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ABSTRACT  29 

Non-coding RNAs, including miRNAs, lncRNAs and circRNAs play roles in the 30 

development and homeostasis of nearly every tissue of the body, including the regulation of 31 

processes underlying heart growth. Cardiac hypertrophy can be classified as either 32 

physiological (beneficial heart growth) or pathological (detrimental heart growth), the latter 33 

which results in impaired cardiac function, heart failure and is predictive of a higher 34 

incidence of death due to cardiovascular disease. Several miRNAs have a functional role in 35 

exercise-induced cardiac hypertrophy, whilst both miRNAs and lncRNAs are heavily 36 

involved in pathological heart growth and heart failure. The latter have the potential to act as 37 

an endogenous sponge RNA and interact with specific miRNAs to control cardiac 38 

hypertrophy, adding another level of complexity to our understanding of the regulation of 39 

cardiac muscle mass. In addition to tissue-specific effects, ncRNA-mediated tissue cross talk 40 

occurs via exosomes. In particular, miRNAs can be internalized in exosomes and secreted 41 

from various cardiac and vascular cell types to promote angiogenesis, as well as protection 42 

and repair of ischemic tissues. NcRNAs hold promising therapeutic potential to protect the 43 

heart against ischemic injury and aid in regeneration. Numerous preclinical studies have 44 

demonstrated the therapeutic potential of ncRNAs, specifically miRNAs, for the treatment of 45 

cardiovascular disease. Most of these studies employ antisense oligonucleotides to inhibit 46 

miRNAs of interest; however, off-target effects often limit their potential to be translated to 47 

the clinic. In this context, approaches using viral and non-viral delivery tools are promising 48 

means to provide targeted delivery in vivo. 49 

  50 
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INTRODUCTION 51 

Non-coding RNAs (ncRNAs) are RNA molecules that do not encode for a protein; rather, 52 

ncRNAs contribute to the maintenance of cell and tissue homeostasis through a variety of 53 

regulatory processes. The role and regulation of non-coding RNAs in mammalian cells have 54 

received considerable attention over the past decades. For example, transfer RNAs (tRNAs) 55 

and ribosomal RNAs (rRNAs) are essential to the production of functional proteins (61). Of 56 

particular interest are the more recently described classes of regulatory ncRNAs, comprising 57 

small interfering (siRNAs), microRNAs (miRNAs), piwi-associated RNAs (piRNAs), 58 

circular RNAs (circRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs 59 

(snRNAs) and long non-coding RNAs (lncRNAs). NcRNA molecules can directly or 60 

indirectly regulate gene expression (34), process other RNA molecules (84), or act as 61 

regulators for other RNA species (127). Through their various functions, ncRNA molecules 62 

play an essential role in the development and homeostasis of nearly every tissue of the body. 63 

Cardiac pathologies and cardiovascular diseases are among the most common causes of 64 

morbidity and mortality worldwide (91). The increasing burden these conditions place on 65 

health systems has prompted countless investigations into the physiological and pathological 66 

processes regulating cardiac muscle mass. Cardiac muscle mass in adults is largely altered by 67 

changes in cardiac myocyte size because it represents 70-80% of the hearts volume; however, 68 

in certain settings, myocyte proliferation, myocyte death and fibrosis can also influence 69 

muscle mass (15, 16). Over the past several years, ncRNA molecules have been the focus of 70 

an increasing number of studies that, in certain cases, have led to the identification of novel 71 

therapeutic targets (24). This mini-review aims to summarize our current understanding of 72 

ncRNA-mediated regulation of cardiac muscle mass. It will highlight the most important 73 

ncRNAs regulating cardiac hypertrophy, with a focus on the widely studied miRNAs and 74 

lncRNAs. NcRNA-mediated tissue crosstalk will be briefly discussed. Finally, it will provide 75 
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an insight into the current knowledge and challenges associated to the therapeutic potential of 76 

ncRNAs in the context of cardiac medicine. 77 

CLASSES OF NON-CODING RNAs 78 

NcRNAs play a central role in regulating the pathophysiological processes underlying heart 79 

growth. Amongst the most vastly studied regulatory ncRNA species are miRNAs, lncRNAs 80 

and circRNAs. CircRNAs were first observed in viruses in the 1970’s (107), while the 81 

existence of miRNAs and lncRNAs was suggested in the early 1990’s  in non-mammalian 82 

and mammalian cells (18, 72, 105). The field has been ever expanding since then. 83 

