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Abstract

In optimal conditions of youth and health, most—if not all—physiological systems obey
regular circadian rhythms in response to the periodic day-night cycle and can be well
described by standard techniques such as cosinor analysis. Adverse conditions can dis-
turb the regularity and amplitude of circadian cycles, and, recently, there is interest in the
field of chronobiology to quantify irregularities in the circadian rhythm as a means to
track underlying pathologies. Alterations in physiological rhythms over a wide range of
frequency scales may give additional information on health conditions but are often not
considered in traditional analyses. Wavelets have been introduced to decompose physio-
logical time series in components of different frequencies and can quantify irregular
patterns, but the results may depend on the choice of the mother wavelet basis which is
arbitrary. An alternative approach are recent data-adaptive time-series decomposition
techniques, such as singular spectrum analysis (SSA), where the basis functions are gen-
erated by the data itself and are user-independent. In the present contribution, we com-
pare wavelets and SSA analysis for the quantification of irregular rhythms at different
frequency scales and discuss their respective advantages and disadvantages for applica-
tion in chronobiology.

Keywords: singular spectrum analysis, SSA, wavelets, spectral analysis, Fourier analysis,
data-adaptive, model-free

1. Introduction

Circadian rhythms are physical, mental and behavioral variations that follow an approxi-

mately 24-hour cycle in response to the periodic alternation between day and night. In the last

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



few decades, it has become well established that most—if not all—physiological systems

exhibit these regular circadian rhythms, and it has been discovered that they are largely

controlled by a central clock and several peripheral oscillators [1]. More recently, it has been

observed that adverse conditions, such as “healthy” and pathological aging, illness, stress and

medication use, can disturb the regularity and amplitude of the circadian rhythm. Conse-

quently, the focus in the field of chronobiology is shifting from a description of periodic cycles

to the quantification of irregularities and the study of the mechanisms underpinning their

disruption and normalization [2–5].

The traditional method to analyze circadian rhythms is cosinor analysis, which quantifies the

circadian 24 h cycle, and/or other specific infra- or ultradian periodic cycles, by means of

examining the degree of “fit” between the experimental data and a user-defined model

consisting of a superposition of cosine functions [6, 7] and allows to calculate the circadian

parameters of mesor, amplitude, period and acrophase [8]. However, data where the patterns are

irregular, or where the statistical properties vary over time (nonstationary time series), such as

having a dominant trend [9–11], or time-varying amplitudes, frequencies or phases [12–15], are

much harder or impossible to describe using models based on these periodic functions. Recently,

more specialized techniques have been developed to study circadian rhythms; in particular,

wavelets have been applied to study the irregular aspects of circadian rhythms [13–15]. Wavelets

however are, as with cosinor analysis, model-based in the sense that the results obtained may

depend on the particular wavelet basis functions (mother wavelet) selected by the user. Between

the most recent developments in the field of time-series analysis are data-adaptive decomposi-

tion techniques such as singular spectrum analysis (SSA) [16–20], empirical mode decomposition

(EMD) [21, 22] and nonlinear mode decomposition (NMD) [23, 24]. The basic idea of these data-

adaptive techniques is to decompose a time series as a sum of modes that describe separately

non-oscillating trend, (quasi-)periodic components and high-frequency noise. These techniques

are nonparametric because, in contrast to the classical Fourier decomposition, the modes are not

model dependent and do not need to be periodic sine or cosine functions. Instead, the modes are

derived from the data itself, and they are not limited to a single time scale or a limited range of

scales, but describe the data at all scales present. Recently, we applied SSA to quantify irregular

rhythms in actigraphy data in the case of persons that suffer from acute insomnia [25], and SSA

was applied as well to study irregular patterns in neural and locomotor activity in hamsters [26],

but apart from these studies, data-adaptive time-series methods have not been applied in chro-

nobiology. The lack of accessible specialized software to carry out data-adaptive time-series

analysis may be one of the reasons that these techniques, to date, have not been applied to

circadian rhythm research; fortunately, several open-source implementations have recently

become available in multiple platforms such as Mathematica, MATLAB, R, Python, and so on,

for SSA [27–30], EMD [31–34] and NMD [35].

