.050 0.019 0.023 0.016 0.015 0.029 0.033
b ¼ .207 0.057 0.023 2.095 0.109 0.010 0.016 0.073 0.067 0.029 0.030
b ¼ .414 0.045 0.012 2.542 0.119 0.064 0.026 0.434 0.405 0.040 0.030

b denotes the standardized regression coefficient of the true interaction effect.
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the interaction effect. Each dot corresponds to the
bias in the parameter estimate averaged over 500
replications and the error bars represent the 95%
confidence interval of the mean.

Continuous item scores
When comparing the four methods used on continu-
ous item scores, Table 4 shows that the LMS MLR
performed best across almost all conditions with
respect to minimizing bias, followed by the Sum score
approach, and Matched PI MLR. For all methods, the

least-biased conditions were those with the largest
sample size, a zero interaction effect, or no skewness.
Overall, the bias tended to increase as the sample size
decreased and as the skewness increased. Against our
expectations, when skewness was present in the latent traits
LMS performed best, while Single PI performed poorly.

Figure 4 illustrates that for all methods the average
bias was mostly positive, implying that the interaction
effect was overestimated in conditions with continu-
ous item scores. For the LMS and Sum score methods,
the size of the interaction did not have a large impact

Figure 4. Comparison of four methods to estimate interaction effects between NA and SI on depression in scenarios with continu-
ous items, varying over the true interaction size (x-axis), amount of skewness (columns) and sample size (rows). Each data point
shows the mean bias (including 95% confidence interval) in the standardized regression coefficient of the estimated inter-
action effect.
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on the bias in the estimates. However, both PI meth-
ods overestimated the larger interaction effects, espe-
cially when skewness was present. Of all methods,
LMS had the highest precision because it showed the
least variability in the estimated interaction effects, as
indicated by the narrowest confidence intervals in
Figure 4. As expected, for all methods larger sample
sizes reduced the variability in the estimated inter-
action effects across the 500 replications. An interest-
ing finding is that higher skewness resulted in more
variability in the estimated effects for all methods, but
especially so for the Single PI MLR method.

Table 5 shows that the power to detect a significant
interaction effect was above 0.80 for all methods in

the continuous item score conditions, except for the
Single PI MLR method. This method was especially
underpowered as skewness increases, even at larger
sample sizes, possibly because it resulted in widely
varying estimates of the interaction effect, as indicated
by the broad confidence intervals around the mean
estimate of the interaction effect in conditions with
skewness (Figure 4).

Table 5 further indicates for both the Single PI
MLR and Matched PI MLR approaches were able to
retain a false-positive rate of approximately 5% across
all simulation conditions. Both the LMS and Sum
score method also showed acceptable false-positive
rates, but only when the latent traits were not skewed.

Figure 5. Comparison of four methods to estimate interaction effects between NA and SI on depression in scenarios with ordinal
items, varying over the true interaction size (x-axis), amount of skewness (columns) and sample size (rows). Each data point shows
the mean bias (including 95% confidence interval) in the standardized regression coefficient of the estimated interaction effect.
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As skewness increased, more false-positive findings
emerged, and this effect was magnified with larger
sample sizes.

Ordinal item scores
When comparing the six methods used on ordinal
item scores, Table 4 shows that the LMS MLR
performed best across almost all conditions with
respect to minimizing bias, followed by the Sum score,
Matched PI DWLS and Matched PI MLR approaches.
For all methods, the least-biased conditions were
those with the largest sample size and no skewness,
and bias increased as the sample size decreased and
as skewness increased. Both Single PI MLR and Single
PI DWLS performed poorly with respect to the mean
squared error, especially when skewness was present
and as the true size of the interaction became larger.
Contrary to our expectations, for skewed latent traits
Matched PI MLR was slightly less biased than
Matched PI DWLS. However, the Single PI DWLS did
perform slightly better than Single PI MLR when
skewness was present.

Figure 5 illustrates that for both Single PI methods
the average bias was mostly negative, implying that
these methods underestimated the interaction effect
when item scores were ordinal. The average bias for
the other methods depended on specific design
factors. The bias of the LMS MLR and both Matched
PI methods was largely similar, though without skew-
ness LMS MLR was less biased than both Matched
PI methods.

