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Abstract
Amodel of the development and progression of chronic fatigue syndrome (myalgic encephalomyelitis), the aetiology of which is
currently unknown, is put forward, starting with a consideration of the post-infection role of damage-associated molecular
patterns and the development of chronic inflammatory, oxidative and nitrosative stress in genetically predisposed individuals.
The consequences are detailed, including the role of increased intestinal permeability and the translocation of commensal
antigens into the circulation, and the development of dysautonomia, neuroinflammation, and neurocognitive and neuroimaging
abnormalities. Increasing levels of such stress and the switch to immune and metabolic downregulation are detailed next in
relation to the advent of hypernitrosylation, impaired mitochondrial performance, immune suppression, cellular hibernation,
endotoxin tolerance and sirtuin 1 activation. The role of chronic stress and the development of endotoxin tolerance via
indoleamine 2,3-dioxygenase upregulation and the characteristics of neutrophils, monocytes, macrophages and Tcells, including
regulatory T cells, in endotoxin tolerance are detailed next. Finally, it is shown how the immune and metabolic abnormalities of
chronic fatigue syndrome can be explained by endotoxin tolerance, thus completing the model.
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Introduction

Research into the cause and treatment of myalgic encephalo-
myelitis (ME), also known as chronic fatigue syndrome
(CFS), has involved the use of 20 different case definitions
in common use (Brurberg et al. 2014). The widest definition

of CFS is favoured in the UK and only mandates the presence
of idiopathic fatigue of variable severity (Sharpe et al. 1991),
while the narrowest definition favoured by investigating phy-
sicians in the USA mandates the presence of severe incapac-
itating fatigue, pain, compromised sleep, neurocognitive dis-
ability symptoms consistent with autonomic dysfunction and
a worsening of global symptoms following even trivial in-
creases in activity (Carruthers et al. 2011). This is an important
issue as the use of narrow selection criteria identify patients
with far higher levels of physical and cognitive disability than
the use of wider criteria (Jason et al. 2012, 2015a, 2016) and
criteria variance has been identified as the main factor ac-
counting for the lack of replicated data which has impeded
progress in this field (Jason et al. 2015a, b) (reviewed
(Morris and Maes 2013a)). Using published criteria, the prev-
alence ofME/CFS is relatively high, at between 0.2 and 6.4%;
together with a low level of employment, reported to be be-
tween 27 and 41%, it is clear that this disorder poses a high
financial burden on patients and society (Johnston et al. 2013;
Rimbaut et al. 2016). It also carries a high cost in terms of
symptomology; compared with patients suffering from multi-
ple sclerosis (MS), CFS patients have been reported to suffer
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from higher levels of symptom severity, higher levels of de-
pression and kinesiophobia, and lower quality of life, lower
maximum voluntary muscle contraction and muscle recovery,
and lower cognitive performance (Meeus et al. 2016). In spite
of this disease burden, research intoME/CFS is relatively low.
Indeed, it has been calculated that, in the USA, if the federal
research funding for ME/CFSwere to take disease burden into
account, then, by comparison with the funding pattern for
other diseases, the funding for ME/CFS research would need
to be increased by at least a factor of 25 (Dimmock et al.
2016).

However, there is a large and accumulating body of evi-
dence reporting the existence of a wide range of biological
abnormalities in patients afforded a diagnosis of CFS accord-
ing to current international consensus criteria (Fukuda et al.
1994), most notably in the neuroendocrine, autonomic, neu-
rological, bioenergetic, redox and immunological domains
(Morris and Maes 2013b, c). It is germane to note that, in
the USA, the National Institute of Neurological Disorders
and Stroke have developed the common data elements for
clinical research in mitochondrial disease project ‘to provide
clinical researchers with tools to improve data quality and
allow for harmonization of data collected in different research
studies’ (Karaa et al. 2017, 2018). Common data elements for
ME/CFS are being developed along the lines of the following
11 domains: baseline/covariate; fatigue; post-exertional mal-
aise; sleep; pain; neurologic/cognitive/CNS imaging; auto-
nomic; neuroendocrine; immune; quality of life/functional
status/activity; and biomarkers. Eleven corresponding sub-
groups first met in 2017; a related publication will be written
in due course.

Early results indicate that increased production of intracel-
lular nuclear-factor 6B and cyclo-oxygenase-2 (COX-2) may
be key phenomena in CFS indicating activation of immune-
inflammatory pathways in that illness (Maes et al. 2006). In
addition, increased production of inducible nitric oxide (NO)
synthase (iNOS) coupled with increased IgM responses to
NO-adducts such as NO-tryptophan indicate increased
nitrosylation of proteins (Maes et al. 2006).

Numerous research teams have reported the presence of an
activated but dysregulated immune system with elevated pro-
inflammatory cytokines (PICs), T cell anergy, natural killer
(NK) cell dysfunction, and Th1, Th2 and, possibly, Th17 lym-
phocyte biases being repeatedly reported (Brenu et al. 2011;
Hornig et al. 2015, 2017; Maes et al. 2012a, b; Milrad et al.
2017; Montoya et al. 2017; Peterson et al. 2015; Russell et al.
2016). There is also evidence of a longitudinal shift in the
immune profiles of patients, with an inflammatory phenotype
seen in early disease giving way to an anti-inflammatory or
immunosuppressed phenotype, indicating activation of the
compensatory anti-inflammatory reflex system (Morris and
Maes 2013a, b, c) and somewhat reminiscent of the profile
seen in endotoxin tolerance in patients who have been ill for

many years or even decades (Hornig et al. 2015; Russell et al.
2016). Readers interested in a detailed review of these data are
referred to reviews by (Morris and Maes 2013b; Morris et al.
2015a). It should be stressed, however, that there is no evi-
dence of any immune abnormalities in participants afforded a
diagnosis of CFS based on any diagnostic schema other than
the Fukuda or Canadian criteria (Blundell et al. 2015).

Reported markers of chronic oxidative and nitrosative
stress (ONS) include elevated levels of reactive oxygen spe-
cies (ROS) and reactive nitrogen species (RNS), depleted
levels of reduced glutathione (GSH), elevated inducible nitric
oxide synthase (iNOS) and oxidatively modified proteins and
highly reactive metabolites of lipid peroxidation such as 4-
hydroxynonenal and malondialdehyde together with the pres-
ence of autoantibodies directed at neoepitopes and the pres-
ence of damage associated molecular patterns (DAMPs)
(Fulle et al. 2000, 2007; Gerwyn and Maes 2017; Maes
2013; Morris et al. 2015a; Morris and Maes 2013b, c;
Rutherford et al. 2016).

Importantly, several research teams have reported that
levels of oxidative stress in the muscles of exercising CFS
patients are higher than in age- and sex-matched controls
and that protective heat shock protein (HSP) responses are
impaired (Jammes et al. 2005, 2009, 2011, 2012;
Thambirajah et al. 2008). The existence of oxidative stress
in individuals afforded a diagnosis of CFS using schemata
other than the Canadian or Fukuda criteria is currently uncer-
tain as a literature search failed to uncover any published
research investigating this matter.

Chronic ONS is an acknowledged cause of mitochondrial
dysfunction (Morris et al. 2017c, d) and hence the fact that
impaired synthesis of adenosine triphosphate (ATP), impaired
oxidative phosphorylation and damaged or morphologically
abnormal mitochondria in striated muscle and peripheral
mononuclear blood cells (PMBCs) of patients have all been
extensively reported is unsurprising (Morris and Berk 2015;
Morris and Maes 2013b; Naviaux et al. 2016; Tomas et al.
2017).

Inflammation, oxidative stress and mitochondrial dysfunc-
tion are also recognised drivers of neuroendocrine and auto-
nomic system dysfunction (Kanjwal et al. 2010; Masson et al.
2015; Schultz 2009; Ulleryd et al. 2017), hence the existence
of neuroendocrine abnormalities (reviewed (Morris et al.
2017a; Tomas et al. 2013)) and dysautonomia (Lewis et al.
2013; Naschitz et al. 2004, 2006; Newton et al. 2007; Van
Cauwenbergh et al. 2014) is to be expected. This is of impor-
tance as some 90% of patients diagnosed via the Fukuda
criteria have evidence of autonomic dysfunction characterised
by increased sympathetic activity, decreased parasympathetic
activity and vagal nerve hypoactivity (Beaumont et al. 2012;
Lewis et al. 2013; Robinson et al. 2015). The most common
manifestation of dysautonomia reported in trial participants is
a suppressed and unresponsive heart rate variability (HRV)
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both during the day and at night (Boneva et al. 2007; Burton
et al. 2010; Kadota et al. 2010; Vollmer-Conna et al. 2006).
These findings have been confirmed by a large meta-analysis
(Martinez-Martinez et al. 2014). Once again it should be
stressed that there is no evidence of any abnormal HRV values
in patients afforded a diagnosis of CFS via the application of
one of a plethora of alternative criteria (Bozzini 2012; Malfliet
et al. 2018).

Disrupted patterns of resting state functional connectivity
have been repeatedly reported in patients and appear to corre-
late with levels of fatigue and pain (Boissoneault et al. 2016;
Gay et al. 2016; Kim et al. 2015b; Wortinger et al. 2016). The
use of voxel-based morphometric analysis of structural mag-
netic resonance imaging (MRI) brain scans has revealed ab-
normalities in brain structure and regional volumes (Barnden
et al. 2011, 2015; Finkelmeyer et al. 2018; Puri et al. 2012;
Shan et al. 2016), including grey matter (GM) and white mat-
ter (WM) changes (de Lange et al. 2005, 2008; Finkelmeyer
et al. 2018; Okada et al. 2004; Puri et al. 2012; Shan et al.
2016). These findings contrast with earlier work with low
resolution MRI and manual analysis which revealed abnor-
malities in some patients but not others (Perrin et al. 2010)
(reviewed (Morris et al. 2017b)).

Systematic studies of cerebral chemistry, using magnetic
resonance spectroscopy, have shown evidence of increased
regional levels of choline-containing compounds (Chaudhuri
et al. 2003; Puri et al. 2002).

The existence of regional or global cerebral hypoperfusion
indicative of reduced bioenergetic capacity has also been con-
sistently reported by research teams utilising xenon-computed
tomography, arterial spin labelling and high-resolution single-
photon emission computed tomography (SPECT) (Biswal
et al. 2011; Machale et al. 2000; Patrick Neary et al. 2008;
Yoshiuchi et al. 2006). These findings have also been reported
in large studies utilising older SPECT techniques either glob-
ally (Ichise et al. 1992; Schwartz et al. 1994) or regionally
(Costa et al. 1995; Goldstein et al. 1995) but the results in
studies with far fewer participants have been negative
(Fischler et al. 1996; Peterson et al. 1994).