Another disadvantage of the cosinor method is that it is unable to measure rhythm fragmenta-

tion [2, 36, 37]. In actigraphy, rhythm fragmentation was originally defined as the deterioration

of the regular circadian rhythm by the occurrence of daytime naps and/or nocturnal activity

episodes. On the other hand, spontaneous moment-to-moment fluctuations are a characteristic

property of actigraphy time series in particular and of physiological variables in general, and a
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moderate level of rhythm fragmentation may be indicative of a healthy physiological capacity

to respond to random and unforeseen events at multiple time scales. Spectral analysis and

other time-series decomposition techniques are ideal tools to study such rhythm fragmentation

in actigraphy and other physiological data because they quantify the relative contribution of

different time-series components at different time scales to the total variance of the experimen-

tal data [25]. A 1=f fractal power law may be an indication of such an optimal level of rhythm

fragmentation, because it has been observed empirically over a wide range of ultradian time

Figure 1. Two-week continuous actigraphy time series of number of movements per minute for (a) young female adult A

(23 years old) with regular circadian cycle, (b) young male adult B (22 years old) with irregular circadian cycle (c) older

male adult C (82 years old) with regular circadian cycle. All subjects are asymptomatic controls. Vertical gridlines indicate

midnight. Also shown are estimations using cosinor analysis of the circadian 24-h cycle (continuous curve) around a

constant mesor (broken line) (see Eq. (2)). All time series have a length of N ¼ 20160 data points (corresponding to 7� 24 h)

(data from the public database of Ref. [43]).
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scales in heart rate time series and actigraphy, whereas adverse conditions such as aging [38],

cardiovascular disease [39], dementia [40–42] and insomnia [25, 43] have been found to corre-

late with deviations of this power law.

The purpose of the present contribution is to illustrate how Fourier-based spectral analysis,

wavelets and data-adaptive methods describe irregular circadian rhythms and rhythm frag-

mentation. Of the data-adaptive methods mentioned, in the present work, we prefer SSA

because of its closeness to standard Fourier analysis and the availability of graphical tools such

as the scree diagram that can be interpreted as a generalization of the well-known Fourier

power spectrum. We will illustrate the advantages and disadvantages of these methods using

selected 2-week continuous actigraphy time series for three nonsymptomatic control subjects

of the public database of Ref. [43] (see Figure 1). These actigraphy time series show the number

of movements per minute for a total duration of 20,160 minutes (7� 24 h). The time series were

chosen upon visual inspection: subject A is a young female adult (23 years old) with a regular

circadian rhythm, subject B is a young male adult (22 years old) with an irregular circadian

rhythm and subject C is an older male adult (82 years old) with a regular circadian rhythm.

2. Cosinor analysis

The traditional method to study the periodic aspects of circadian rhythms is cosinor analysis

[6, 7]. The cosinor approach is based on regression techniques and is applicable to equidistant

or non-equidistant time series x nð Þ of N discrete data points:

x nð Þ ¼ x1; x2;…xNf g: (1)

The procedure consists of fitting a continuous periodic function y tð Þ to time series x nð Þ:

y tð Þ ¼ Mþ Acos 2πt=T þ ϕ
� �

(2)

where M is the average value or mesor around which the function oscillates, T is the period, A

is the amplitude and ϕ is the phase which defines the value at which the function begins at the

start of the monitoring at t ¼ 0. By taking into account trigonometric rules, the cosinor function

of Eq. (2) can be rewritten as y tð Þ ¼ Mþ Bcos 2πt=Tð Þ þ Csin 2πt=Tð Þ, where B and C are

amplitudes and where the phase is given implicitly by the superposition of the sine and cosine

functions. Function y tð Þ is fitted to the data by minimizing the summed square residual errors

e2n ¼ xn � yn
� �2

for all data points n ¼ 1, 2,…, N, and the value of period T for which the

amplitude A maximizes can be considered to be the circadian period (see Figure 2). For

organisms exposed to the natural day-and-night cycle, this period can be expected to be

T ≈ 24 h = 1440 min. Once chosen period T, the other circadian parameters M,A and ϕ are

determined as well [8]. Phase ϕ does not give any physiological information on the monitored

individual, because time series may start at an arbitrary time of the day. Instead, a more

interesting variable is the acrophase ϕ0, which can be defined as the time of the day when the
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Figure 2. Regression analysis of Eq. (2) to the time series of subjects A, B and C of Figure 1. Period T is varied from 1 to

2000 min, and amplitude A (shaded curve), mesor M (black line) and phase ϕ (gray curve) are plotted as a function of T.

Local maxima near T ¼ 24 h = 1440 min are indicated with a vertical line and are located at T ¼ 1430 min (subject A),

T ¼ 1438 min (subject B) and T ¼ 1440 min (subject C).
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circadian cycle obtains its maximum, with respect to a fixed moment in time which is the same

for all subjects, e.g. taking midnight as a reference, and which can be expressed as hours and

minutes (hh:mm), or alternatively, as an angle ( ∘ , taking into account the relation 360 ∘ ¼ 24 h),

relative to this reference time. The fitted function may be generalized to include more than one

period, y tð Þ ¼ Mþ
P

kAkcos 2πt=Tk þ ϕk

� �

, where the sum usually runs over a small number k

of different periods. In the present case, Figure 2 shows many ultradian (T < 1440 min) and

infradian periods (T > 1440 min) that have nonzero amplitudes, but in the present case, there

are no other periods than the circadian period T ≈ 24 h that are clearly distinguishable from the

neighboring values to warrant their inclusion in the model function y tð Þ. An important result

in cosinor analysis is the coefficient of determination R2, which compares the variance of the

residual errors en around the fitted model y to the variance of the time series x nð Þ around its

average value:

R2 ¼ 1�
Var eð Þ

Var xð Þ
(3)

¼ 1�

P

N

n¼1

xn � yn
� �2

P

N

n¼1

xn �mean xð Þð Þ2
, (4)

such that R2 is a measure for the fraction of the variance of the time series that can be explained

by model y tð Þ.

Cosinor Fourier filter DWT SSA

A B C A B C A B C A B C

Mean (M) (1/min) 222.39 182.81 104.77 222.3 181.9 104.7 222.3 181.9 104.7 227.8 181.8 106.2

Mean (T) (min) 1430 1438 1440 1409.7 1444.3 1428.1 1409.3 1446.7 1433.3 1421.4 1396.1 1431.7

Mean (A) (1/min) 154.88 113.66 109.14 174.7 145.4 112.9 151.4 142.0 108.3 165.2 137.5 112.1

Mean (ϕ0) ( ∘ ) 230.75 240.75 198.75 229.3 217.0 198.6 218.9 210.9 200.1 226.3 220.6 199.9

Mean (ϕ0) (hh:mm) 15:23 16:03 13:15 15:17 14:28 13:14 14:36 14:04 13:20 15:05 14:42 13:20

SD (M) (1/min) — — — — — — 0.8 1.3 0.4 39.3 49.0 15.4

SD (T) (min) — — — 116.4 261.9 78.0 127.9 326.5 72.5 105.8 190.0 60.2

SD (A) (1/min) — — — 108.0 87.7 35.5 35.9 46.9 14.8 53.9 59.8 17.9

SD (ϕ0) ( ∘ ) 10.46 2.09 0 30.9 72.5 15.1 36.6 68.8 13.7 27.8 73.2 11.1

SD (ϕ0) (hh:mm) 00:42 00:08 00:00 02:04 04:50 01:00 2:26 04:35 00:55 01:51 04:53 00:44

R2 0.112 0.058 0.207 0.193 0.141 0.238 0.174 0.129 0.230 0.202 0.161 0.241

Table 1. Circadian parameters mesor M, circadian period T, amplitude A and acrophase ϕ0 for subjects A, B and C

according to cosinor analysis, Fourier filter, discrete wavelet transform (DWT) using the Daubechies [4] mother wavelet

and singular spectrum analysis (SSA) with parameter L ¼ 1440. Presented are average values (mean), standard deviation

(SD) and the coefficient of determination R2.
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Results for the circadian parameters of the cosinor model function y(t) of Eq. (2) for subjects

A, B and C are presented in Figure 1. In the present of one single period T, function y tð Þ is

periodic, and mesorM and amplitude A are constant and capture the average properties of the

time series without the possibility to describe day-to-day variability. If T � 1440 min, such as

for subject C, also acrophase ϕ0 is constant, and there is no variability for ϕ0. If, on the other

hand, T 6¼ 1440 min, there is a day-to-day phase advance (T < 1440 min) or phase delay

(T > 1440 min), respectively, as is the case for subjects A and B, and one can calculate an

average value and variability measures for ϕ0.

3. Fourier spectral analysis

Fourier spectral analysis makes the supposition that the fluctuations of time series x nð Þ with

n ¼ 1, 2,…, N may be interpreted as the superposition of κmax ¼ N=2 independent harmonic

oscillators, where 2π=Tκmax
is the Nyquist frequency and where each harmonic oscillator

corresponds to a periodic function (see Ref. [44]):

y tð Þ ¼
X

κmax

κ¼1

Aκcos 2πt=Tκ þ ϕκ

� �

(5)

¼
X

κmax

κ¼1

Bκcos 2πt=Tκð Þ þ Cκsin 2πt=Tκð Þ, (6)

which establishes a link between the time domain t and the frequency domain f κ ¼ 2πt=Tκ.

Here, the first term κ ¼ 1 corresponds to f ¼ 0 or T ¼ ∞ and is the direct current (DC) term

around which the other terms κ > 1 oscillate and may be interpreted as the equivalent of the

mesor M of cosinor analysis. One of the most important results of Fourier spectral analysis is

the power spectrum, which gives the power P f κ
� �

as a function of frequency f κ. The variance of

time series x is given by

Var xð Þ ¼
1

N

X

N

n¼1

xn �mean xð Þð Þ2, (7)

and Parseval’s theorem establishes that the variance in the time domain is identical to the

variance of the oscillations of all components around the DC term in the frequency domain, i.e.