The width of the confidence intervals in
Figure 5(A) indicates there were no large differences
with respect to the precision of the six methods.
Interestingly, the Single PI methods extremely variable
estimates in skewed and continuous conditions did
not apply to the ordinal conditions. As expected, for
all methods larger sample sizes reduced the variability
in the estimated interaction effects across the 500
replications. Higher skewness resulted in slightly more
variability in the estimated effects for all methods.

Table 5 shows that for ordinal conditions, LMS
outperformed the other methods with respect to maxi-
mizing the power to detect a significant interaction
effect, followed closely by the Sum score method. As
expected, for all methods the power increased with
larger sample sizes and for N¼ 250 the Single PI
MLR, Single PI DWLS and Matched PI MLR methods
were underpowered to detect the smallest simulated
effect. Increasing the sample size to N¼ 500 resulted
in adequate power for all methods except the Single

PI MLR method, still underpowered to detect the
smallest effect.

With respect to minimizing the percentage of
false-positive findings, Table 5 shows that the Single
PI MLR method outperformed all other methods, but
was closely followed by the Matched PI MLR method.
These methods managed to keep the false-positive
rate close to 5% in most conditions. Although they
produced somewhat poorer false-positive rates when
skewness and sample size were large, they still outper-
formed the other methods in those simulation condi-
tions. While both the Single- and Matched PI DWLS
methods never showed acceptable false-positive rates,
the LMS and Sum score method only showed accept-
able false-positive rates without skewness. Both the
LMS and Sum score method showed an increase in
false-positive rates as skewness increased, and this
effect was most pronounced with larger sample sizes.

Discussion

In this study, we investigated the relation between
Type D personality, depression, and anxiety using a
latent prediction model. To our knowledge, the associ-
ation between these constructs has not been analyzed
previously with latent variable models that take into
account the measurement error present in the scales
that measure these constructs. These modeling
approaches allowed us to prevent the kind of bias that
is likely to occur when analyzing such data with regu-
lar regression analysis based on sum score variables
(Busemeyer & Jones, 1983; Embretson, 1996; Kang &
Waller, 2005; MacCallum, Zhang, Preacher, &
Rucker, 2002).

In Study 1, we applied a latent prediction model
to existing data of 3314 persons with Type 1 or 2
diabetes. Results according to six methods to model
interaction effects suggested a small but significant
effect of Type D personality (viz. an interaction of
its subcomponents NA and SI) on depression and
anxiety, implying that the association of negative
affectivity with both depression and anxiety tends to
get stronger as people show more social inhibition.
These findings are consistent with earlier research that
did not use latent variable modeling (Nefs et al.,
2015). However, the inclusion of quadratic NA and SI
effects to the models reduced the size of the inter-
action effect. Indeed, both Single PI methods pro-
duced smaller but still significant interaction effects,
while for other methods the interaction effect either
reduced to zero (Sum score; Matched PI MLR;
Matched PI DWLS), or even changed in the opposite
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direction (LMS). Given these conflicting results, we
conducted a Monte Carlo simulation study to investi-
gate the bias and precision of each of the six methods
used to model the interaction effect.

In our simulation study, we found that the six
methods to model interaction effects differ in the
accuracy and precision of the estimated interaction
effects. In general, the LMS approach performed best
with respect to minimizing bias in the estimated inter-
action effect. This conclusion applies both to continu-
ous as well as ordinal item scores. Unexpectedly,
when skewness was present in the latent traits LMS
was the least-biased method, although it still overesti-
mated the true value of the interaction on these occa-
sions. This finding contrasts with earlier research
showing the Matched PI approach to be less biased
than LMS when skewness was present (Marsh et al.,
2004; Kelava, Nagengast, & Brandt, 2014).

In general, the Single PI approach did not perform
well in terms of minimizing bias. Especially when
skewness was high and item scores were continuous
this approach resulted in widely varying interaction
effect estimates. This finding also applies to the
Matched PI approach, yet to a much lesser extent.
The worse performance of the Single PI method com-
pared to the Matched PI method is not surprising,
because the Single PI method has to rely on a single
product indicator when estimating the interaction
effect. In light of these findings, we strongly recom-
mend against using the Single PI approach when
modeling latent interaction effects.