MiRNAs are 20-22nt single stranded RNA molecules originating from coding and non-84 

coding parts of the nuclear genome (7, 13). They directly and indirectly regulate gene 85 

expression in the cytoplasm (53) and, in some cases, in the mitochondria (32). MiRNAs 86 

silence protein expression either by degrading specific target mRNA molecules or by directly 87 

inhibiting protein translation (7, 13) (Figure 1). In some cases, they may also stabilize mRNA 88 

molecules (120). Each miRNA has the potential to target multiple mRNA transcripts via 89 

interactions based on Watson-Crick recognition of a 6-8 nucleotide sequence localized at 90 

their 5’ end, the ‘seed’ sequence (19). However, it is becoming clearer that non-canonical 91 

rules may govern close to 60% of all miRNAs/mRNAs interactions (28, 58). To date, over 92 

4000 miRNAs have been described in human tissue (miRBase database v.22, (49)). 93 

LncRNAs are a more heterogeneous class of single- or double-stranded RNA molecules that 94 

are arbitrarily defined as longer than 200nt and shorter than 10,000nt (127). The presence or 95 

absence of a poly-A tail determines lncRNA stability (139). More than 17,000 lncRNA 96 

molecules may be encoded by the human genome (134), including the mitochondrial genome 97 

(43, 103). LncRNA have various functions, and can act as signal, sensor, stabilization and 98 

decoy molecules for other ncRNAs to regulate gene expression in the cell (127). This class of 99 
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ncRNAs also directly regulates protein expression (Figure 1) and activities by providing a 100 

scaffold for regulatory proteins, driving allosteric modifications and facilitating histone 101 

methylation (34). 102 

Finally, circRNAs constitute an abundant and conserved class of RNA molecules that was 103 

originally considered non-coding (102). Recent studies however showed that some circRNAs 104 

can be translated into protein in vitro and in vivo (99, 135). CircRNAs are covalently closed 105 

single-stranded RNA molecules where the 3’ and 5’ ends have been joined together. 106 

Bioinformatics coupled to next-generation RNA sequencing tools predict the existence of 107 

thousands of circRNAs in the human genome (102). CircRNA can regulate nuclear gene 108 

expression (89), regulate alternative splicing (4), or act as miRNA sponges by competing 109 

against endogenous miRNAs for binding (55) (Figure 1). However, their biological functions, 110 

as well as their localization and degradation remain mostly unclear. 111 

MiRNAs, lncRNAs and more recently circRNAs are involved in the regulation of nearly 112 

every aspect of cellular function (see reviews (53, 89, 127, 140)). Aberrant expression of 113 

these ncRNA molecules has been consistently linked to disease initiation and progression, 114 

including cardiac and cardiovascular conditions (for reviews see (13, 56, 88, 97, 140)). As 115 

such, the role and regulation of these regulatory RNA species constitute one of the most 116 

dynamic research topics in the field of molecular medicine.  117 

MOST PROMINENT ncRNAs IN REGULATING CARDIAC MUSCLE MASS 118 

Numerous studies have demonstrated a role of ncRNAs in pathological and physiological 119 

cardiac hypertrophy. Of the ncRNAs, the role of miRNAs in regulating cardiac hypertrophy 120 

has been extensively studied, whereas much less is known about the role and mechanisms of 121 

lncRNAs and circRNAs. Below we summarize the most prominent ncRNAs in regulating 122 

cardiac hypertrophy, which are also summarized in Figure 2. 123 
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Physiological cardiac hypertrophy – when big is beautiful 124 

Increased heart mass (cardiac hypertrophy) occurs following endurance training and is 125 

commonly referred to as physiological cardiac hypertrophy (also called the athlete’s heart in 126 

humans) and under these circumstances, resting (non-exercise) cardiac function is either 127 

normal or enhanced (100). This is in stark contrast to the bigger heart observed under 128 

pathological conditions (termed pathological cardiac hypertrophy) that is most commonly 129 

associated with impaired cardiac function, heart failure and predicts a higher incidence of 130 

death due to cardiovascular disease (74). There are striking molecular and structural 131 

differences between physiological cardiac hypertrophy following endurance exercise-training 132 

and pathological hypertrophy induced by chronic pressure (i.e. hypertension) or volume 133 

overload (16). Unlike physiological hypertrophy, pathological hypertrophy is commonly 134 

associated with increased fibrosis, reduced cardiac function, heart failure and increased 135 

mortality (16). The insulin-like growth factor 1 (IGF1)–phosphoinositide 3-kinase (PI3K)-136 