Var xð Þ ¼
1

N � 1ð Þ

X

κmax

κ¼2

P f κ
� �

, (8)

which allows us to interpret the power P f κ
� �

of the component with frequency f κ as a partial

variance, and we can focus our attention to the components that concentrate most of the

variance of the time series x.
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Results from the Fourier spectral analysis of subjects A, B and C are shown in Figure 3. The

variance of the time series is Var(A) = 107,417, Var(B) = 110,405 and Var(C) = 28,725. Power

spectra P fð Þ as a function of frequency in linear scale show for all subjects a dominant peak at

the circadian frequency of f ≈ 14 oscillations during the 2-week duration of the time series.

Apart from the circadian frequency, for subject C, only discrete peaks at higher harmonics are

visible, whereas for subject A, many low-frequency components are present, which are even

more predominant in the case of subject C. logarithmic scale allows to focus not on the

dominant peaks but on the continuum of spectral contributions at a wide range of frequency

scales, which for subjects A and B show an approximate 1=f β scaling with spectral exponent

β ≈ 1 and which for subject C appears to be truncated at about f ¼ 102 oscillations, belowwhich

the power spectrum flattens out. A drawback of the power spectrum representation P fð Þ as a

function of f is that it has a lot of dispersion because of which it may be difficult to make an

Figure 3. Fourier spectral analysis for subjects A, B and C. Power spectrum P fð Þ as a function of frequency f in linear scale

where the DC term has been omitted for reasons of visibility (left-hand column), logarithmic scale (middle column) and as

a scree diagram P kð Þ ordered according to magnitude in logarithmic scale (right-hand column). Frequency units are the

number of oscillations during the whole duration of the time series.
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accurate estimate of the value of the spectral exponent β. The power spectrum P fð Þ can be re-

ordered in the shape of a so-called scree diagram or Zipf-type plot P kð Þ, where the partial

variances have been ordered from the most to the least dominant. The advantage of scree

diagrams P kð Þ is that much less dispersion is present, such that power laws 1=kγ can be more

easily determined, and scaling properties are conserved between both representations,

i.e. β ¼ γ. The disadvantage is that the exact frequency ordering is lost: low-frequency oscilla-

tions tend to cluster to the high-magnitude side of the scree diagram and high-frequency

oscillations to the low-magnitude noisy tail, but not all components follow this tendency. Scree

diagrams for subjects A, B and C are compared in Figure 4. In absolute values (panel a), partial

variances of time-series components are comparable for subjects A and B at all scales, whereas

those for subject C are smaller. In relative values (panel b), on the one hand, subject C has a

larger and subject B a smaller contribution of the circadian cycle in comparison with subject A,

but on the other hand, subject C has less and subject B more rhythm fragmentation over a wide

range of ultradian frequency scales. Overall, ultradian components appear to scale according

to a 1=f power law (γ ≈ 1) for subject A, whereas this power law appears to be slightly broken

below k ¼ 102 for subjects B and C. Fourier spectral analysis (Eq. (5)) allows to filter the

spectral components of time series. Coefficients of unwanted spectral contributions can be

put zero, Aκ ¼ 0, or Bκ ¼ Cκ ¼ 0, for selected κ, to construct a low-pass, high-pass, bandpass

or band-stop filter. Figure 5 shows results for a bandpass filter applied to the time series of

subjects A, B and C where arbitrary limiting frequencies fmin ¼ 1 and fmax ¼ 20 were chosen

(to include frequencies above a period of 12 h to obtain a circadian cycle with a single

maximum per day). The resulting circadian fit describes variability in time and in amplitude,

and corresponding circadian parameters are listed in Table 1.

Figure 4. Comparison of the Fourier scree diagrams P kð Þ for subjects A (green), B (blue) and C (orange), using (a) absolute

values and (b) relative values where the total variance of all time series has been normalized Var(x) = 1.
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4. Wavelet analysis

4.1. Continuous wavelet transform (CWT)

The basic idea of wavelets is to decompose a time series in terms of a time-frequency set of

orthonormal functions [45]. The continuous wavelet transform (CWT), also called analytic

Figure 5. Filtered time series of subjects A, B and C of Figure 1 using a Fourier filter between frequencies f min ¼ 1 and

fmax ¼ 20 in units of the number of oscillations for the whole duration of the time series of 2 weeks.
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wavelet transform (AWT), is a measure of similarity (in the sense of similar frequency content)

between a basis wavelet function Ψ tð Þ, called “mother wavelet”, and the signal x nð Þ itself. The

resulting CWT depends on Ψ (see Figure 6 for a representation of some popular mother

wavelets), but an appropriate choice of basis functions allows to analyze nonstationary time

series. The Morlet mother wavelet has been suggested to be one of the most adequate bases for

spectral studies [23, 24]. To evaluate CWT, the mother wavelet is translated to be centred at t

and scaled by a factor s:

W t; sð Þ ¼

ð

∞

�∞

Ψ
∗

u� t

s

� �

x uð Þdu, (9)

where the asterisk denotes the complex conjugate, and the result is the scalogram W t; sð Þ,

which represents at each time t the instantaneous period T (represented by scale s) and the

instantaneous intensity or power W of the signal [14]. At high frequencies, CWT has a good

scale resolution but a poor frequency resolution, while at low frequencies, the frequency

resolution is improved but time resolution is lost. One of the most important properties of a

scalogram is the so-called ridge, which corresponds with the dominant behavior of the time

series and in the present case can be expected to be the circadian rhythm. The extraction of

the time-series component corresponding to the ridge can be not obvious, in particular

when there are multiple ridges, and is the topic of the data-adaptive method of nonlinear

mode decomposition (NMD) [23, 24]. The present discussion of CWT will be limited to the

scalograms.

The left-hand panels of Figure 7 show the scalograms of the time series of subjects A, B and

C using the Morlet mother wavelet. In the three cases, there is a high-intensity ridge near

Figure 6. Mother wavelet basis functions, for use with CWT, are (a) Morlet, (b) DGaussian, (c) Gabor, (d) Mexican hat and

(e) Paul and with DWT are (f) Haar, (g) Daubechies [4] and (h) BiorthogonalSpline [3, 5]. Basis functions can be real

(continuous curve), or complex, in which case the real part (continuous curve) and the imaginary part (dashed curve) are

plotted separately.
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T ≈ 1440 min, but the intensity and the instantaneous value of T vary in time, reflecting the

time and amplitude variability of the circadian rhythm. At ultradian frequencies, T < 1440

min, there are fringes of higher and lower intensities that alternate, reflecting day and night

with high and low activities, respectively. The scalogram of subject C contains only a

circadian ridge and fringes, whereas the scalogram of subject B shows a wide variety of

competing and simultaneous features, and the scalogram of subject A is in between both the

extremes. The right-hand panels show the average behavior of the scalograms over time,

Figure 7. CWT analysis of time series of subjects A, B and C of Figure 1 using a Morlet mother wavelet. Scalograms are

presented in (a)-(c), where vertical gridlines indicate midnight. Power spectra (time-averaged projections on the period

axis) are presented in (d) in absolute values and in (e) in relative values (unit variance).
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corresponding to a projection of the intensity values W t; sð Þ on the period axis, which are

similar to the Fourier spectral analysis of Figure 4. For the three subjects, one can appreciate

the dominant power of the circadian period of T ≈ 1440 min and the 1=f scaling behavior at

ultradian time scales. In absolute values, all scales have less power for subject C than for

subjects A and B, but in relative values, the circadian cycle contributes much more for

subject C than for the other subjects. Finally, to illustrate how CWT analysis depends on

the wavelet basis, Figure 8 shows scalograms for the time series of subject A for other

choices of the mother wavelet.

4.2. Discrete wavelet transform (DWT)

The discrete wavelet transform (DWT) starts with the partitioning of the signal into an approx-

imation (smooth) and a detailed part, which both together yield the original signal itself. This

subdivision is such that the approximation signal contains the low frequencies, whereas the

detailed signal collects the remaining high frequencies. By repeatedly applying this subdivi-

sion rule to the approximation part, the details of increasingly finer resolution are then pro-

gressively separated out, while the approximation itself grows coarser and coarser. This

procedure in effect offers a good time resolution at high frequencies and good frequency

resolution at low frequencies, since it progressively halves the time resolution of the signal

[14, 46]. The result of the DWT decomposition may depend on the wavelet basis chosen (see

Figure 8. CWT analysis of time series of subject A of Figure 1 using different mother wavelets: (a) Gaussian, (b) Gabor,

(c) Mexican hat and (d) Paul. Vertical gridlines at midnight.
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Figure 6 for an example of some popular mother wavelets), and the results may depend also

on the number of scales into which the time series is decomposed. Ref. [15] suggests to use the

Daubechies (4) mother wavelet for application of DWT to actigraphy data because of the

discontinuous character of these time series.

Figure 9 shows the decomposition of the time series of subject A with DWT using a

Daubechies (4) mother wavelet and a maximum number of scales, log2 Nð Þ ¼ log2 Nð Þ ≈ 14.