With respect to maximizing the power to detect
a nonzero interaction effect, LMS outperformed the
other methods, both for continuous as well as for
ordinal item scores. However, the Sum score approach
and Matched PI approaches were also adequately
powered in most simulated conditions. Regarding the
percentage of false positives, the Single PI MLR and
Matched PI MLR methods outperformed the other
methods in most simulation conditions, keeping the
false-positive rate around 5%. Both LMS and the sum
score method were only able to control the false-posi-
tive rate without skewness in the latent traits. As the
latent traits got more skewed, these methods produced
more false positives. This is no surprise, given that
these conditions fail to meet LMS’s assumption that
the item scores of the exogenous latent variables show
a multivariate normal distribution (Klein &
Moosbrugger, 2000). These high power and the
inflated false positive of the LMS approach are in line
with findings from other simulation studies examining
the LMS approach (Marsh et al., 2004; Kelava &

Nagengast, 2012). Although the Single PI MLR and
Matched PI MLR approach were able to better control
the false-positive rate than LMS in simulation
conditions with skewness, both PI approaches still
performed worse than LMS in terms of bias and the
power to detect a nonzero interaction effect.

Earlier research showed that for ordinal data, fitting
a confirmatory factor model to the polychoric correl-
ation matrix and estimating the parameters with
(D)WLS estimation is fairly robust to moderate viola-
tions of the assumption that the underlying latent
traits are normally distributed (Flora & Curran, 2004).
Interestingly, our results indicated that for ordinal
data, fitting the model to the polychoric correlation
matrix (rather than the product moment correlation
matrix) and using DWLS (rather than MLR estima-
tion) was not beneficial with respect to minimizing
the bias and false-positive conclusions, but did show
slightly better power. Our results highlight that if one
decides to use the Single- or Matched PI approaches,
it is not necessary to use the categorical DWLS
approach as the continuous MLR strategy performs at
least as well, and is more parsimonious.

In terms of minimizing bias, the Sum score
approach also performed reasonably well in general,
being the second least-biased method, after LMS.
Without skewness the Sum score approach even
performed equally well as LMS, independent of
whether the item scores were continuous or ordinal.
We expected that the Sum score approach would
show attenuated interaction effect estimates because
this method does not take into account measurement
error. However, the results of our simulation indicated
that the Sum score approach overestimated the inter-
action effect. A possible explanation for this finding
could be that ignoring measurement error can under
some circumstances lead to overestimated associations,
especially as models become more complex (Cole &
Preacher, 2014). The Sum score approach resulted in
spurious interactions only when skewness was high
and/or sample size was large and this effect was more
pronounced for ordinal than for continuous items.
These results align with earlier research showing that
the Sum score method can indeed lead to spurious
interactions (Embretson, 1996; Schwabe & Van den
Berg, 2014).

To the best of our knowledge, this is the first
simulation study comparing the performance of the
Sum score, LMS and PI approaches when modeling
interactions between latent variables based on ordinal
data. Based on our findings, we would advise researchers
to use latent variable modeling when testing for
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interactions between variables that are measured with
error. This echoes similar statements made over the
years that highlight the importance of latent variable
models in isolating a construct from its measurement
error (Rasch, 1960; Birnbaum, 1968; Embretson,
1996; Kang & Waller, 2005; Schwabe & van den Berg,
2014). When comparing continuous with ordinal
simulation conditions, LMS appears to perform
slightly better when item scores are continuous, while
the other methods perform better when item scores
are ordinal. Nevertheless, if one aims to minimize bias
in estimating the latent interaction effect, then we rec-
ommend to use the LMS approach, as this approach
is the least biased across all simulation conditions,
even when latent traits are skewed and item scores are
ordinal. If one aims at maximizing the power to
detect a nonzero interaction effect, then LMS is also
the method of choice. However, LMS did show
increased false-positive rates as the skewness of the
latent traits increased. Both PI MLR approaches
adequately kept the false-positive rate close to 5%. Of
those two, the Matched PI MLR approach appears
much less biased than the Single PI MLR approach.
Therefore, if one aims at minimizing the chance on
false-positive findings, one could consider using the
Matched PI MLR approach. This conclusion resonates
with earlier research showing the benefits of this
particular method relative to other methods to con-
struct latent interactions (Marsh, Wen, & Hau, 2004;
Cham, West, Ma, & Aiken, 2012).