Akt signaling pathway is necessary for physiological cardiac hypertrophy, whereas 137 

pathological cardiac hypertrophy is regulated in a large part by Gαq signaling (reviewed in 138 

(16)). 139 

MiRNAs regulated by exercise and settings of physiological cardiac growth 140 

Endurance exercise in rats and mice alters the expression of many miRNA species in the 141 

heart that are implicated in cardiac development and growth. Indeed, over 200 miRNA 142 

species are differentially expressed in the hearts of rodents following several weeks of 143 

endurance training, with ~60% of these species having their expression downregulated (42, 144 

79, 104, 109). Cardiac (and skeletal) muscle is also enriched in several miRNA species, 145 

termed myomiRs, and comprise miR-1, miR-133a, miR133b, miR-206, miR-208a, miR-146 

208b, miR-499, and miR-486, with most being downregulated with physiological cardiac 147 
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hypertrophy. miR-1, miR-133a and miR-208a levels are downregulated following exercise-148 

induced cardiac hypertrophy (23, 104, 110, 111) and previous studies have shown miR-1 and 149 

miR-133a induction acts to repress cardiac hypertrophy and growth (23, 38). There is 150 

conflicting reports of miR-208b and miR-133b being upregulated (104) or downregulated 151 

(110, 111) following exercise-induced cardiac hypertrophy. The reason for these conflicting 152 

reports for miR-208b are unclear since both studies used similar swim training protocols of 153 

several weeks duration in the same strain of rat (104, 110). 154 

miRNAs also play a role in regulating molecular pathways related to exercise-induced heart 155 

adaptations (see reviews (15, 45, 95, 128)). Members of the miR-29 family were increased in 156 

hypertrophic hearts of swim-trained rats, which was associated with downregulation of 157 

collagen gene expression, which may be associated with decreased cardiac fibrosis and 158 

improved heart function (111). Enhanced angiogenesis is associated with exercise-induced 159 

heart growth and is regulated by the vascular endothelial growth factor (VEGF) pathway. The 160 

expression of miR-126 was elevated in swim-trained rodent hearts which facilitated 161 

angiogenic signaling by inhibiting its target genes, Spred1 and PI3KR2, negative regulators 162 

of the VEGF pathway (31). Microarray profiling identified 62 miRNAs that were regulated 163 

by PI3K(p110α), a gene essential for exercise-induced heart growth (77). Collectively, these 164 

miRNAs target a wide range of genes, some of which are involved in the regulation of 165 

fibrosis, apoptosis, autophagy, angiogenesis and cardiac contraction. Therapeutic inhibition 166 

of PI3K-regulated miRNAs using antisense oligonucleotides in cardiac disease mouse models 167 

provides therapeutic benefit (9, 11, 12). 168 

Beyond expression profiling, the functional significance of some miRNAs has been 169 

established in regulating physiological cardiac hypertrophy. In particular, miR-222 and miR-170 

17-3p were both upregulated in the heart following endurance training and were required for 171 
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exercise-induced cardiac growth (79, 109, 124). Inhibition of miR-222 prevented the increase 172 

in heart mass, cardiomyocyte hypertrophy and proliferation in mice following endurance 173 

training (79, 124). Inhibition of miR-17-3p prevented exercise-induced cardiac hypertrophy, 174 

cardiomyocyte hypertrophy and attenuated cardiomyocyte proliferation in mice following 175 

endurance training via TIMP3 and PTEN/Akt signaling pathway. However, overexpressing 176 

miR-222 or miR-17-3p to levels normally seen following exercise training in the rodent heart 177 

did not stimulate the phenotype observed by exercise-induced cardiac hypertrophy (79, 109). 178 