Unsurprisingly, given the evidence regarding neuroimaging
abnormalities above, a meta-analysis of 50 studies has con-
firmed the existence of widespread cognitive dysfunction in
patients, which are at their worst in the domains of attention,
memory, reaction times, information processing and reasoning
(Cockshell and Mathias 2010). These findings are also
discussed in two excellent narrative reviews by (Cvejic et al.
2016; Shanks et al. 2013) and global decreases in cognitive and
executive functions have recently been reported in adults and
adolescents irrespective of sex (Nijhof et al. 2016; Santamarina-
Perez et al. 2014). It is interesting that several research teams
using functional MRI (fMRI) have noted that cognitive dys-
function worsens in patients with increased effort and/or exer-
cise, as such findings may be of relevance from the perspective

of pathogenesis and/or pathophysiology (Cook et al. 2017;
DeLuca et al. 2004; Lange et al. 2005; Tanaka et al. 2006). It
is also noteworthy that a recent large study primarily containing
participants with CFS confirmed the results of earlier research
indicating that there was scant evidence of global cognitive
dysfunction in patients diagnosed via alternative criteria
(Hughes et al. 2018).

Many patients complain of ‘brain fog’, which is often de-
scribed as slow thinking, difficulty focusing, slow thinking,
lack of concentration, confusion, forgetfulness, or, sometimes,
hazy thought processes (Ocon 2013). From a more objective
perspective, subjective brain fog can be described as a con-
stellation of symptoms that include impaired cognition, loss of
long- and short-term memory, and a reduced ability to con-
centrate and engage in multiple low-level tasks at once
(Theoharides et al. 2015). It is important to note that this
phenomenon is not confined to CFS patients but also
characterises patients with autism spectrum disorders, coeliac
disease, postural orthostatic tachycardia syndrome, as well as
patients with mild cognitive impairment and a range of
neuroprogressive illnesses (reviewed (Theoharides et al.
2015)). The causes of brain fog are not fully delineated but
there is accumulating evidence that this symptom complex
may relate to autonomic dysfunction and/or decreased region-
al cerebral blood flow (rCBF) in the context of ongoing neu-
roinflammation (Ocon 2013; Ross et al. 2013; Theoharides
et al. 2015).

Several research teams have reported changes in the DNA
sequences or expression of numerous genes involved in the
delivery of the immune response and the regulation of metabol-
ic and bioenergetic pathways in patients diagnosed according to
the Fukuda criteria (Morris et al. 2016b). Examples of dysfunc-
tional or abnormally expressed genes compared with matched
controls include NFKB1, IL6, IL1A, TNF, IL17A, IL7, CXCL8
(formerly IL8), INFG, IRF3, TLR4, CD14, STAT5A, HSPA2,
P2RX7, ATP5J2, GZMA, COX5B, DBI, PSMA3, PSMA4,
HINT, ARHC, HLA-DQB1-AS1, RIPK3 and DEFA1 (Carlo-
Stella et al. 2006; Gow et al. 2009; Kerr et al. 2008a, b; Light
et al. 2009, 2012, 2013; Nguyen et al. 2017; Saiki et al. 2008;
Shimosako and Kerr 2014; White et al. 2012; Zhang et al.
2010). There is also evidence of abnormalities in the mitochon-
drial genome of patients as a research team has recently report-
ed the presence of polymorphisms in the mitochondrial DNA
(mtDNA) of their trial participants which were associated with
increased symptom severity (Billing-Ross et al. 2016). These
findings were reiterated in (Hanson et al. 2016). These are
interesting observations as this study contained 196 patients
who were recruited via criteria which mandated the existence
of what many researchers view as the defining characteristic of
CFS, namely an exacerbation of symptoms following even
trivial increases in activity (Morris and Maes 2013a).

The observation that mtDNA polymorphisms appear to
influence the severity of CFS is consistent with observations
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in other disease areas where such polymorphisms increase the
susceptibility to the development of metabolic and neurode-
generative diseases and susceptibility to microbial infection
(review (Hendrickson et al. 2008)). Polymorphisms in
mtDNA also play a role in structuring the composition of
the microbiota and determining the levels of IgG and IgM
autoantibody production (Ma et al. 2014; Zhou et al. 2017).
This may be of pathophysiological relevance in the light of
data demonstrating elevated IgA and IgM responses to lipo-
polysaccharide (LPS)/antigens of Gram-negative gut com-
mensal bacteria and gut dysbiosis in patients afforded a diag-
nosis of CFS via the Fukuda criteria (Maes et al. 2006; Morris
et al. 2016b; Morris and Maes 2013b). Mutations in mtDNA
can increase levels of inflammation and oxidative stress
(I&OS) via direct effects on the innate immune system involv-
ing PIC production and NF-κB activity and hence can influ-
ence the intensity of the immune response (Imanishi et al.
2013; Ishikawa et al. 2010; Novak and Mollen 2015).

There is also evidence of abnormalities in the epigenetic
regulation of gene expression in CFS patients diagnosed via
narrow criteria, most notably in gene promoter methylation
patterns and elevation of microRNAs (miRNAs) involved in
the regulation of the immune system (Brenu et al. 2014a; de
Vega et al. 2014, 2017; Petty et al. 2016; Vangeel et al. 2015,
2018). The work of de Vega and others is of particular interest
as these authors also selected patients according to criteria
mandating the presence of post-exertional malaise and exam-
ined global patterns of gene methylation rather than a single
gene as was the case for Vangeel and colleagues (de Vega et al.
2014, 2017; Vangeel et al. 2015, 2018).

Importantly, de Vega and others reported a global hypome-
thylation of cytosine residues in the promoter regions of im-
mune system-related genes consistent with a chronically acti-
vated but dysregulated immune system, and abnormal patterns
of DNA methylation in genes regulating metabolic pathways
and various aspects of cellular homeostasis (de Vega et al.
2014, 2017). The work of (Vangeel et al. 2015, 2018) is also
of interest as the pattern of hypomethylation of the glucocor-
ticoid receptor gene NR3C1 1F region suggests an activated
hypothalamic-pituitary-adrenal (HPA) axis in an attempt to
counter peripheral inflammation rather than a blunted HPA
response reported in people diagnosed with CFS according
to wider criteria (reviewed (Morris et al. 2017a)). The lack
of association between childhood trauma and levels of meth-
ylation reported by these authors in studies where participants
universally reported this phenomenon is also of interest as
these patients were diagnosed according to the Fukuda criteria
whereas studies which have reported a significant but slight
association between childhood trauma and CFS involved par-
ticipants recruited via alternative criteria (reviewed (Morris
et al. 2017a)).

Abnormalities in miRNA levels in CFS patients diagnosed
according to the Fukuda criteria may also suggest

dysregulation of immune and metabolic pathways. For exam-
ple, upregulated hsa-miR-127-3p, hsa-miR-142-5p and hsa-
miR-143-3p was reported by (Brenu et al. 2014a) in an anal-
ysis of whole blood profiles and elevated expression of hsa-
miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c was
reported by (Petty et al. 2016) in an analysis involving NK
cells and monocytes. miR-99b upregulation is involved in im-
mune downregulation in macrophages and DCs by reducing
levels of IL-6, IL-12 and IL-1β upregulated in response to an
infection (Singh et al. 2013; Zheng et al. 2015). miR-127-5p
upregulation exerts an immunosuppressive effect by
inhibiting the phosphorylation and subsequent translocation
of p65 into the nucleus leading to the inhibition of NF-κB
signalling and the downregulation of c-Jun N-terminal kinase
(JNK)/p38 and reduced levels of PICs (Huan et al. 2016; Park
et al. 2013).miR-30 also acts to suppress the immune response
by inhibiting the toll-like receptor (TLR)/myeloid differentia-
tion primary response 88 (MyD88) signalling pathway (Wu
et al. 2017). Upregulation of miR-143 and miR-142-5 also
signals a downregulated immune response as the production
both molecules is increased following transforming growth
factor beta 1 (TGF-β1) activation and plays positive and in-
hibitory roles in signalling pathways instigated by this cyto-
kine (Cheng et al. 2014b; Long and Miano 2011; Ma et al.
2016; Yu et al. 2017). miR-126 is an effector of TGF-β1
signalling and regulates the activity of the PI3K/Akt signalling
pathway (Guo et al. 2008, 2016). This molecule also regulates
multiple aspects of the immune response in macrophages and
monocytes, plays a major role in the preconditioning of the
immune system against future infections with the same path-
ogen and activates mechanistic (or mammalian) target of
rapamycin kinase (mTOR) and glycogen synthase kinase 3
(GSK-3) (Ye et al. 2013) (reviewed (Ferretti and La Cava
2014; Bai et al. 2014)). In addition, miR-126 regulates cyto-
solic TLR signalling and modulates the duration and intensity
of such signalling in DCs (Rogers and Herzog 2014). Finally,
miR-330 also regulates the activity of the PI3K/Akt signalling
pathway and also exerts an inhibitory effect on T cell prolif-
eration and NK cell activation (Grigoryev et al. 2011; Kim
et al. 2015a; Petty et al. 2016).

Several pathogens have been associated with the develop-
ment of CFS and evidence of chronic virus infections have
been repeatedly reported in the gastrointestinal (GI) tract
(Chia et al. 2010; Chia and Chia 2008), serum (Clements
et al. 1995) and muscle (Cunningham et al. 1991; Gow and
Behan 1991; Lane et al. 2003). Pertinently, these latter find-
ings were not replicated in patients diagnosed according to
alternative criteria (Swanink et al. 1994). Several authors have
reported the presence of activated Epstein-Barr virus, human
herpesvirus 6, cytomegalovirus and parvovirus B19, but these
findings are not universal even in patients diagnosed accord-
ing to narrow criteria (Morris and Maes 2013b) reviewed
(Morris et al. 2016d)). Hence it is difficult to conclude that
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persistent or chronic infections are at the root of CFS/ME/
SEID, but of course they could be in some patients.
However, many patients have a history of a severe infection
before the development of their symptoms (Gow et al. 2009;
Hickie et al. 2006; Stormorken et al. 2015;White 2007; Zhang
et al. 2010).

In this context it is noteworthy that the intensity of the
immune response is not determined solely by the virulence
or otherwise of an invading pathogen but by genetic and epi-
genetic variation in immune response genes (Bronkhorst et al.
2013; Morandini et al. 2016; Rautanen et al. 2015; Smelaya
et al. 2016). Epigenetic variation in immune response genes
also plays a major role in determining the development of
DAMPs in an individual post-infection (reviewed
(Morandini et al. 2016)). This may be pertinent from the per-
spective of the aetiology of CFS, as the production or presence
of these molecules can at least in some circumstances ‘con-
vert’ an acute pathogenic infection into a state of escalating
chronic systemic inflammation, and hence this mechanism
could conceivably underpin the development of chronic
symptoms in CFS patients diagnosed according to the
Fukuda criteria (Lucas and Maes 2013; Lucas et al. 2015).
However, could this relatively simple concept explain all the
observations relating to CFS reviewed above? Accordingly,
this paper aims to answer this question in the context of de-
veloping an explanatory model of illness development and
progression, commencing with a proposed mechanism
explaining the development of chronic systemic inflamma-
tion, oxidative and nitrosative stress (I&ONS) following a
pathogen invasion in genetically predisposed individuals.