Although our simulation showed LMS to be the
least-biased method, it still overestimated the inter-
action effect and has an inflated false-positive rate
when the latent traits were skewed, especially when
item scores were ordinal. This aligns with earlier
research indicating that LMS shows biased parameter
estimates when skewness is introduced (Kelava &
Nagengast, 2012; Kelava, Nagengast, & Brandt, 2014;
Cham, West, Ma, & Aiken, 2012). Other promising
methods that fell beyond the scope of the present
study use mixture modeling to model skewed
exogenous latent variables (Dolan & Van der Maas,
1998). For instance, the recently developed Nonlinear
Structural Equation Mixture Modeling (Kelava,
Nagengast, & Brandt, 2014) and the Bayesian finite
mixture model (Kelava & Nagengast, 2012) both show
promise in modeling latent interaction and quadratic
effects when the latent exogenous variables are not
normally distributed. However, it is unclear how these
methods perform when item scores are ordinal rather
than continuous. This would be an interesting avenue
for future research.

The primary motivation for our simulation study
was to place the results of our empirical study in
context, assessing the bias and precision of the six
methods used to model interaction effects. Of all
simulation conditions, the one with a sample size of
3000, ordinal item scores, skewed latent traits, and
an interaction effect of .207 most resembles the
circumstances of our empirical study. Interestingly,
our simulation study indicated that the Sum score
approach is least biased in that specific scenario. This
method showed that the interaction between NA and
SI is no longer statistically significant after adding the
quadratic NA and SI effects to the model. However,
in the simulations, the Sum score approach exhibited
many false positives when latent traits were skewed
and item scores were ordinal. To lower the possibility
that the significant quadratic NA and SI effects reflect
false-positive findings, we can inspect the results of
the Matched PI MLR approach, which showed nom-
inal false-positive rates close to 5%. The empirical
results of the Matched PI MLR approach are also
similar to those of the Sum score method: adding the
significant quadratic NA and SI effects to the model
rendered the interaction between NA and SI statistic-
ally insignificant.

Combined, our findings fail to support our main
hypothesis that the association between negative
affectivity and both depression and anxiety gets stron-
ger at higher levels of social inhibition. Rather, our
results suggest that the effect of NA on both depres-
sion and anxiety might get stronger at higher levels of
NA, and that there exist a similar but smaller quad-
ratic effect for SI on both depression and anxiety.
Effects similar to these have been reported in earlier
research, where the personality traits neuroticism
(correlation with NA: r¼ 0.68; de Fruyt & Denollet,
2002) and introversion (correlation with SI: r¼ 0.52;
de Fruyt & Denollet, 2002) did not show a significant
interaction on depression and anxiety, yet both
did show significant quadratic effects (Jorm et al.,
2000). Quadratic effects are known to be well-approxi-
mated by interaction effects, especially as the constructs
involved in the interaction correlate highly (Kang &
Waller, 2005). Therefore, in line with other researchers,
we stress the importance of always first adding the
quadratic effects to models that test for the presence of
interaction effects (Lubinski & Humphreys, 1990).

Our study investigated the association between
Type D personality and anxiety and depression. Apart
from these clinical psychological constructs, there
exists a large body of research investigating whether
Type D personality is related to worse health-related

MULTIVARIATE BEHAVIORAL RESEARCH 657



outcomes in the general population (Mols & Denollet,
2010) or in people with cardiovascular disease
(Denollet et al., 2010, 2018). Because most of these
studies did not apply latent variable modeling and did
not test for quadratic NA and SI effects, an interesting
avenue for future research would be to do so in pre-
registered, highly powered direct replication projects.
Such studies will not only highlight the importance
of latent variable modeling, but also answer recent
critiques (e.g., Smith, 2011; Grande, Romppel, &
Barth, 2012) questioning the replicability of research
on Type D personality (for a more detailed discussion
of this issue, see Denollet et al., 2013).

Finally, we would like to note that the methods
used in this study are not limited to research on Type
D personality. The investigated approaches to model
latent interactions can be readily applied to future
studies aimed at accounting for measurement error
while analyzing interactions between psychological
constructs.
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Appendix A. DS14 scale information for study 1.

Appendix B. PHQ-9 & GAD-7 scale information for study 1.