The decomposition of the time series of the other subjects B and C is similar to the example

shown for subject A. Visual inspection of the decomposition allows to identify the 10th scale,

which oscillations about once every 24 h, as the circadian cycle. Figure 10 shows the circadian fit

for subjects A, B and C. It can be appreciated that the fit reflects the variability in time and in

amplitude of the time series. Corresponding circadian parameters are listed in Table 1. Figure 11

Figure 9. DWT time-series components for subject A using Daubechies [4] mother wavelets. Log2(dim) ≈ 14 scales have

been used in the decomposition, and components are ordered from smallest (scale 1) to largest (scale 14). Components are

shown with a common time axis (left-hand column). The 10th scale oscillates approximately once every 24 h and can be

identified as the circadian cycle, whereas the smaller scales (1–9) correspond to ultradian rhythms and the larger scales

(11–14) to infradian rhythms. The last component, without order number, is the residual after all wavelet components

(scales 1–14) have been subtracted and can be interpreted as the mesor.
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compares the partial variance carried by all 14 scales for the three subjects. It can be seen that

both subject A and C present dominant circadian rhythms, whereas subject B is characterized by

a large rhythm fragmentation at ultradian scales. Finally, Table 2 shows coefficients of determi-

nation R2 for circadian fits for different choices of the DWTmother wavelet. Of all choices tried,

Daubechies (4) appears to maximize the coefficient of determination R2.

Figure 10. Estimation of the circadian cycle for subjects A, B and C according to the DWT analysis with Daubechies [4]

mother wavelets, using the 10th of 14 scales. Vertical gridlines at midnight.
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Figure 11. Partial variance (%) carried by the scales 1–14 of the DWT analysis for subjects A, B and C, using Daubechies

[4] mother wavelets. The last (largest) partial variance corresponds to the residual after all wavelet components have been

subtracted of the time series.

DWT A B C

Haar 0.154 0.101 0.205

Daubechies (1) 0.154 0.101 0.205

Daubechies (2) 0.179 0.132 0.220

Daubechies (4) 0.174 0.129 0.230

Daubechies (6) 0.143 0.104 0.223

BiorthogonalSpline (1,3) 0.158 0.103 0.212

BiorthogonalSpline (2,2) 0.095 0.046 0.185

BiorthogonalSpline (2,6) 0.106 0.057 0.194

BiorthogonalSpline (3,5) 0.150 0.096 0.201

BattleLemarie (2) 0.119 0.045 0.195

BattleLemarie (3) 0.127 0.075 0.212

BattleLemarie (4) 0.152 0.103 0.222

BattleLemarie (15) 0.128 0.079 0.210

Table 2. Coefficient of determination R2 according to DWT analysis using different types of mother wavelet. As

suggested in Ref. [15], the Daubechies (4) basis is the most adequate to describe circadian cycles in actigraphy data, and

the values given here are the same as listed in Table 1.
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5. Singular spectrum analysis (SSA)

SSA has been discussed in detail in a number of textbooks [16–18]; a short and very accessible

introduction can be found in Ref. [19], whereas a larger and very complete review article is in

Ref. [20]. We have discussed the SSA method previously in Ref. [25]. In brief, SSA can be

explained as a three-step process: (i) the time series is transformed into a matrix which

represents the underlying phase space of the time series, (ii) singular value decomposition

(SVD) is applied to decompose this matrix as a sum of elementary matrices or—equivalently—

to decompose the original phase space in a superposition of “subphase spaces” and (iii) each of

the elementary matrices or “subphase spaces” is transformed back into a time-series compo-

nent. Unlike Fourier analysis which expresses a time series as a sum of predefined sine and

cosine functions, SSA can be considered to be data-adaptive or model-independent because the

basis functions are generated from the data itself. It can be shown that the sum of all time-

series components is identical to the original time series. Below, a summary is given of the

most important outcomes of SSA analysis. When applying SSA to a discrete time series x nð Þ

with length n ¼ 1,…, N (see Eq. (1)), a particular window length L must be chosen as an initial

parameter, with 2 ≤L ≤N=2, which allows to fix the number of components r into which the

time series will be decomposed:

x nð Þ ¼
Xr

k¼1

σkgk nð Þ, (10)

where gk nð Þ is the time-series component, σk is the singular value that serves as weights for the

components and r ≤min K; Lð Þ with K ¼ N � Lþ 1. Only (quasi-)periodicities with average

length T ≲Lwill be resolved into separate time-series components, whereas those with lengths

T > L will be absorbed in the trend component. One can chose L as a multiple of the (average)

periodicity of the data, i.e. L ¼ mT, where m is an integer number. In the case of circadian data,

the obvious choice would be L ¼ T ¼ 24 h = 1140 min. It can be shown that in the limit for