Acute infection and the development
of chronic I&ONS: The role of DAMPs

The relationship between polymorphisms in immunity-related
genes and the intensity of the immune response, irrespective
of pathogen virulence, has been repeatedly demonstrated
(Cvejic et al. 2014; Helbig et al. 2005; Piraino et al. 2012;
Vollmer-Conna et al. 2008). Equally, the relationship between
an exaggerated immune response and increased production of
DAMPs stemming from cellular stress and tissue damage is
well documented (Fichna et al. 2016; Kakihana et al. 2016;
Rittirsch et al. 2008; Wiersinga et al. 2014).

Mechanistically, the genesis of DAMPs following TLR or
nucleotide-binding oligomerisation (NOD)-like receptor acti-
vation by a range of pathogens in the context of a hyper-
responsive immune system involves prolonged or excessive
activation of NFκB and other transcription factors such as
nuclear factor of activated T cells and activated protein-1.
This leads to upregulation of macrophage and monocyte
PICs and activation of T and B lymphocytes (Lucas et al.
2015; Morris et al. 2015a). Abnormally elevated PIC

production in turn leads to elevated upregulation of iNOS
and nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase, leading to the production of superoxide, nitric oxide
and peroxynitrite, leading to further upregulation of NF-κB
and hence further increases in PICs, ROS and RNS levels
(Morris et al. 2015a; Morris andMaes 2014). This bidirection-
al self-amplifying association between the development of
chronic systemic inflammation and chronic ONS is sometimes
described as an ‘autotoxic loop’ (Ortiz et al. 2013; Reuter et al.
2010). Excessive levels of ROS and RNS can lead to damage
to proteins, lipids and DNA and the formation of oxidative
specific epitopes and products of lipid peroxidation, which
function as DAMPs capable of activating TLRs on cell mem-
branes and cytosolic pathogen recognition receptors (PRRs)
(Bowie 2013; Leibundgut et al. 2013; Miller et al. 2011;
Uchida 2013).

Importantly, several research teams have reported the pres-
ence of such DAMPs in CFS patients (Brkic et al. 2010; Maes
et al. 2011; Maes and Leunis 2014; Richards et al. 2007;
Tomic et al. 2012; Wang et al. 2014). In addition, there is
accumulating evidence indicating that an environment of
chronic ONS leads to release of mitochondrial components
into the cytosol which also have the capacity to activate cyto-
solic PRRs and logically are categorised as mitochondrial
DAMPs (reviewed (Nakahira et al. 2015)). There are a range
of molecular entities which fall into this category other than
mtDNA and one such species is cardiolipin (Wenceslau et al.
2014). This is of importance from the perspective of this paper
as immunogenic cardiolipin has been repeatedly detected in
CFS patients diagnosed according to internationally agreed
criteria (Hokama et al. 2008, 2009). The work of Hokama
and others would appear to be especially noteworthy as the
study contained 320 participants satisfying the requirements
of the Fukuda criteria (Hokama et al. 2008).

Research investigating the role of DAMPs in human dis-
eases is advancing apace and the categorisation of these mol-
ecules (Jammes et al. 2009) as uniquely proinflammatory en-
tities is changing; one such change which may be relevant to
the pathogenesis of CFS is the realisation that HSPs, once
thought to be exclusively proinflammatory, have a key anti-
inflammatory function and play a crucial role in restraining the
intensity and/or duration of the immune response (van Eden
et al. 2012) (reviewed (van Eden et al. 2017)). This is pertinent
given that HSP production appears to be deficient in CFS
patients, and the HSPs produced appear to be dysfunctional,
which could potentially provide another mechanism underpin-
ning a prolonged and/or exaggerated immune response to
pathogen invasion and other sources of inflammation such
as stress, medical comorbidity and lifestyle factors in such
patients (Elfaitouri et al. 2013; Jammes et al. 2005, 2009,
2011, 2012).

Chronic engagement of TLRs by DAMPs leads to the de-
velopment of a positive feedback loop, whereby increasing
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tissue damage caused by elevated PICs, ROS and RNS per-
petuates and escalates pro-inflammatory responses, leading to
a state of chronic inflammation, ONS, mitochondrial dysfunc-
tion and glial cell activation (Drexler and Foxwell 2010; Goh
and Midwood 2012; Morris and Berk 2015; Piccinini and
Midwood 2010). Unsurprisingly, chronic engagement of
TLRs, NOD-like receptors and retinoid acid-inducible gene I
(RIG-I)-like receptors is implicated in the pathogenesis and
pathophysiology of systemic lupus erythematosus (SLE),
rheumatoid arthritis and MS (review (Drexler and Foxwell
2010; Goh and Midwood 2012; Piccinini and Midwood
2010)). Pertinently, the presence of DAMPs can also lead to
chronic activation of the inflammasome (Anders and Schaefer
2014), which is also implicated in the development of neuro-
inflammation and abnormal central nervous system (CNS)
signalling characteristic of neurodegenerative and
neurodevelopmental disorders (Singhal et al. 2014; Tan et al.
2013).

Consequences of chronic systemic I&ONS

Increased intestinal permeability and translocation
of commensal antigens into the circulation

Chronically elevated I&ONS in the guise of increased levels
of ROS, RNS and PICs induces marked increases in intestinal
epithelial barrier permeability (Al-Sadi et al. 2009; Banan
et al. 2003; Lee 2015; Tian et al. 2017), ultimately leading to
translocation of Gram-negative bacterial LPS and a range of
other commensal antigens such as peptidoglycan and flagel-
lin, from the gut lumen into the intestinal mucosa (Lucas et al.
2015; Morris et al. 2016b). Such events lead to the creation of
a self-amplifying pattern of localised and then systemic in-
flammation via several different routes (Delzenne and Cani
2011; Zhang and Zhang 2013).

In the first instance, the presence of LPS in the colon ex-
acerbates inflammation in the intestine and depletes levels of
regulatory T cells (Tregs), resulting in increased PIC levels
(Im et al. 2012). In addition, increased an concentration of
colonic LPS provokes further increases in epithelial tight junc-
tion permeability by stimulating the increased synthesis and
release of the chemokine IL-8 by intestinal epithelial cells and
upregulation of TLR4 on the surface of enterocytes
(Angrisano et al. 2010; Guo et al. 2013). Translocated LPS
also increases tight junction permeability by inducing in-
creased enterocytic expression of TLR4 and CD14 and chang-
es in the location of their respective proteins (Guo et al. 2013).

The development of gut inflammation interacts with
dysbiosis of the microbiome and provokes the recruitment of
proinflammatory macrophages into mucosal tissue which ex-
acerbates localised inflammation, further increasing intestinal
permeability to the point that enables the translocation of LPS,

peptidoglycan and flagellin into the bloodstream (Delzenne
and Cani 2011; Zhang and Zhang 2013). This latter phenom-
enon can have serious consequences in terms of initiating, or
in this instance exacerbating, systemic inflammation via the
activation of TLR4 and TLR2 on antigen-presenting cells and
increasing levels of PICs, ROS and RNS (Morris et al. 2015a,
b). The pathogenic consequences of LPS translocation are
highlighted by replicated data demonstrating that this phe-
nomenon is the cause of chronic systemic immune activation
and I&OS seen in HIV seropositive patients in the absence of
viraemia and otherwise well controlled on highly active anti-
retroviral therapy (Brenchley and Douek 2008; Shan and
Siliciano 2014). LPS translocation into the systemic circula-
tion is also held to be the cause of the metabolic endotoxaemia
increasingly considered to be a major element in the patho-
genesis of a wide range of inflammatory conditions and ill-
nesses such as metabolic syndrome, type 2 diabetes mellitus
andMS (Cani et al. 2008, 2009; Puddu et al. 2014; Riccio and
Rossano 2015). From the perspective of a model of the path-
ogenesis and pathophysiology of ME/CFS, the important
point is that the advent of LPS translocation in an environment
of pre-existing I&ONS would be expected to increase the
levels of all these parameters.

Development of autonomic dysfunction

A plethora of human studies have established a causative as-
sociation between indices of increased systemic inflammation,
most notably elevated C-reactive protein and IL-6, and low
and unresponsive HRV in a range of inflammatory and infec-
tious illnesses such as MS, type 2 diabetes mellitus and sepsis
(de Castilho et al. 2017; Stuckey and Petrella 2013; Studer
et al. 2017; Tateishi et al. 2007). More specifically,
translocated LPS-mediated systemic inflammation is an ac-
knowledged cause of low and unresponsive HRV in people
with metabolic endotoxaemia, which is of relevance given the
existence of this phenomenon in many CFS patients (Jan et al.
2010; Lehrer et al. 2010; Morris et al. 2016b). However, the
suppressive effect of LPS on HRV is not limited to its effects
on systemic inflammation as there is evidence that LPS may
also invoke systemic autonomic dysfunction via direct effects
on TLR4 receptors on microglia in the paraventricular nucleus
of the hypothalamus (Masson et al. 2015; Okun et al. 2014)
and the brainstem (Ogawa et al. 2011). The effects of LPS in
this instance appear to be mediated via cross-talk with angio-
tensin II and the ultimate effect is the activation of microglia
with resultant increases in I&OS throughout the hypothalamus
(Biancardi et al. 2016; Ogawa et al. 2011; Wang et al. 2009).

The relationship between systemic inflammation and HRV
is important in a wider context as it is a measure of suppressed
vagal nerve activity and a dysfunctional cholinergic anti-
inflammatory reflex (reviewed (Huston and Tracey 2011))
and hence is accepted as a surrogate marker of global
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autonomic dysfunction as the vagus nerve acts on both the
cardiac sinoatrial node and the reticulo-endothelial system
(Borovikova et al. 2000) (reviewed (Herlitz et al. 2015)). It
is also of interest that given the existence of data demonstrat-
ing that the extent of HRV suppression correlates with the
levels of systemic inflammation (Durosier et al. 2015; Herry
et al. 2016) (review (Cooper et al. 2015)), that HRV parame-
ters could act as surrogate markers of systemic inflammation,
which could potentially prove to be objective biomarkers for
CFS patients in the early stages of their illness (Durosier et al.
2015). However, low HRV values are also seen in patients
suffering from major depressive disorder (Brunoni et al.
2013), possibly as a result of associated high levels of periph-
eral PICs (reviewed (Berk et al. 2013)) and hence HRV values
are unlikely to be able to differentiate patients with CFS from
those with a similar symptom presentation as a result of major
depressive disorder.