DS14
Negative affectivity Social inhibition

DS2 DS4 DS5 DS7 DS9 DS12 DS13 DS1 DS3 DS6 DS8 DS10 DS11 DS14

DS2 1
DS4 0.35 1
DS5 0.43 0.52 1
DS7 0.45 0.64 0.54 1
DS9 0.36 0.51 0.6 0.57 1
DS12 0.52 0.6 0.54 0.68 0.51 1
DS13 0.4 0.71 0.51 0.73 0.58 0.72 1

DS1 0.09 0.23 0.16 0.27 0.24 0.21 0.24 1
DS3 0.05 0.15 0.1 0.18 0.18 0.15 0.14 0.63 1
DS6 0.32 0.46 0.39 0.5 0.42 0.44 0.46 0.54 0.4 1
DS8 0.22 0.31 0.27 0.39 0.36 0.32 0.33 0.64 0.51 0.64 1
DS10 0.12 0.3 0.26 0.33 0.35 0.3 0.31 0.57 0.45 0.52 0.55 1
DS11 0.19 0.34 0.33 0.4 0.4 0.38 0.38 0.51 0.42 0.53 0.53 0.66 1
DS14 0.2 0.37 0.29 0.4 0.39 0.36 0.4 0.59 0.47 0.63 0.7 0.56 0.56 1

Skewness 0.11 0.79 0.18 0.63 0.86 0.25 0.93 0.67 0.22 0.48 0.62 0.45 0.37 0.72
Kurtosis �0.97 �0.37 �0.92 �0.67 �0.08 �1.07 �0.1 �0.32 �0.76 �0.83 �0.69 �1.02 �0.92 �0.47

PHQ9_1 PHQ9_2 PHQ9_3 PHQ9_4 PHQ9_5 PHQ9_6 PHQ9_7 PHQ9_8 PHQ9_9

PHQ9_1 1
PHQ9_2 0.72 1
PHQ9_3 0.42 0.44 1
PHQ9_4 0.54 0.52 0.55 1
PHQ9_5 0.44 0.45 0.4 0.48 1
PHQ9_6 0.53 0.64 0.36 0.43 0.45 1
PHQ9_7 0.49 0.51 0.38 0.49 0.39 0.46 1
PHQ9_8 0.39 0.43 0.33 0.37 0.34 0.4 0.48 1
PHQ9_9 0.38 0.48 0.22 0.27 0.29 0.43 0.3 0.26 1

Skewness 1.66 2.06 0.93 0.73 1.94 2.19 1.77 3.1 4.99
Kurtosis 2.63 4.28 –0.22 –0.5 3.2 4.4 2.66 10.19 29.49

GAD7_1 GAD7_2 GAD7_3 GAD7_4 GAD7_5 GAD7_6 GAD7_7

GAD7_1 1
GAD7_2 0.71 1
GAD7_3 0.68 0.77 1
GAD7_4 0.67 0.66 0.67 1
GAD7_5 0.49 0.48 0.47 0.58 1
GAD7_6 0.51 0.5 0.52 0.57 0.48 1
GAD7_7 0.52 0.54 0.53 0.46 0.37 0.42 1

Skewness 1.76 2.06 1.44 1.5 2.26 1.36 2.62
Kurtosis 3.27 4.34 2.02 1.99 5.41 1.81 7.42

662 P. LODDER ET AL.



Appendix C. Mean standardized regression coefficient (including 95% confidence interval) of the
interaction effect between NA and SI on depression for all continuous simulation scenarios.

Latent variable models

N Skewness Size interaction Sum score regression LMS MLR Single PI MLR Matched PI MLR

250 0 0 0 [�.08/.08] 0 [�.08/.08] 0 [�.1/.1] 0 [�.1/.1]
.1035 .12 [.04/.2] .12 [.04/.2] .11 [.01/.21] .14 [.04/.24]
.207 .22 [.14/.3] .23 [.15/.31] .21 [.09/.33] .27 [.17/.37]
.414 .41 [.33/.49] .42 [.36/.48] .39 [.25/.53] .49 [.39/.59]

2 0 .02 [�.06/.1] .02 [�.06/.1] 0 [�.22/.22] 0 [�.1/.1]
.1035 .15 [.05/.25] .14 [.06/.22] .2 [�.43/.83] .16 [.04/.28]
.207 .26 [.16/.36] .25 [.17/.33] .34 [�.19/.87] .29 [.17/.41]
.414 .44 [.32/.56] .44 [.36/.52] .58 [�.48/1.64] .49 [.37/.61]

3 0 .02 [�.08/.12] .01 [�.07/.09] 0 [�.41/.41] 0 [�.12/.12]
.1035 .16 [.04/.28] .13 [.05/.21] .29 [�.81/1.39] .18 [.04/.32]
.207 .29 [.15/.43] .26 [.18/.34] .47 [�.71/1.65] .33 [.17/.49]
.414 .48 [.3/.66] .44 [.36/.52] .68 [�.81/2.17] .54 [.36/.72]