Nevertheless, miR-222 and miR-17-3p hold promising therapeutic potential to protect the 179 

heart against ischemic injury and aid in regeneration. Indeed, transgenic mice that 180 

overexpress miR-222 or agomiR overexpression of miR-17-3p in mice both protected against 181 

ischemic injury in vivo (79, 109). 182 

In summary, miRNA species are well established to play a regulatory role in cardiomyocyte 183 

proliferation, hypertrophy and developmental and adult cardiac enlargement. Much less is 184 

known about the role of lncRNAs and circRNAs in the regulation of exercise-induced 185 

physiological adaptations. miRNAs also hold promising therapeutic potential for the 186 

treatment of cardiac conditions. A large number of miRNA species are known to be 187 

differentially expressed in the heart following endurance training and some, such as miR-222 188 

and miR-17-3p are necessary for the induction of cardiac hypertrophy following endurance 189 

training. Understanding the molecular mechanisms as to how a short-term physiological 190 

stress can induce such long-term benefits for the heart will provide new targets for the 191 

treatment of ischemic injury to the heart and its regeneration. 192 

ncRNAs in cardiac hypertrophy and heart failure 193 

miRNAs - A number of miRNAs have pro- or anti-hypertrophic roles in the heart and have 194 

been recently reviewed in detail (76, 97). miR-208a is a heart enriched miRNA involved in 195 
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cardiomyocyte hypertrophy, fibrosis and regulating the shift in myosin heavy chain isoform 196 

content during cardiac development and in the adult heart in response to a cardiac stress (21, 197 

119). Further, miR-208a controls the expression of hypertrophy-related signaling 198 

components, thyroid hormone activity and the cardiac conduction system during adaptation to 199 

pathological signaling (21, 119). The expression of miR-499 is upregulated in human failing 200 

and hypertrophied hearts, and in mouse models of pathological hypertrophy. Overexpression 201 

of miR-499 in the murine heart accelerated heart failure progression and exacerbated the 202 

response to pressure overload, through direct and indirect effects on cardiac protein kinases 203 

and alterations in protein phosphorylation of proteins in the heart (87). miR-1 is not only 204 

downregulated in physiological hypertrophy, but also in heart failure. miR-1 regulates 205 

cardiomyocyte hypertrophy by negatively regulating genes in the calcium/calmodulin 206 

signaling pathway, which controls cardiomyocyte function and growth (65). In a number of 207 

cardiac hypertrophy rodent models (pressure overload, transgenic mice with selective cardiac 208 

overexpression of a constitutively active mutant of the Akt kinase, and an exercise model) the 209 

expression of miR-133a was downregulated (23). MiR-133a regulates the hypertrophic gene 210 

program by targeting multiple genes including RhoA (an exchange protein regulating cardiac 211 

hypertrophy), Cdc42 (a signal transduction kinase implicated in hypertrophy) and Nelf-212 

A/WHSC2 (nuclear factor involved in cardiogenesis; although its role in hypertrophy remains 213 

unclear) (23). 214 

LncRNAs - Two lncRNAs that play a significant role in mouse heart development are 215 

Braveheart (Bvht) (68) and Foxof1 adjacent non-coding developmental regulatory RNA 216 

(Fendrr) (50). Bvht has an important role in the establishment of the cardiovascular lineage 217 

by interacting with SUZ12, suggesting a role in the epigenetic regulation of gene expression 218 

programs, and also by activating a number of transcription factors necessary for promoting 219 

the cardiac gene expression program in cardiomyocytes (68). Loss of Fendrr during the 220 
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embryonic stage in mice results in severe cardiac defects and dysfunction (50). Matkovich 221 

and colleagues (85) used genome-wide sequencing and bioinformatics to characterize 222 

cardiac-enriched lncRNA expression in mouse embryo and adult hearts, where 157 lncRNAs 223 

were differentially expressed in embryonic hearts compared to adult hearts. Network analysis 224 

revealed a role of these lncRNAs in major cardiac development and metabolic pathways (85).  225 

A number of reports describe a role of lncRNAs in pathological cardiac hypertrophy (78, 123, 226 

136). The cardiac specific lncRNA myosin heavy-chain-associated RNA transcripts (Mhrt) 227 

consists of a cluster of RNAs (Mhrt RNAs) which are abundant in adult mouse hearts (54). 228 

Mhrt expression was induced during cardiomyocyte maturation and decreased in pressure 229 

overload-induced cardiac hypertrophy and heart failure in mice, a profile that correlates with 230 

the myosin heavy chain isoform shift during postnatal development and progression to heart 231 

failure (54). Re-expression of Mhrt in the heart protected mice against cardiac hypertrophy 232 

and heart failure by binding and antagonizing Brahma-related gene 1, suggesting a protective 233 

role of Mhrt in cardiovascular disease (54). Transcriptomic analysis of pressure-overload-234 

induced failing hearts in mice identified a lncRNA highly enriched in the heart which the 235 

authors called cardiac-hypertrophy-associated epigenetic regulator (Chaer) (136). Chaer is 236 