Development of neuroinflammation, neurocognitive
and neuroimaging abnormalities

Development of neuroinflammation

There is accumulating data demonstrating a causative associ-
ation between the development of chronic systemic inflamma-
tion and disruptions in resting state connectivity, the develop-
ment of GM and WM atrophy and lesions, and reduced cere-
bral perfusion (Adam et al. 2013; Felger et al. 2015; Labrenz
et al. 2016; Lekander et al. 2016;Marsland et al. 2015; Riverol
et al. 2012; Sankowski et al. 2015; Sonneville et al. 2013).
There is also a large and increasing body of evidence indicat-
ing a causative relationship between the presence of chronic
systemic inflammation and the existence of cognitive disabil-
ity in patients diagnosed with a range of neuroinflammatory,
neurodegenerative and neuroprogressive conditions (Gorelick
2010; Marsland et al. 2015; Sartori et al. 2012).

Inflammatory signals can reach the brain via humoral and
neural routes to activate the HPA axis (Morris and Berk 2015).
The humoral route involves direct or indirect cytokine signal-
ling, either through direct access to the brain via regions where
the integrity of the blood-brain barrier (BBB) is compromised
or absent , such as the choro id plexus or o ther
circumventricular organs (CVOs) (Morris et al. 2013), or by
direct entry via saturable BBB transport systems or an indirect
induction of cytokines and other inflammatory mediators,
such as prostaglandins, and their subsequent release into the
CNS parenchyma or via provocation of an increase in BBB
permeability (Morris et al. 2015b; Seruga et al. 2008). The
neural route involves direct stimulatory action of PICs on
peripheral afferent neurons of the vagus nerve (Goehler et al.
2000; Johnston and Webster 2009).

Entry of PICs into the brain can have profound pathologi-
cal consequences either directly or indirectly. There is now

overwhelming evidence that transduced inflammatory signals
provoke the development of chronic neuroinflammation sec-
ondary to the sequential activation ofmicroglia and astrocytes.
Activated microglia secrete a range of neurotoxic molecules
such as tumour necrosis factor (TNF)-α, IL-6, IL-1β, ROS,
RNS, COX-2, prostaglandin E2 (PGE2), glutamate and, in
some cases, quinolinic acid (Morris et al. 2015b; Morris and
Maes 2013b).Moreover, the release of PICs can in themselves
act as independent sources of RNS, primarily NO, and other
neurotoxins via their capacity to upregulate iNOS, COX-2 and
PGE2 (Morris et al. 2015a; Sofroniew and Vinters 2010).
Unsurprisingly, the production of these neurotoxins can exert
profound and detrimental effects on neurotransmitter systems,
and neural integrity and function (Morris et al. 2015b).

Activated microglia and subsequent release of PICs and
glutamate, combined with reduced glutamate reuptake by ac-
tivated astrocytes, can lead to the development of glutamate
neurotoxicity with resulting damage to glutamatergic
neurones and disruption to glutamatergic neurotransmission
(Noda 2016; Robel et al. 2015; Takeuchi et al. 2006), while
the I&OS generated by such activation damage A9 dopamine
and A6 noradrenaline neurones thereby respectively
disrupting dopaminergic and noradrenergic neurotransmission
(Nagatsu and Sawada 2006; Tripathy et al. 2015). There is
also an accumulating body of evidence indicating that elevat-
ed ROS and RNS in the CNS can inhibit dopaminergic neu-
rotransmission by inhibiting dopamine receptors (Morris et al.
2017d). Elevated CNS PIC levels, and subsequent activation
of the p38 mitogen-activated protein kinase (MAPK) signal-
ling system, can also adversely affect the synthesis, reuptake
and release of serotonin (Miller et al. 2013). Elevated PICs in
the CNS also provoke the activation of the tryptophan catab-
olite pathway, depleting levels of tryptophan, which is the
precursor of 5-HT, as well as creating another dimension of
neuropathology via the synthesis of several neurotoxic trypto-
phan catabolites including the potentially neurotoxic
quinolinic acid (Miller et al. 2013) (reviewed (Morris et al.
2016e)).

There are also some data to suggest that activated microglia
inhibit GABAergic neurotransmission, but perhaps counterin-
tuitively this action would appear to have a neuroprotective
effect (Chen et al. 2014). It is also noteworthy that this would
appear to be contrary to the effects of systemic inflammation
on the GABA system, leading to its activation, which is con-
sidered to be one source of apparently idiopathic chronic pain
(Jang et al. 2017). This may be a mechanism underpinning the
presence of the chronic intractable pain reported bymany CFS
patients (Nijs et al. 2012). In this context it is also worth noting
that microglial activation, most notably in the basal ganglia, is
also a well-documented cause of ‘unexplained’ chronic pain
(Jeon et al. 2017).

Systemic LPS can enter the CNS via regions of BBB per-
meability such as the circumventricular organs and area
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postrema, in much the same way as PICs, and engage TLR4
receptors on microglia leading to their activation (Hines et al.
2013; Konsman et al. 2002; Sandiego et al. 2015). The
resulting neurocognitive dysfunction has much the same ori-
gins as microglial activation induced by PICs but there is
some evidence to suggest that the adverse effects on adult
neurogenesis, memory deposition and recall, synaptic plastic-
ity and long-term potentiation following elevated systemic
LPS is primarily mediated by elevated IL-1β in the hippocam-
pus (Abareshi et al. 2016; Li et al. 2017; Nolan et al. 2005).

Chronic neuroinflammation as the cause of neurocognitive
and neuroimaging abnormalities

It should also be stressed at this junction that microglia and
astrocytes play indispensable roles in maintaining CNS ho-
meostasis in areas such as synaptic plasticity and long-term
potentiation, which are essential for the deposition and retriev-
al of memory representations, together with oxygen and nu-
trient delivery to neurones; thus dysregulated activity of these
glial cells is detrimental to cognitive function (Sofroniew and
Vinters 2010; Xavier et al. 2014). Hence the development of
functional gliopathology in combination with disturbances to
neurotransmission following the activation of microglia and
astrocytes discussed above could explain, at least in part, the
multiple lines of evidence demonstrating cognitive dysfunc-
tion in patients with CFS.

This would also seem to be true of neuroimaging abnor-
malities seen in CFS patients as there is direct evidence that
neuroinflammation resulting from microglial activation dis-
rupts resting state functional connectivity (Colasanti et al.
2016) and there is copious evidence that neuroinflammation
is a cause of structural damage and of GM andWM atrophy in
a range of neurological and medical conditions (Calabrese
et al. 2015; Chen et al. 2015; Cheriyan et al. 2012; Chiang
et al. 2017; Raj et al. 2017; Tóth et al. 2017; Zhang et al.
2016).

The existence of chronic ONS in the CNS following the
activation of microglia and astrocytes subsequent to the exis-
tence of chronic peripheral inflammation may also explain the
development of cerebral hypoperfusion in CFS patients.
Briefly, high levels of NO and ROS result in oxidative damage
to lipids, proteins and DNA in the endothelial cells of the BBB
resulting in a pattern of escalating damage to such cells and a
concomitant loss of the cytoprotective effects of NO normally
derived from endothelial nitric oxide synthase (eNOS) (Lucas
et al. 2015; Morris and Maes 2014). This is the result of oxi-
dative inactivation of tetrahydrobiopterin (BH4), which is one
of the enzyme’s essential cofactors, and changes in levels of
arginine and calcium ions (Burghardt et al. 2013; Mitchell
et al. 2007; Montezano and Touyz 2012). It should also be
noted at this juncture that chronic peripheral inflammation can
also impair endothelial eNOS function (Burghardt et al. 2013).

The mechanism underpinning depleted BH4 levels under
such conditions involves ROS-induced oxidation of BH4 to
dihydrobiopterin (BH2), subsequently reducing levels of the
former molecule in the endothelium of the BBB (Najjar et al.
2013). The subsequent decrease in the BH4 to BH2 ratio re-
sults in the inhibition of eNOS while simultaneously
uncoupling arginine as its substrate thereby enabling engage-
ment with environmental oxygen and increased production of
superoxide ions (Bouloumie et al. 1999; Moens and Kass
2006; Najjar et al. 2013). The resultant combination of super-
oxide ions with NO results in further increases in levels of
ONOO−, thereby inducing increased oxidation of BH4 to
BH2, further decreasing the activity of eNOS in an escalating
positive feedback loop (Chen et al. 2010; Szabó et al. 2007).

Crucially, reduced eNOS activity can deplete endothelial
NO levels, ultimately resulting in significantly impaired CBF
(Najjar et al. 2013; Toda and Okamura 2012). The develop-
ment of this phenomenon also appears to be associated with
impaired vasodilation which also stems from impaired
neurovascular eNOS-dependent synthesis of NO (Li et al.
2016a; Liu et al. 2016; Najjar et al. 2013). Furthermore, per-
sistent cerebral hypoperfusion can compromise endothelial
mitochondrial respiration further increasing the formation of
ROS in BBB endothelial cells (Aliev et al. 2010, 2014; Liu
and Zhang 2012), which in turn promotes increased eNOS
uncoupling, further lowering endothelial NO levels, and a
pattern of incrementally decreasing cerebral perfusion in a
positive feedback loop (Antoniades 2006; Chen et al. 2010;
Lavoie et al. 2010).

Importantly, the existence of positive feedback loops in the
brain and periphery, such as those discussed above, can lead to
a pattern of increasing I&ONS, which can trigger a state of
metabolic and immune downregulation potentially accounting
for a range of apparently conflicting data reported by re-
searchers investigating these domains even in participants
afforded a diagnosis of CFS according to the international
consensus criteria. These processes form the focus of the re-
mainder of this paper and are discussed below.

Increasing I&ONS and the switch to immune
and metabolic downregulation

Advent of hypernitrosylation

Reversible protein S-nitrosylation, denitrosylation and
transnitosylation of protein cysteine thiols effects the vast bulk
of NO cellular signalling and enables the homeostatic regula-
tion of virtually every dimension of redox-dependent protein
signalling, largely determining protein function, stability and
trafficking (Banerjee 2012; Hill and Bhatnagar 2012; Paulsen
and Carroll 2010; Winterbourn and Hampton 2008).