L ! N=2, SSA converges to Fourier spectral analysis [20], where a time series is always

decomposed as the superposition of N=2-independent oscillators (Nyquist theorem). Whereas

the Fourier power spectrum of a quasiperiodic time series with average period T would

correspond to a broad Gaussian peak around the central frequency f ¼ 1=T, intuitively, it can

be understood that for an adequate choice of the parameter L the neighboring Fourier compo-

nents of this broad Gaussian peak can be “compressed” within a single SSA component. One

of the main results of SSA analysis is the so-called scree diagram that visually represents the

partial variances λk ¼ σ
2
k , ordered according to magnitude from the most to the least dominant,

where λk can be interpreted as the variance of the “subphase space” of time-series component

gk nð Þ and where λtot ¼
Pr

k¼1 λk is the total variance of the phase space of the original time

series x nð Þ. The dominant partial variance λ1, associated with component g1 nð Þ, usually corre-

sponds to the trend. Dominant periodicities can be recognized as “steps” in the scree diagram,

i.e. two successive partial variances λk and λkþ1 that are nearly degenerated and clearly

distinguishable from the neighboring partial variances, where the corresponding components

gk nð Þ and gkþ1 nð Þ are the Fourier equivalents of a sine and cosine function with the same
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Figure 12. SSA analysis of time series of subject A of Figure 1. Shown are (a) the scree diagram of partial variances λk, (b)

the matrix of weighted correlations between the first 20 time-series components gk tð Þ and gl tð Þ with k, l ¼ 1,…, 20 and (c)

the first five time-series components gk tð Þ with k ¼ 1,…, 5, of which g1 tð Þ is the trend component, g2 tð Þ þ g3 tð Þ is the

circadian rhythm and g4 tð Þ þ g5 tð Þ is the 12 h ultradian rhythm.

Figure 13. Average correlation the circadian mode g2 tð Þ þ g3 tð Þwith the neighboring components g1 tð Þ, g4 tð Þ,…g20 tð Þ as a

function of parameter L for subjects. Average correlation is lower for subject C (orange curve) than for subject A (green

curve), which is lower than for subject B (blue curve). Gridlines indicate multiples of the 24-h period, 1440 and 2880 min.
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frequency. Higher-order partial variances λk tend to have values that decrease gradually and

continuously with k, indicating that at these scales it is impossible to distinguish any individ-

ual time-series components gk nð Þ that separately can be assigned physical significance.

Figure 12 shows some details of the decomposition of the time series of subject A. In the scree

diagram, a trend mode g1 tð Þ, a mode g2 tð Þ þ g3 tð Þwhich we will identify as the circadian (24 h)

cycle and a mode g4 tð Þ þ g5 tð Þ which we will identify as an ultradian (12 h) cycle, can be

distinguished with distinctive partial variances, and there is a long tail with components with

similar partial variances that appear to obey a power law 1=kγ with γ ≈ 1. The weighted

correlation matrix shows that the trend mode and the circadian mode are uncorrelated from

the higher-order modes, but the ≈ 12-h mode does seem to have non-neglectable correlations

with other components. The waveforms of before-mentioned modes confirm that they

Figure 14. Estimation of the circadian cycle of subjects A-C according to SSA analysis using L ¼ 1440.
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correspond to the trend, the circadian rhythm and a ≈ 12-h ultradian mode. Figure 13 shows

the average correlation of the circadian mode with other SSA components, and broad minima

can be observed for L being equal or a multiple of the circadian periodicity, L ¼ m� 1440 min.

The more regular the circadian rhythm, the less correlated it is with the other time-series

components and the better it can be isolated. Figure 14 shows the circadian fit with SSA for

subjects A, B and C using L ¼ 1140 min, and it can be appreciated that it describes the

variability in time and amplitude of the time series. Corresponding circadian parameters are

listed in Table 1. Figure 15 compares the scree diagrams for subjects A, B and C and is similar

to Figures 4 and 7(d-e). In absolute values, it shows that time series of subjects A and B have

comparable variances, which are much larger than the variance of the time series of subject C.

In relative values, it shows that subject C has the strongest circadian rhythm and subject B the

weakest. At the highest ultradian frequencies (101:5 ≤ k ≤ 103:0), all subjects show a very similar

behavior with a 1=f scaling. At the lowest ultradian frequencies (100:5 ≤ k ≤ 101:5), 1=f scaling

continues for subject A, whereas rhythm fragmentation is increased for subject B and

decreased for subject C.

6. Discussion

The interest of the field of chronobiology is shifting from a description of the periodicity of the

circadian cycle to a quantification of deviations from regularity. The objective of the present

contribution is to compare several methods in their description of irregular rhythms: the

Figure 15. Scree diagram of SSA analysis of subjects A-C, showing (a) partial variances and (b) fractional partial

variances.
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cosinor analysis, the Fourier filter, the continuous (CWT) and discrete wavelet transform

(DWT) and the singular spectrum analysis (SSA). We are interested in irregular rhythms at

the circadian time scale and rhythm fragmentation over a wide range of ultradian scales. Our

aim is to illustrate the differences, similarities, advantages and disadvantages of the different

methods using selected actigraphy time series.