500 0 0 0 [�.06/.06] 0 [�.06/.06] 0 [�.06/.06] 0 [�.06/.06]
.1035 .12 [.06/.18] .12 [.06/.18] .11 [.05/.17] .14 [.08/.2]
.207 .22 [.16/.28] .23 [.19/.27] .21 [.13/.29] .27 [.21/.33]
.414 .41 [.35/.47] .43 [.39/.47] .39 [.29/.49] .49 [.43/.55]

2 0 .02 [�.04/.08] .02 [�.04/.08] 0 [�.12/.12] 0 [�.08/.08]
.1035 .15 [.07/.23] .14 [.08/.2] .19 [�.05/.43] .16 [.08/.24]
.207 .27 [.19/.35] .25 [.19/.31] .37 [�.24/.98] .3 [.2/.4]
.414 .45 [.35/.55] .44 [.38/.5] .58 [�.11/1.27] .5 [.4/.6]

3 0 .02 [�.04/.08] .01 [�.03/.05] 0 [�.43/.43] 0 [�.08/.08]
.1035 .17 [.09/.25] .14 [.08/.2] .32 [�.74/1.38] .18 [.08/.28]
.207 .3 [.2/.4] .25 [.19/.31] .6 [�.97/2.17] .33 [.21/.45]
.414 .49 [.35/.63] .44 [.38/.5] .8 [�.75/2.35] .55 [.41/.69]

3000 0 0 0 [�.02/.02] 0 [�.02/.02] 0 [�.02/.02] 0 [�.02/.02]
.1035 .11 [.09/.13] .12 [.1/.14] .11 [.09/.13] .14 [.12/.16]
.207 .22 [.2/.24] .24 [.22/.26] .22 [.18/.26] .27 [.25/.29]
.414 .41 [.39/.43] .43 [.41/.45] .39 [.35/.43] .49 [.45/.53]

2 0 .02 [0/.04] .01 [�.01/.03] 0 [�.04/.04] 0 [�.04/.04]
.1035 .15 [.13/.17] .14 [.12/.16] .18 [.1/.26] .17 [.13/.21]
.207 .27 [.23/.31] .26 [.24/.28] .34 [.2/.48] .31 [.27/.35]
.414 .45 [.41/.49] .44 [.42/.46] .54 [.34/.74] .51 [.47/.55]

3 0 .01 [�.01/.03] .01 [�.01/.03] 0 [�.08/.08] 0 [�.04/.04]
.1035 .17 [.13/.21] .14 [.12/.16] .35 [�.22/.92] .19 [.15/.23]
.207 .31 [.23/.39] .25 [.23/.27] .67 [�.6/1.94] .35 [.27/.43]
.414 .5 [.42/.58] .45 [.43/.47] .93 [�.21/2.07] .56 [.48/.64]
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Appendix D. Mean standardized regression coefficient (including 95% confidence interval) of the
interaction effect between NA and SI on depression for all ordinal simulation scenarios.

N Skewness
Size

interaction

Latent variable models

Sum score regression LMS MLR Single PI MLR Single PI DWLS Matched PI MLR Matched PI DWLS

250 0 0 0 [�.08/.08] 0 [�.08/.08] 0 [�.08/.08] 0 [�.08/.08] 0 [�.1/.1] 0 [�.1/.1]
.1035 .11 [.03/.19] .12 [.04/.2] .08 [0/.16] .08 [0/.16] .14 [.04/.24] .13 [.03/.23]
.207 .21 [.13/.29] .23 [.15/.31] .15 [.07/.23] .15 [.07/.23] .26 [.16/.36] .25 [.15/.35]
.414 .38 [.3/.46] .41 [.33/.49] .27 [.17/.37] .27 [.17/.37] .47 [.37/.57] .46 [.36/.56]

2 0 .03 [�.07/.13] .04 [�.06/.14] .01 [�.07/.09] .01 [�.07/.09] .01 [�.11/.13] .03 [�.09/.15]
.1035 .14 [.04/.24] .15 [.07/.23] .07 [�.01/.15] .08 [0/.16] .15 [.03/.27] .16 [.04/.28]
.207 .22 [.14/.3] .24 [.14/.34] .12 [.04/.2] .12 [.04/.2] .24 [.14/.34] .25 [.13/.37]
.414 .33 [.25/.41] .37 [.27/.47] .18 [.1/.26] .19 [.09/.29] .37 [.27/.47] .38 [.26/.5]