From the perspective of this paper, the key point to stress is
that this NO-induced post-translational modification plays an
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indispensable role in maintaining cellular homeostasis in the
face of increasing levels of oxidative stress (Gorelenkova
Miller and Mieyal 2015; Okamoto and Lipton 2015). In such
an environment, moderate increases in levels of ROS and NO
lead to a defensive pattern of increased S-nitrosylation of cru-
cial structural and functional proteins as a shield against irre-
versible oxidation of cysteine thiols and subsequent prolonged
or even permanent changes in their secondary and tertiary
conformation leading to inactivity and/or immunogenicity
(Kohr et al. 2014; Penna et al. 2014; Sun and Murphy 2010;
Sun et al. 2006). However, further increases in O&NS lead to
impaired activity of denitrosylases such as the thioredoxin
system, S-nitrosogluthathione reductase, protein disulphide
isomerase, superoxide dismutase and glutathione peroxidase,
which maintain the reversibility of S-nitrosylation leading to a
state of protracted or even irreversible nitrosylation which has
been described as hypernitrosylation (Wu et al. 2010; Wu
et al. 2011) (reviewed (Morris et al. 2017c)).

A state of increased nitrosylation in CFS is indicated by
findings that IgM responses to NO-tryptophan, NO-tyrosine,
NO-albumin and NO-cysteinyl are increased in CFS (Maes
et al. 2006). Interestingly, in CFS, increased bacterial translo-
cation is associated with indicants of increased nitrosylation
(Maes and Leunis 2014). A wider discussion of the potential
role of NO and ONOO− in the pathogenesis and pathophysi-
ology of CFS may be found in a recent review by Monro and
Puri (2018). This is of importance as the development of
‘hypernitrosylation’ can provoke a switch from an inflamma-
tory environment with excessive activation of immune path-
ways to an environment of hypo-inflammation, impaired en-
ergy production and metabolic downregulation, which may be
exacerbated in individuals with high levels of translocated
LPS as high systemic concentrations of this antigen may result
in the same ultimate endpoints (Morris et al. 2016b, c). This
will form the theme of the remainder of this paper with initial
impairment in oxidative phosphorylation and mitochondrial
dynamics considered immediately below.

Hypernitrosylation and impaired mitochondrial
performance

There is a considerable and accumulating body of data dem-
onstrating that S-nitrosylation of key mitochondrial enzymes
and structural proteins plays an indispensable role in the
redox-based regulation of mitochondrial respiration and other
aspects of energy production (Doulias et al. 2013; Mailloux
et al. 2014). In sum, readily reversible S-nitrosylation nega-
tively regulates the function of a myriad of proteins involved
in oxidative phosphorylation, the tricarboxylic cycle, gluco-
neogenesis, glycolysis, generation of mitochondrial ROS, mi-
tochondrial permeability transition, as well as apoptosis
(Doulias et al. 2013; Mailloux et al. 2014). Hence
hypernitrosylation has the capacity potentially to impair

cellular energy generation and, in particular, to lead to inhib-
itory nitrosylation of crucial cysteine thiols of enzymes in the
electron transport chain (ETC) such as complex I (Drose et al.
2014; Murray et al. 2012; Piantadosi 2012), cytochrome c
oxidase (complex IV) and, to a lesser extent, complex II
(Sarti et al. 2012a; Zhang et al. 2005). Unsurprisingly, such
inhibition impairs oxidative phosphorylation and the produc-
tion of ATP, and depletes levels of mitochondrial glutathione
owing to increased production of ROS by a dysfunctional
ETC (Sarti et al. 2000, 2003a, b, 2012b; Zhang et al. 2005).
There are also data demonstrating that prolonged inhibition of
cytochrome c oxidase increases ATP production by glycolysis
at least in some cell types as an attempt to mitigate against cell
death via apoptosis or necrosis (Almeida et al. 2001; Bolanos
et al. 2010; Burwell et al. 2006; Shiva et al. 2007; Sun et al.
2007).

In addition, prolonged nitrosylation of the mitochondrial
regulatory proteins PINK-1, PARKIN and DRP-1 compro-
mises mitochondrial dynamics as a result of impaired
mitophagy, increased degeneration and increased fission
(Nakamura et al. 2010; Oh et al. 2017; Ozawa et al. 2013;
Reddy et al. 2011). This may be relevant from the perspective
of activity intolerance reported by many CFS patients as intact
mitochondrial dynamics enables the adaptation of an individ-
ual to continuous or incremental exercise regimes (Trewin
et al. 2018; Yan et al. 2012).

Hypernitrosylation and the development of immune
suppression and cellular hibernation

Prolonged or intractable S-nitrosylation characteristic of
hypernitrosylation may lead to changes in the activity of pro-
teins and signalling pathways regulating inflammation and
energy production, leading to a state of hypo-inflammation
and me t abo l i c down r egu l a t i o n . Fo r examp l e ,
hypernitrosylation of a crucial cysteine residue of p50 silences
NF-κB-dependent gene transcription via several different
mechanisms (Bogdan 2001; DelaTorre et al. 1997, 1998,
1999; Kelleher et al. 2007). In addition, hypernitrosylation
of cytosolic enzyme inhibitory kappaB kinase beta impairs
its levels of phosphorylation (Reynaert et al. 2004) leading
to diminished proteasomal degradation of inhibitory kappaB
which maintains NF-κB in an inactive state (Hess et al. 2005;
Marshall et al. 2004; Reynaert et al. 2004). In addition,
hypernitrosylation can further contribute to the development
of immune suppression or an hypo-inflammatory state by the
downregulation of TLR signalling via inhibition of MyD88
thereby inhibiting the immune response to acute pathogen
invasion (Into et al. 2008). Increased NO levels may also
upregulate IRAK-M mRNA and protein expression of inter-
leukin receptor associated kinase-M (IRAK-M), which is a
key negative regulator of TLR signalling although there is
no compelling data indicating that this process is enabled by
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S-nitrosylation either directly or indirectly (del Fresno et al.
2004; Gonzalez-Leon et al. 2006). These pathways are illus-
trated in Fig. 1.

Prolonged S-nitrosylation (see Fig. 2) can also lead to pro-
found metabolic changes via upregulation of the protein sub-
unit hypoxia-inducible factor-1α (HIF-1α), through upregu-
lation ofHIF1A and/or stabilisation of this subunit, under non-
hypoxic conditions (Kasuno et al. 2004; Li et al. 2007;
Yasinska and Sumbayev 2003) and activation of phos-
phatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/
mTOR signalling (Gupta et al. 2017; Kwak et al. 2010;
Lopez-Rivera et al. 2014; Numajiri et al. 2011). There is also
evidence that mTOR is directly activated as a result of inhib-
itory S-nitrosylation of tuberous sclerosis complex 2 (TSC2),
an inhibitor of mTOR (Lopez-Rivera et al. 2014) and
nitrosylation-mediated activation of Ras, a small GTPase
which is a positive regulator of mTOR (Lee and Choy
2013). Prolonged nitrosylation may also provoke changes in
metabolic pathways via the upregulation of GSK-3 (Morris

et al. 2017c). Furthermore, activated GSK-3 and PI3K/Akt
signalling in tandem or separately can provoke metabolic
and bioenergetic dysregulation by inhibiting the enzyme 5′-
adenosine monophosphate (AMP)-activated protein kinase
(AMPK) (Park et al. 2014; Suzuki et al. 2013).

These observations may be directly relevant as far as the
pathogenesis of CFS is concerned as activation of HIF-1α,
PI3K/Akt/mTOR and GSK-3 signalling pathways and inhibi-
tion of AMPK, in the context of decreased canonical NF-κB
activation, are major elements in the development of a phe-
nomenon described as endotoxin tolerance which involves
profound systemic immune and metabolic downregulation,
with the latter phenomenon involving sequential shifts in en-
ergy production via glycolysis and oxidation of fatty acids,
following prolonged TLR upregulation in macrophages and
monocytes (Liu et al. 2011a, 2012). This phenomenon is me-
diated, at least in part, by epigenetic reprogramming
‘masterminded’ by sirtuin 1 (SIRT1) (Liu et al. 2011a, 2012)
and in this context decreased levels of canonical NF-κB sig-
nalling induced by persistent nitrosylation would be expected
to activate SIRT1 (Kauppinen et al. 2013; Vaziri et al. 2001;
Yang et al. 2012). This is important as SIRT1 nitrosylation in
the context of high levels of classical NF-κB signalling sec-
ondary to chronically elevated I&ONS or the response to
acute pathogen invasion leads to its inactivation (Kalous
et al. 2016; Nakazawa et al. 2017; Shinozaki et al. 2014).

Before moving on to consider the mechanisms underpin-
ning the development of endotoxin tolerance, it is important to
note that this phenomenon resolves within days and some-
times weeks in the context of DAMP- or pathogen-
associated molecular pattern-mediated engagement of PRRs,
but in the context of the same result mediated by chronically
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TRAF6

… MEK1/2
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↑{NFκB, TNF-α, IL-1β, IL-6, IL-10}
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IRAK-M

SOCS1

Fig. 1 Acute stimulation of TLR4 leads to the recruitment of MyD88,
MyD88-adaptor-like (MAL), IL-1 receptor-associated kinase-4 (IRAK-
4), toll/IL-1 receptor (TIR)-domain-containing adaptor-inducing IFNβ
(TRIF) and TRIF-related adaptor molecule (TRAM), ultimately provok-
ing the initiation of signalling cascades that converge to activate NFκB,
MAPKs and IFN response factors (IRFs) with the subsequent production
of inflammatory mediators such as type 1 interferons and PICs. However,
in a state of endotoxin tolerance the TLR4 response is reprogrammed via
the upregulation of the inhibitory proteins SHIP1, suppressor of cytokine
signalling 1 (SOCS1) and the pseudokinase IRAK-M leading to the pro-
duction of IL-10 and TGF-β1 leading to a downregulated and anti-
inflammatory immune response

Protein – Cys – SH   

Protein – Cys – SNO

S-nitrosyla�on denitrosyla�on

Fig. 2 Proteins undergo reversible S-nitrosylation and denitrosylation
initiated by the covalent addition and release of NO probably derived
from N2O3 in a hydrophobic environment. Denitrosylation may be
mediated by several molecular players such as GSNOR (S-
nitrosoglutathione (GSNO) reductase) and the thioredoxin system.
Transnitrosylation is another major route mediating protein nitrosylation.
Transnitrosylation of GSH leading to the formation of native protein and
GSNO is a major element enabling this process. Reformation of GSH by
NADPH involves NADH-dependent reduction by GSNOR to generate
GSH. The GSH and thioredoxin systems are progressively inactivated in
an environment of increasing chronic ONS leading to the inhibition of
denitrosylation and transnitrosylation and a state of protein
‘hypernitrosylation’
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elevated I&ONS and hypernitrosylation a state similar to en-
dotoxin tolerance could be protracted or even permanent in the
absence of ameliorative interventions.