We will first discuss the circadian time scale. According to the coefficient of determination R2

of Table 1, the Fourier filter, DWT and SSA describe the circadian cycle better than the cosinor

analysis with one single period, and SSA gives the best description of all methods discussed

here. One of the reasons may be that cosinor cannot take into account the variability in time

and amplitude of the experimental time series, whereas the other methods can. It is less clear

why SSA analysis results in the best fit, the average amplitude and the variability of the

circadian parameters tend to be larger for the Fourier filter than for SSA, but they tend to be

smaller for DWT. The goodness of fit to the data for DWT depends on the specific mother

wavelet used, but we chose the Daubechies (4) mother wavelet because of the maximized R2

for all the different mother wavelets that we experimented with. On the other hand, the

number of DWT scales might be increased or decreased, in order to adjust the variability of

the circadian mode for a better fit to the experimental data, but there is no rule of thumb that

says how many scales to choose. It is possible that the Fourier filter description may be

improved by carefully adjusting fmin and fmax, but it is not a priori clear which limiting

frequencies will result in the best R2. Figure 13 suggests that it might be possible to slightly

improve the SSA description by fine tuning the parameter value L to a value for which a global

minimum is obtained in the correlation of the circadian mode g2 tð Þ þ g3 tð Þ, but on the other

hand, the broad minima basins suggest that the calculations are rather stable. Thus, as long as

L ≈ 1440, the precise value of L and the number of components into which the time series is

decomposed have little influence on the description of the circadian cycle by SSA. Table 3

compares the similarity of the description of the circadian cycle between the different method-

ologies. Results for the Pearson product-moment correlation r and Spearman’s rank correlation

r are very similar. When the circadian cycle is very regular, as for subject C, descriptions by

different methods resemble very much. On the other hand, when the circadian cycle is very

irregular, as for subject B, the different methods of cosinor, Fourier filter, DWT and SSA give

different results.

A r B r C r

cosinor filter DWT SSA cosinor filter DWT SSA cosinor filter DWT SSA

r

cosinor 0.758 0.845 0.840

r

cosinor 0.646 0.757 0.791

r

cosinor 0.933 0.968 0.976

filter 0.793 0.881 0.949 filter 0.638 0.830 0.906 filter 0.930 0.964 0.977

DWT 0.843 0.912 0.950 DWT 0.758 0.820 0.949 DWT 0.960 0.963 0.992

SSA 0.842 0.953 0.950 SSA 0.790 0.894 0.947 SSA 0.968 0.976 0.991

Table 3. Correlation between the calculation of the circadian cycle according to the cosinor method, the Fourier filter,

DWT and SSA, for subjects A, B and C. Results are given for the Pearson product-moment correlation r (upper-right

triangle) and Spearman’s rank correlation r (bottom-left triangle).
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We will now discuss the ultradian rhythm fragmentation. The Fourier scree diagram, the CWT

power spectrum and the SSA scree diagram suggest a trade-off effect. If subject A is taken as a

reference, then subject C would seem to exhibit a very strong circadian rhythm associated with

an important reduction of rhythm fragmentation at a wide range of ultradian scales, and, as a

consequence, there is a flattening of the 1=f power law over the same frequency range,

resulting in an overall rigid rhythm; subject B, on the other hand, is characterized by a reduced

circadian contribution and an increased rhythm fragmentation over a wide range of ultradian

scales, which leads to an increased power law slope over the same frequency range, resulting

in an overall more random rhythm.

Of course, the three time series studied in the present contribution are not sufficient to draw

any definite conclusions on the average values of the circadian parameters and their variability

or on rhythm fragmentation at ultradian scales; therefore, a much larger statistical study is

needed, but we have shown that circadian and ultradian scales can be studied within the same

approach, and we hypothesize that partial variances are related over wide circadian and

ultradian scales.

7. Conclusions

In recent years, there is a shift in interests in chronobiology where a larger emphasis is now put

on an accurate quantification of irregularities of circadian rhythms and ultradian rhythm

fragmentation to follow underlying pathologies. Wavelet analysis has probably been the

method of choice to describe irregular rhythms at different time scales, but wavelet analysis

has the drawback to depend on the choice of a mother wavelet which is arbitrary and user

dependent. Data-adaptive time-series decomposition, where the basis functions are generated

by the data itself, such as singular spectrum analysis (SSA) may offer an alternative. In the

present contribution, we have shown that SSA is at least as versatile and accurate as wavelet

analysis in the description and quantification of irregular rhythms at the circadian and

ultradian time scales and may be a useful method to be adopted in the field of chronobiology.
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