3 0 .03 [�.07/.13] .04 [�.06/.14] 0 [�.08/.08] .01 [�.07/.09] .01 [�.13/.15] .03 [�.09/.15]
.1035 .14 [.04/.24] .15 [.07/.23] .06 [�.02/.14] .07 [�.01/.15] .15 [.03/.27] .16 [.04/.28]
.207 .22 [.14/.3] .23 [.13/.33] .11 [.03/.19] .11 [.03/.19] .24 [.12/.36] .25 [.13/.37]
.414 .32 [.22/.42] .36 [.24/.48] .16 [.08/.24] .17 [.07/.27] .36 [.24/.48] .37 [.25/.49]

500 0 0 0 [�.06/.06] 0 [�.06/.06] 0 [�.06/.06] 0 [�.06/.06] 0 [�.08/.08] 0 [�.08/.08]
.1035 .11 [.05/.17] .12 [.06/.18] .08 [.02/.14] .07 [.01/.13] .14 [.06/.22] .13 [.07/.19]
.207 .21 [.15/.27] .23 [.17/.29] .15 [.09/.21] .15 [.09/.21] .26 [.18/.34] .25 [.17/.33]
.414 .38 [.32/.44] .41 [.35/.47] .27 [.19/.35] .26 [.18/.34] .47 [.39/.55] .46 [.38/.54]

2 0 .03 [�.03/.09] .04 [�.02/.1] .01 [�.05/.07] .01 [�.05/.07] .01 [�.09/.11] .03 [�.05/.11]
.1035 .14 [.08/.2] .15 [.09/.21] .07 [.01/.13] .08 [.02/.14] .15 [.07/.23] .16 [.08/.24]
.207 .22 [.16/.28] .24 [.18/.3] .12 [.06/.18] .12 [.06/.18] .24 [.16/.32] .25 [.17/.33]
.414 .33 [.27/.39] .37 [.31/.43] .18 [.12/.24] .19 [.13/.25] .37 [.29/.45] .38 [.3/.46]

3 0 .04 [�.04/.12] .04 [�.02/.1] .01 [�.05/.07] .01 [�.05/.07] .02 [�.08/.12] .03 [�.07/.13]
.1035 .14 [.08/.2] .15 [.09/.21] .07 [.01/.13] .07 [.01/.13] .15 [.07/.23] .16 [.08/.24]
.207 .22 [.16/.28] .23 [.17/.29] .1 [.04/.16] .11 [.05/.17] .24 [.16/.32] .24 [.16/.32]
.414 .31 [.25/.37] .35 [.27/.43] .16 [.1/.22] .17 [.11/.23] .35 [.27/.43] .37 [.29/.45]

3000 0 0 0 [�.02/.02] 0 [�.02/.02] 0 [�.02/.02] 0 [�.02/.02] 0 [�.02/.02] 0 [�.02/.02]
.1035 .11 [.09/.13] .12 [.1/.14] .08 [.06/.1] .08 [.06/.1] .14 [.1/.18] .13 [.09/.17]
.207 .21 [.19/.23] .23 [.21/.25] .15 [.13/.17] .15 [.13/.17] .26 [.24/.28] .25 [.21/.29]
.414 .38 [.36/.4] .41 [.39/.43] .27 [.23/.31] .27 [.23/.31] .46 [.42/.5] .46 [.44/.48]

2 0 .03 [.01/.05] .04 [.02/.06] .01 [�.01/.03] .01 [�.01/.03] .01 [�.03/.05] .03 [�.01/.07]
.1035 .14 [.12/.16] .15 [.13/.17] .07 [.05/.09] .08 [.06/.1] .14 [.1/.18] .16 [.12/.2]
.207 .22 [.2/.24] .24 [.22/.26] .12 [.1/.14] .12 [.1/.14] .24 [.22/.26] .25 [.23/.27]
.414 .33 [.31/.35] .37 [.35/.39] .18 [.16/.2] .19 [.17/.21] .37 [.35/.39] .38 [.36/.4]