Mechanisms underpinning metabolic downregulation
in endotoxin tolerance

During the initial inflammatory phase following TLR activa-
tion, NF-κB upregulates the Akt-mTOR-HIF-1α pathway,
leading to a surge in ATP production via aerobic glycolysis
(Cheng et al. 2014a; Srivastava and Mannam 2015; van Uden
et al. 2008). Such upregulation leads to inhibition of the tri-
carboxylic acid (TCA) cycle and increased production of mi-
tochondrial ROS, leading to a fall in mitochondrial ATP pro-
duction, mitochondrial structural damage, increased
mitophagy and a switch in cytochrome oxidase subunits de-
signed to increase the efficiency of the ETC (Cheng et al.
2014a; Semenza 2011; Zhong et al. 2010). Inhibition of the
TCA cycle and oxidative phosphorylation is mediated by in-
crease in the transcription of pyruvate dehydrogenase kinase
with the subsequent inhibition of pyruvate dehydrogenase and
conversion of pyruvate into acetyl coenzyme A (acetyl-CoA).
This inhibition is accompanied by a concomitant HIF-1α-
mediated increase in the conversion of pyruvate to lactate with
the resultant production of ATP and NAD+ by aerobic glycol-
ysis (Kim et al. 2006).

The continuation of ATP production and NAD+ by this
route is enabled by HIF-1α-induced upregulation of lactate
dehydrogenase (Semenza et al. 1996). The switch from ATP
generation from oxidative phosphorylation instigated by the
upregulation of the transcription factor is further enabled by
increased expression of glucose transporters and glycolytic
enzymes (Hanahan and Weinberg 2011; Semenza 2003).
The importance of Akt-mTOR-HIF-1α signalling in the de-
velopment of endotoxin tolerance is emphasised by data dem-
onstrating that inhibition of this pathway prevents the devel-
opment of immune and metabolic downregulation in macro-
phages and monocytes (Cheng et al. 2014a).

However, this rapid burst of ATP production and concom-
itant increases in NADH production enabled by activation of
the of Akt-mTOR-HIF-1α signalling system is a short-lived
phenomenon and the subsequent fall in ATP and NADPH
generation leads to a relative rise in AMP and NAD+

(Adriouch et al. 2007; Haag et al. 2007), leading to the acti-
vation of AMPK (Gómez et al. 2015) and the sequential acti-
vation of the NAD+-sensitive SIRT familymembers sirtuins 1,
6 and 3 (Liu et al. 2011a, 2012, 2015a). Once activated, these
SIRTs play the dominant role in the development of a hypo-
inflammatory state and an environment of metabolic down-
regulation and reductions in glycolysis and TCA-induced ox-
idative phosphorylation characterised by mitochondrial ATP
production via fatty acid oxidation (Gómez et al. 2017;
Vachharajani et al. 2016). This adaptive low-energy state is

often described as cellular ‘hibernation’ (Levy et al. 2005; Liu
et al. 2011a; Singer 2008) (reviewed (Singer 2017)) and it is
important to stress that this phenomenon is not limited to
macrophages and monocytes but also takes place in hepato-
cytes and striated muscle cells (Carré and Singer 2008;
McCall et al. 2011; Singer 2007, 2008).

Once activated, SIRT1 upregulates the transcription of per-
oxisome proliferator-activated receptor γ coactivator-1 alpha
with a subsequent and concomitant increase in mitochondrial
biogenesis and respiration mediated by fatty acid oxidation.
The mechanisms underpinning this process include increased
cellular uptake of fatty acids via the CD36 membrane trans-
porter and increased transfer of these molecules into mito-
chondria via upregulation of several enzymes including
palmitoyltransferase I, which governs the rate of fatty acid
oxidation (Liu et al. 2012; Vachharajani et al. 2014;
Wanders et al. 2010) (reviewed (Qu et al. 2016)). SIRT1 also
exerts a range of protective effects on mitochondria aimed at
maximising energy generation and fostering cellular and or-
ganelle survival. These effects include: upregulating cellular
anti-oxidant defences, via activation of nuclear factor (ery-
throid-derived 2)-like 2; increasing mitophagy to remove
damaged mitochondria; and maintaining mitochondrial mem-
brane potential, thereby inhibiting the development of mito-
chondrial permeability transition pore opening (Price et al.
2012; Song et al. 2017).

SIRT1-induced upregulation of SIRT6 also encourages the
switch from ATP generation via aerobic glycolysis to ATP
generation via fatty acid oxidation, via direct and indirect in-
hibition of glycolysis, increased fatty acid oxidation and a
range of effects broadly encouraging mitochondrial survival
in a low-energy state (Cheng et al. 2016; Sebastian et al.
2012). Direct inhibitory effects of SIRT6 on glycolysis in-
clude downregulation of glucose transporter 1 and inhibition
of lactate production (Elhanati et al. 2016; Long et al. 2017),
while indirect effects stem from inhibition of HIF-1α
(Sebastian et al. 2012). SIRT6 elevation also preserves mito-
chondrial membrane potential, preventing mitochondrial per-
meability transition pore (mPTP) opening in a similar manner
to SIRT1 (Cheng et al. 2016).

Upregulation of SIRT3, an NAD+-dependent mitochondri-
al protein, also deacetylates and activates mitochondrial en-
zymes involved in fatty acid β-oxidation, amino acid metab-
olism, the TCA cycle, the ETC and antioxidant defences lead-
ing to increased mitochondrial ATP production (Ahn et al.
2008; Ansari et al. 2017). In addition, increased SIRT3 activ-
ity inhibits mitochondrial ROS production and the activity of
several components of the mPTP, thereby encouraging mito-
chondrial survival (Kincaid and Bossy-Wetzel 2013; Tseng
et al. 2013) (see Fig. 3).

It is also noteworthy that the sequential activation of these
SIRTs corresponds with the inactivation of AMPK (Jiang et al.
2014; Liu et al. 2015b). Unsurprisingly, the causes of this
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phenomenon have been the subject of intensive research, and
while the process may be multifactorial in origin, the weight
of data implicates inhibition by activated GSK-3 (Park et al.
2014; Suzuki et al. 2013). The upregulation of GSK-3 in turn
appears to result from the termination of the inhibitory influ-
ence of Akt/mTOR signalling by the upregulation of SIRT1
and SIRT6 and the termination of ATP production by aerobic
glycolysis (Frost and Lang 2011; Ghosh et al. 2010; Hermida
et al. 2017; Pillai et al. 2014). Another contributing factor
underpinning the inactivation of AMPK might be the relative
increase in mitochondrial ATP production and a reduction in
mitochondrial ROS production as a result of a switch to fatty
acid β-oxidation from aerobic glycolysis (reviewed (Nsiah-
Sefaa and McKenzie 2016)) would be below the cellular
AMP and ROS thresholds expected to trigger the activation
of the enzyme (Morris et al. 2017d).

SIRT1 activation and subsequent immune
downregulation

Once activated, SIRT1 also plays a pivotal role in the devel-
opment of a hypo-inflammatory immune response. In essence,
this is achieved by inhibiting the transcription of IL-1β,

TNF-α and other proinflammatory genes and suppressing in-
flammatory responses by deacetylating and inhibiting the in-
cumbent p65 component of the NF-κB complex while induc-
ing the expression of RelB (Kauppinen et al. 2013; Liu et al.
2011a; Yang et al. 2012) as well as causing gene-specific
regulation as histone modifiers (Foster et al. 2007; Gazzar
et al. 2008; Liu et al. 2015a; McCall et al. 2010; Yoza et al.
2006).

From a more mechanistic perspective, SIRT1 deacetylates
histone protein H1K27 and lysine 310 (Lys310) of RelA/p65
and its continued binding recruits RelB to promoters of target
anti-inflammatory genes (Liu et al. 2011a; Millet et al. 2013).
In this instance RelB acts as a dual-function transcription fac-
tor; it increases silent facultative chromatin at promoters of
pro-inflammatory genes via direct interaction with histone
H3 lysine 9 methyltransferase G9a, heterochromatin protein
1, assembly of high mobility group box 1 and DNA CpG
methylation; (Chen et al. 2009; Gazzar et al. 2009; Millet
et al. 2013; Yoza and McCall 2011) and active euchromatin
at anti-inflammatory genes via association with the NF-κB
subunit p50 and the resultant transcription of nuclear factor
of kappa light polypeptide gene enhancer in B-cells inhibitor,
alpha (McCall et al. 2010). In addition, SIRT6 also
deacetylates RelA/p65 and histone H3K9Ac to exert addition-
al anti-inflammatory activity (Gil et al. 2013; Kawahara et al.
2009).

However, the activation of SIRT 1 and SIRT 6 are not the
only elements involved in the immune downregulation char-
acteristic of endotoxin tolerance as miRNA activity, soluble
factors such as IL-10 and TGF-β1 and the concomitant down-
regulation of proteins enabling TLR signalling and upregula-
tion of proteins such as SH2 (Src Homology 2)-containing
inositol phosphatase (SHIP) and IRAK-M, known to inhibit
TLR signalling, all play an indispensable role (reviewed
(Wisnik et al. 2017; Fu et al. 2012)). Crucially, these processes
may begin with the activation of indoleamine 2,3-dioxygenase
(IDO) which is activated in an environment of excessive
I&OS (Morris et al. 2016a), as discussed below.

I&ONS and the development of endotoxin
tolerance via IDO upregulation

Chronic I&ONS can also provoke the development of endo-
toxin tolerance by inducing the transcriptional activation of
IDO (Kim et al. 2015c; Wichers and Maes 2004) leading to
upregulation of the kynurenine pathway, aryl hydrocarbon
receptor (AhR) activity and increased levels of TGF-β1
(Bessede et al. 2014; Wirthgen and Hoeflich 2015) and IL-
10 (Alexeev et al. 2016; Lanis et al. 2017) via well document-
ed mechanisms (reviewed (Wirthgen and Hoeflich 2015)).