3 0 .04 [.02/.06] .04 [.02/.06] .01 [�.01/.03] .01 [�.01/.03] .01 [�.03/.05] .03 [�.01/.07]
.1035 .14 [.12/.16] .15 [.13/.17] .06 [.04/.08] .07 [.05/.09] .15 [.11/.19] .15 [.11/.19]
.207 .22 [.2/.24] .23 [.21/.25] .1 [.08/.12] .11 [.09/.13] .23 [.19/.27] .24 [.2/.28]
.414 .31 [.29/.33] .35 [.31/.39] .16 [.12/.2] .17 [.15/.19] .35 [.31/.39] .37 [.33/.41]
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Appendix E. For each simulation condition, the squared distance between the estimated value of
the interaction effect and the true value of the interaction, averaged across 500 replications
(mean squared error).

N Skewness
True size
interaction

Continuous item scores Ordinal item scores

Sum score LMS Single Matched Sum score LMS
Single PI Matched PI

regression MLR PI MLR PI MLR regression MLR MLR WLS MLR WLS

250 0 0 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.001 0.003 0.003
.1035 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.004 0.004
.207 0.002 0.002 0.003 0.006 0.002 0.002 0.005 0.005 0.006 0.004
.414 0.002 0.001 0.006 0.007 0.003 0.001 0.022 0.024 0.006 0.005

1 0 0.002 0.002 0.012 0.003 0.003 0.004 0.001 0.002 0.004 0.005
.1035 0.005 0.003 0.11 0.007 0.004 0.004 0.003 0.002 0.005 0.006
.207 0.006 0.004 0.092 0.011 0.002 0.003 0.01 0.009 0.004 0.005
.414 0.004 0.002 0.319 0.011 0.01 0.004 0.058 0.053 0.005 0.004

2 0 0.003 0.002 0.044 0.003 0.004 0.004 0.001 0.002 0.004 0.005
.1035 0.007 0.002 0.348 0.01 0.004 0.004 0.003 0.002 0.005 0.006
.207 0.012 0.004 0.428 0.02 0.002 0.003 0.012 0.011 0.005 0.005
.414 0.012 0.002 0.652 0.023 0.011 0.006 0.066 0.061 0.007 0.006

500 0 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
.1035 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.002 0.002
.207 0.001 0.001 0.002 0.005 0.001 0.001 0.004 0.004 0.004 0.003
.414 0.001 0.001 0.003 0.006 0.002 0.001 0.022 0.024 0.004 0.003

1 0 0.001 0.001 0.004 0.001 0.002 0.003 0.001 0.001 0.002 0.003
.1035 0.004 0.002 0.022 0.005 0.003 0.003 0.002 0.002 0.003 0.004
.207 0.006 0.003 0.119 0.011 0.001 0.002 0.009 0.008 0.003 0.003
.414 0.004 0.002 0.149 0.01 0.008 0.003 0.056 0.051 0.003 0.002

2 0 0.001 0.001 0.048 0.001 0.003 0.003 0.001 0.001 0.002 0.003
.1035 0.006 0.002 0.336 0.009 0.003 0.003 0.002 0.002 0.003 0.004
.207 0.011 0.003 0.799 0.019 0.001 0.001 0.011 0.01 0.003 0.003
.414 0.011 0.002 0.777 0.023 0.011 0.005 0.066 0.06 0.005 0.004

3000 0 0 0 0 0 0 0 0 0 0 0 0
.1035 0 0 0 0.001 0 0 0.001 0.001 0.001 0.001
.207 0 0.001 0 0.004 0 0.001 0.003 0.003 0.003 0.003
.414 0 0 0.001 0.005 0.001 0 0.02 0.022 0.003 0.002

1 0 0 0 0 0 0.001 0.002 0 0 0 0.001
.1035 0.003 0.001 0.007 0.004 0.002 0.002 0.001 0.001 0.002 0.003
.207 0.005 0.002 0.021 0.01 0 0.001 0.009 0.007 0.001 0.002
.414 0.002 0.001 0.026 0.009 0.008 0.002 0.056 0.051 0.002 0.001

2 0 0 0 0.002 0 0.001 0.002 0 0 0.001 0.001
.1035 0.005 0.001 0.146 0.008 0.002 0.002 0.002 0.001 0.002 0.003
.207 0.013 0.002 0.632 0.023 0 0.001 0.011 0.009 0.001 0.002
.414 0.009 0.001 0.609 0.023 0.01 0.004 0.066 0.06 0.004 0.002
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