S-nitrosothiol (SNO)

Complex IComplex V α-ketoglutarate
dehydrogenase
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calcium
channel

cardiac
sarcoplasmic

re�culum
Ca2+ ATPase

↓[Ca2+]cytosolic

↑ATP

↓mitochondrial
membrane
poten�al

↓ROS
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Fig. 3 S-Nitrosylation leads to the inhibition of Complex 1, Complex IV,
the F1F0ATPase (Complex V) and possibly Complex II leading to the
reduction of ATP production and a decrease in ROS production with a
subsequent increase in production of ATP via aerobic glycolysis.
S-Nitrosylation can also compromise mitochondrial function while
increasing the survival of the organelle by inhibiting uptake of calcium
ions and reduction of cytosolic calcium ions via inhibition of SERCA,
further reducing mitochondrial ATP and ROS production. S-Nitrosylation
also inhibits key enzymes of the TCA cycle, such as aconitase and α-
ketoglutarate dehydrogenase, and regulates those involved in fatty acid
metabolism, thus further inhibiting oxidative phosphorylation and stimu-
lating aerobic glycolysis and mitochondrial fatty acid oxidation
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The upregulation of AhR activity is of interest given data
presented in the previous section as increased activity of this
cytosolic transcription factor leads to upregulation of RelB and
non-canonical NF-κB signalling (Salazar et al. 2017; Vogel
et al. 2013). Mechanistically, these effects appear to be mediat-
ed by transcriptional upregulation of RelB (de Souza et al.
2014; Thatcher et al. 2007) and subsequent physical engage-
ment between RelB and AhR to produce dimers capable of
modulating the expression of NF-κB-sensitive genes (Vogel
et al. 2008). AhR-upregulated RelB also stimulates and main-
tains the transcription of miR-146a (Zago et al. 2014, 2017).
This is of importance as miR-146a is a dominant player in the
development and maintenance of the hypo-inflammatory envi-
ronment characteristic of endotoxin tolerance (Banerjee et al.
2013; Nahid et al. 2009). Mechanistically, this inhibitory effect
is enabled by suppressing TLR signalling pathways by reduc-
ing the translation of TNF receptor associated factor 6
(TRAF6), interleukin-1 receptor-associated kinase 1 (IRAK1),
IRAK2 and interferon regulatory factor 3 (IRF3), which are
positive adaptor kinases of MyD88-mediated signalling and
hence their inactivation results in reduced activity of both
NF-κB and IRF3 (Nahid et al. 2011) (reviewed (Testa et al.
2017)).

The upregulation of TGF-β1 also results in upregulated non-
canonical NF-κB signalling (Pallotta et al. 2011; Shi and
Massague 2003). Increased activation of this cytokine also
upregulates pseudokinase IRAK-M (Pan et al. 2010; Srivastav
et al. 2015; Standiford et al. 2011). This is significant because
IRAK-M would appear to be the ‘master regulator’ of the TLR
pathway suppression characteristic of the state of endotoxin
tolerance in PMBCs (del Fresno et al. 2007; Escoll et al.
2003; Stiehm et al. 2013; van’t Veer et al. 2007; Wiersinga
et al. 2009). Indeed, the weight of evidence suggests that in-
creased activity of this enzyme alone is sufficient to maintain an
LPS-induced hypo-inflammatory state in human macrophages
and monocytes (van’t Veer et al. 2007). This is unsurprising
given that this molecule can inhibit TLR signalling at multiple
levels. TGF-β1 has been established as an indispensable ele-
ment in the development of endotoxin tolerance-associated
SHIP upregulation (Sly et al. 2004; Yang et al. 2015). This
may be of particular relevance from the perspective of a puta-
tive explanatory model of CFS aetiology as elevated levels of
this cytokine in PMBCs andwhole blood are a common finding
in patients diagnosed according to narrow international consen-
sus criteria and correlate with the severity of a range of symp-
toms (Blundell et al. 2015; Wyller et al. 2017). Once again, it is
noteworthy that this phenomenon is not observed in patients
diagnosed according to broader schema which are not interna-
tionally recognised such as the ‘alternative CDC criteria’ (Clark
et al. 2017).

Upregulated IL-10 also exerts negative effects on TLR sig-
nalling by increasing the ubiquination and proteasome-

mediated degradation of a range of MyD88-dependent signal-
ling effector molecules such as IRAK-4 and TRAF6 ultimately
resulting in reduced phosphorylation and activity of inhibitor of
kappa B kinase (IKK), p38 and JNK (Chang et al. 2009). IL-10
is produced by monocytes, macrophages, Tregs and Th2-
polarised T cells in a state of endotoxin tolerance, and sup-
presses the CD8 T and CD4 Th1 type cell response making
an indispensable contribution to the development of an anti-
inflammatory environment (Jiang and Chess 2006; Littman
and Rudensky 2010). The indispensable contribution of IL-10
to the development of endotoxin tolerance (Liu et al. 2011b;
Quinn et al. 2012) is of importance from the perspective of this
paper as the upregulation of this cytokine is a common obser-
vation in CFS patients (Roerink et al. 2017; Wong et al. 2015).

It should be noted that once activated, IDO activity can be
maintained by two positive feedback mechanisms. First,
TGF-β can target its cellular receptor leading to the upregula-
tion of NF-κB-RelB signalling leading to further transcription
of IDO (Pallotta et al. 2011; Shi andMassague 2003). Second,
IDO-activated AhRs can in turn upregulate the transcription of
IDO1 (the gene that encodes IDO) via genomic and non-
genomic routes (Li et al. 2016b; Litzenburger et al. 2014).
Hence once activated, IDO upregulation could be protracted
or even chronic.

In addition, there is evidence obtained from human studies
that chronic or intermittent translocation of LPS into the sys-
temic circulation can induce a state of tolerance and alternative
activation in macrophages and monocytes characteristic of
endotoxin tolerance via the activation of IDO, kynurenine
and the AhR (Banerjee et al. 2013; del Campo et al. 2011;
del Fresno et al. 2008; Pena et al. 2011; Wisnik et al. 2017).
Given the existence of LPS translocation in CFS, this mecha-
nism could also contribute to the development of a chronic
state resembling endotoxin tolerance.

The importance of IDO activation in the development of
endotoxin tolerance is further emphasised by data confirming
that interactions between the AhR, kynurenine and TGF-β1
are responsible for the polarisation of activated naïve T cells
into the Treg phenotype by the presentation of antigen by
tolerogenic antigen-presenting cells (Gandhi et al. 2010;
Mezrich et al. 2010). Such phenotypic presentations are con-
sidered below.

IDO2 is a homologue of IDO (also known as IDO1), being
an immunomodulatory enzyme which catalyses L-trytophan;
like IDO1, IDO2 is also located on chromosome 8 in humans
but IDO2 is not as widely expressed as IDO1 and IDO2 has a
distinct signalling role (Metz et al. 2007; Cha et al. 2018). B
cell IDO2 expression has recently been identified as being an
essential mediator of autoreactive B and T cells in autoim-
mune responses (Merlo and Mandik-Nayak 2016; Merlo
et al. 2016, 2017). It seems likely, therefore, that IDO2 may
be found to play an important role in ME/CFS.
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State of leukocytes in endotoxin tolerance

Neutrophils

There are not a great deal of data regarding these immune cells
in a state of endotoxin tolerance but the evidence in existence
is typical of that would be expected if such cells were in a state
of immune downregulation. For example, Parker and fellow
workers reported a downregulation of TLR4 receptors, high
levels of IL-8 secretion and impaired oxidative burst in neu-
trophils in endotoxin tolerance (Parker et al. 2005). Impaired
rolling, endothelial cell adhesion and migration to sites of
infection have also been reported (Alves-Filho et al. 2008;
Ogawa et al. 2003). However, there appears to be considerable
variation in the migration of neutrophils in this condition as
another research team has reported that this ability may be
significantly increased (Ariga et al. 2014).

Monocytes and macrophages

Stimulated macrophages and DCs in a state of endotoxin tol-
erance display M2 polarisation as evidenced by decreased
production of PICs such as IL-12, IL-6 and TNF-α and an
increased production of IL-10 and TGF-β1 (Albrecht et al.
2008; del Fresno et al. 2009). The magnitude of such immune
downregulation is thrown into stark relief by data demonstrat-
ing that levels of TNF-α, IL-1β and IL-6 in activated mono-
cytes in this condition are typically less than 10–20% of levels
in stimulated monocytes extracted from healthy controls
(Boomer et al. 2014; Rigato and Salomao 2003; Sinistro
et al. 2008).

Macrophages and DCs in a state of endotoxin tolerance
also display impaired antigen presentation owing to downreg-
ulated major histocompatibility complex (MHC) class II mol-
ecules such as human leukocyte antigens – antigen D related
(HLA-DRs) and class II transactivator and the costimulatory
molecule CD86 which may be caused, at least in part, by
elevated levels of TGF-β and IL-10 (Biswas and Lopez-
Collazo 2009).

DCs in particular appear to be immature and their activa-
tion appears to be impaired as evidenced by reduced produc-
tion of chemokine (C-C motif) ligand 3 (CCL3) and CCL5
(Albrecht et al. 2008), reduced levels of CD80 and CD86
(Cohen et al. 2004) and evidence of reduced numbers
(Ishiyama et al. 2006).

Curiously, while there is evidence of reduced numbers of
DCs as a whole (Ishiyama et al. 2006), it would appear that the
relative proportion of myeloid DCs increases leading to a
higher level of antigenic stimulation overall, in turn leading
to the differentiation of naïve T cells along the Th2 pathway
but producing T lymphocytes with a characteristically reduced
expression of IL-2 and interferon gamma (IFNγ) but normal

levels of IL-4 and IL-5 (Ishiyama et al. 2006; Lauw et al.
2000).

These tolerogenic DCs also play a major part in inducing
CD4 and CD8 T cell anergy, inhibition of T cell effector and
memory responses and inducing the activation and generation
of Tregs, which are all characteristic of endotoxin tolerance
(Domogalla et al. 2017; Raker et al. 2015).

T cell characteristics in endotoxin tolerance

A protracted state of endotoxin tolerance is characterised by
CD4 T cell exhaustion or anergy, impaired CD8 T cell prolif-
eration and an absolute rise in the numbers and suppressor
function of Tregs (Cabrera-Perez et al. 2014; Cao et al.
2015; Strother et al. 2016). Anergic or exhausted T cells are
unresponsive to antigenic stimulation and express high levels
of inhibitory receptors on their surfaces such as CD69, pro-
grammed death receptor-1 (PD-1), CD25, IL-7R and T cell
membrane protein-3 (Boomer et al. 2011) (reviewed (Boomer
et al. 2014)). While upregulation of each receptor plays a part
in maintaining T cell anergy, there is accumulating evidence
that PD-1 and its ligands play the dominant role and that
immunotherapy directed at this receptor complex can restore
T cell function in vivo (Araki et al. 2013; Lee et al. 2015).
Such T cells in this hypo-inflammatory state also display ev-
idence of repressive histone methylation in T-bet (a T-box
transcription factor), GATA-3 and retinoic acid receptor
(RAR)-related orphan receptor gamma, which would go some
way to explaining their unresponsiveness to antigenic stimu-
lation (Pachot et al. 2005) (reviewed (Carson and Kunkel
2017)). It is noteworthy that the pattern of T cell anergy is also
seen in patients with chronic viral infections because of unre-
lenting antigenic stimulation (Yi et al. 2010). This level of
CD4 T cell dysfunction is also associated with reactivation
of latent herpes viruses which can add to the antigenic milieu
and, combined with translocated LPS, could afford another
avenuemaintaining a persistent a hypo-inflammatory environ-
ment (Laing et al. 2012; Limaye et al. 2008; Ouwendijk et al.
2013).

PD-1 upregulation appears to be the dominant player in the
development and maintenance of CD8 T cell anergy and loss
of CD8 T cell numbers seen in an environment of endotoxin
tolerance although the underlying mechanism may be differ-
ent in this case and such upregulation appears to be driven by
elevated levels of TGF-β1 (Baas et al. 2016; Danahy et al.
2016). The level of proliferative and functional impairment in
memory CD8 T cells extends to all modes of activation, with
decreased antigen-dependent sensitivity and an impaired ca-
pacity to detect the presence of inflammatory mediators in the
immediate microenvironment being repeatedly reported,
which dramatically reduces their effectiveness in dealing with
reinvading pathogens (Duong et al. 2014).
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The increased numbers and suppressive capacity of Tregs
seen during the development of endotoxin tolerance also play
a major role in the development of T cell anergy either via a
contact-dependent mechanism or via increased secretion of
TGF-β and IL-10 (Cao et al. 2015; Jiang et al. 2012).
Finally, and perhaps predictably, the development of endotox-
in tolerance is associated with decreased numbers and func-
tion of NK cells, with decreased IFNγ production by CD56
NK cells being the most commonly reported functional im-
pairment (Chiche et al. 2011; Forel et al. 2012; Pan et al.
2014).

Can immune and metabolic abnormalities be
explained by endotoxin tolerance?

Metabolic downregulation

The data presented above relating to metabolic downregulation
are potentially important observations from the perspective of
CFS pathogenesis and/or pathophysiology as they could ex-
plain apparently diverse observations in PMBCs such as in-
creased energy production by glycolysis (Lawson et al. 2016),
impaired pyruvate dehydrogenase function (Fluge et al. 2016),
lower mitochondrial ATP production and disordered lipid me-
tabolism compared with healthy controls (Germain et al. 2017;
Tomas et al. 2017) and a cellular state of apparent metabolic
hibernation (Naviaux et al. 2016). There is also evidence that
NAD+ levels may be elevated in CFS patients (Ciregia et al.
2016; Mikirova et al. 2012; Naviaux et al. 2016). Furthermore,
the dysfunction of the TCA cycle in CFS patients reported by
(Yamano et al. 2016), inhibition of glycolysis and reduced
levels of pyruvate reported by (Armstrong et al. 2015) and
inactivated AMPK together with subnormal levels of IL-6 in
the striated muscles of CFS patients reported by (Brown et al.
2015) are all abnormalities consistent with a pattern of meta-
bolic downregulation associated with the cellular hibernation
associated with endotoxin tolerance. It is also noteworthy that
the impaired level of oxidative phosphorylation in PMBCs of
CFS patients recently reported by (Tomas et al. 2017) is con-
sistent with mitochondrial ATP production via the β-oxidation
of fatty acids. Furthermore, the recently published new model
for chronic disease pathogenesis and treatment by Naviaux
(2018) is germane; in this model, the pathophysiology of chron-
ic disease is re-framed in terms of metabokine and mitochon-
drial signalling abnormalities.

There is also evidence that AMPK becomes inactivated
during a state of endotoxin tolerance, probably as a result of
elevated GSK-3 activity (Jiang et al. 2014; Liu et al. 2015b).
This may be significant from the perspective of exercise intol-
erance seen in ME/CFS as this kinase is responsible for sens-
ing and enabling increased ATP production and maintaining
metabolic homeostasis in striated muscle cells in response to

increasing demands for energy during exercise (Morales-
Alamo and Calbet 2016; Trewin et al. 2018). AMPK signal-
ling also plays an indispensable role in stimulating increased
levels of fatty acid oxidation needed to foster the recovery of
skeletal muscle function and dynamics in the aftermath of
exercise (Egan and Zierath 2013). In the context of a putative
explanatory model of the causes of the CFS, it is noteworthy
that AMPK appears to be inactive in the striated muscle of at
least some patients afforded this diagnosis (Brown et al.
2015). Hence the phenomenon of endotoxin tolerance could
go some way to explaining the muscle dysfunction, exercise
intolerance and prolonged recovery time characteristic of CFS
(reviewed (Gerwyn andMaes 2017)). In addition, the fact that
increased levels of NO and ROS generated by mitochondria
during incremental endurance training can lead to oxidative
inactivation of AMPK (Morales-Alamo and Calbet 2016)
could explain the relative failure of long-term incremental
training regimes to produce any clinically significant benefits
in the short or long term in recent trials involving CFS patients
initially diagnosed according to the widest existing criteria
(White et al. 2011).

Immune phenotype associated with endotoxin
tolerance

The concept of endotoxin tolerance would go some way to
providing an explanation of the apparently contradictory pat-
terns of pro- and anti-inflammatory cytokine production and
Th1 and Th2 biases which are common in the literature (Brenu
et al. 2011; Hornig et al. 2017; Hornig et al. 2015; Morris and
Maes 2013c; Maes et al. 2012b; Milrad et al. 2017; Montoya
et al. 2017; Peterson et al. 2015; Russell et al. 2016). In addi-
tion, such different immune patterns may be explained by
activation of the compensatory anti-inflammatory reflex sys-
tem in patients with CFS, including Th-2 and Treg responses
and induced immune tolerance (Morris and Maes 2012). This
system tends to attenuate the primary immune response thus
causing differential immune patterns depending on the stage
of illness (e.g. acute episode versus chronic stage). Both con-
cepts could also explain the results of large studies suggesting
the development of a progressively hypo-inflammatory state
in CFS patients with time and/or over the course of their dis-
ease both in terms of cytokine production and surface recep-
tors on PMBCs (Hardcastle et al. 2015; Hornig et al. 2015;
Montoya et al. 2017; Russell et al. 2016). Readers interested in
further consideration of the different cytokine and PMBC re-
ceptor distribution patterns reported in CFS patterns are invit-
ed to consult reviews by (Morris and Maes 2013b; Morris
et al. 2015a).

The existence of a state akin to endotoxin tolerance could
also potentially explain a considerable body of data indicating
the presence of exhausted or anergic CD4 and CD8 cells in
CFS patients (Brenu et al. 2011, 2016; Klimas et al. 1990;

Metab Brain Dis



Loebel et al. 2014; Prieto et al. 1989; Straus et al. 1993). This
is also true of elevated Foxp3+ Tregs which appear to have
been universally reported by researchers using advanced flow
cytometry techniques (Brenu et al. 2011, 2014b; Curriu et al.
2013; Ramos et al. 2016). There have also been conflicting
accounts of CD4 and CD8 T cell numbers both in absolute
terms and in relation to each other which could conceivably be
explained by patients being in different phases of an illness at
the time of testing (Gupta and Vayuvegula 1991; Maes et al.
2015; Natelson et al. 2002; Racciatti et al. 2004). In this con-
text, the work of Maes et al. and of Racciatti et al. would
appear to be especially worthy of note as these studies were
large, containing 139 and 134 patients respectively, and pro-
duced diametrically opposite results with the former reporting
a reduced CD4/CD8 ratio while the latter reported an elevated
CD4/CD8 ratio (Maes et al. 2015; Racciatti et al. 2004).

NK cell hypofunction is the most well documented immune
abnormality in CFS patients (Brenu et al. 2016; Fletcher et al.
2010; Natelson et al. 2002) and there is evidence of abnormal
metabolic pathways and impaired signalling activity known to
be involved in endotoxin tolerance in this cell type extracted
from CFS/ME patients both in terms of miRNA activity and
impaired extracellular signal-regulated kinase 1/2, mitogen-
activated protein kinase 1/2 and p38 signalling (Huth et al.
2016; Petty et al. 2016). It is also noteworthy that while there
is a paucity of research examining macrophages, monocytes
and neutrophils, those research teams which have investigated
these parameters have reported abnormalities. For example,
research teams have reported impaired phagocytosis and evi-
dence of immune senescence in monocytes characterised by
reduced expression of HLA-DR antigens (Gupta and
Vayuvegula 1991; Prieto-Domínguez et al. 2016; Straus et al.
1993) while a recent study revealed a decrease in DCs overall
but an increase in myeloid DCs, which is a characteristic of DC
populations in a state of endotoxin tolerance as previously
discussed (Brenu et al. 2014b). Several abnormalities in neutro-
phil phenotype and function have also been reported with re-
duced respiratory burst and phagocytic capacity together with
an increased tendency to apoptosis being the most commonly
reported findings (Brenu et al. 2010; Bryceson et al. 2006;
Harvey et al. 2016; Kennedy et al. 2004). Other evidence of
immune downregulation in at least some patients with CFS/ME
includes downregulated TLR4 activity (Light et al. 2009, 2013;
White et al. 2012) and a pattern of miRNA expression consis-
tent with immune suppression induced by TGF-β1 signalling
(Brenu et al. 2014a; Petty et al. 2016).

It is important to note that while large studies invariably report
a plethora of immune abnormalities in patients with CFS/ME
(Brenu et al. 2011; Hornig et al. 2015, 2017; Maes et al.
2012a, b, 2015; Milrad et al. 2017; Montoya et al. 2017;
Peterson et al. 2015; Racciatti et al. 2004; Russell et al. 2016;
Tirelli et al. 1993, 1994), this not true of smaller studieswhere the
results are inconsistent even when participants fulfil the criteria

for a CFS diagnosis according to international guidelines
(reviewed (Natelson et al. 2002)). The reasons for such conflict-
ing results are not entirely clear but the inclusion of individuals
with primary depression, retrospective diagnoses and inconsis-
tencies with cytokine assay approaches have all been cited as
possible explanations. In addition, there is no evidence of any
immune abnormalities in individuals afforded a diagnosis of CFS
or ME based on any diagnostic schema other than the Fukuda or
Canadian criteria (Blundell et al. 2015).

Conclusion

In this paper, it has been shown that, while the aetiology of CFS/
ME is currently unknown, there is strong evidence of this illness
being associated with a wide range of biological abnormalities,
most notably in the neuroendocrine, autonomic, neurological,
bioenergetic, redox and immunological domains. It has also been
seen that epigenetic variation in immune response genes plays a
major role in determining the development of DAMPs post-in-
fection, which is pertinent from the perspective of the aetiology
of the illness as the production or presence of thesemolecules can
‘convert’ an acute pathogenic infection into a state of escalating
chronic systemic inflammation, which in turn can give rise to
many of the reported symptoms and biological abnormalities. It
has further been demonstrated in this paper how this relatively
simple concept does indeed lead to a novel explanatory model
which explains the major biological observations.
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