specifically expressed in cardiomyocytes, and Chaer knockout mice displayed a significantly 237 

attenuated cardiac hypertrophic response to pressure overload (136). This was associated with 238 

less fibrosis and preserved cardiac function, suggesting a role of Chaer in controlling cardiac 239 

remodeling. Chaer controlled cardiac hypertrophy by its direct interaction with polycomb 240 

repressor complex 2 (PRC2), preventing histone methylation at the promoter regions of genes 241 

implicated in cardiac hypertrophy (136). 242 

Further adding to the complexity surrounding the molecular mechanisms of cardiac 243 

hypertrophy, recent studies demonstrate that lncRNAs may act as an endogenous sponge 244 

RNA to interact with miRNAs (Figure 1) to control cardiac hypertrophy (81, 126). Cardiac 245 
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hypertrophy related factor, CHRF, was increased in the hearts of mice following pressure 246 

overload, and in patients with heart failure (126). Chrf acts as a sponge of miR-489, reducing 247 

the targeting activity of miRNA-489 on its target gene, myeloid differentiation factor 88 248 

(Myd88), an important component in the Toll-like receptor-4-mediated nuclear factor-κB 249 

activation pathway, contributing to the development of cardiac hypertrophy (126). The 250 

lncRNA Plscr4 was upregulated in hypertrophic mouse hearts, and overexpression of Plscr4 251 

blunted the hypertrophic response in mice following pressure overload (81). Plscr4 exerts its 252 

anti-hypertrophic effects by sequestering the pro-hypertrophic miRNA, miR-214, which in 253 

turn allowed expression of Mitofusin 2 and alleviated hypertrophic growth (81).  254 

A recent study demonstrated that lncRNAs could represent targets for therapeutic 255 

intervention in heart failure (123). Cardiac hypertrophy-associated transcript (Chast) was 256 

elevated in both mouse and human hypertrophied hearts, and overexpression of Chast 257 

induced cardiomyocyte hypertrophy in vitro and in vivo (123). Antisense technology to 258 

inhibit Chast (using “GapmeRs”) attenuated cardiac remodeling after pressure overload-259 

induced hypertrophy in mice (123), by targeting pleckstrin homology domain-containing 260 

protein family M member 1, which inhibits autophagy and influences hypertrophy (123). The 261 

use of GapMers (without any signs of toxicology side effects (123)) highlights the therapeutic 262 

potential of lncRNAs. 263 

circRNAs – Unlike miRNAs and lncRNAs, the role of circRNAs in regulating cardiac 264 

muscle mass has been less extensively studied, with most research focusing on identifying 265 

those circRNAs associated with heart disease (see review (129)). Although deep sequencing 266 

studies have identified a number of cardiac-expressed circRNAs in diseased human and 267 

rodent hearts (114, 137), only a limited number were differentially expressed. CircRNAs 268 

were found to be significantly differentially expressed in the rat heart during the 269 
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developmental transition from embryo to adult (137), but the functional significance of 270 

circRNAs in regulating muscle mass remains unclear. 271 

The ncRNA landscape in human cardiac pathology 272 

Advances in RNA sequencing and genome-wide association studies (GWAS) has allowed the 273 

discovery of ncRNAs in human heart disease, and has highlighted their potential as cardiac 274 

biomarkers. Here we present an overview of ncRNAs implicated in human cardiac pathology. 275 

miRNAS – Many miRNAs are implicated in human heart disease, often discovered by gene 276 

expression microarray profiling. Thum and colleagues (115) profiled the cardiac miRNA and 277 

mRNA gene signature in left ventricular tissue from patients with end-stage heart failure, and 278 

compared it to that of tissue from healthy adult and fetal human hearts. They found that the 279 

miRNA expression patterns in fetal and failing human cardiac tissue was similar, suggesting 280 

that these miRNAs contribute to the reactivation of the fetal gene program in human heart 281 

failure (115). Using a deep sequencing approach, Lepitidis and colleagues (73) identified 282 

>250 differential and etiology-specific miRNAs in patients with dilated cardiomyopathy and 283 

in hearts from patients with familial hypertrophic cardiomyopathy (73). Other studies have 284 

explored the potential of miRNAs as clinical biomarkers for heart disease (47, 98, 117, 122). 285 

Several groups have characterized the levels of miRNAs in the circulation of patients with 286 

cardiovascular disease [(47, 98, 117, 122); also see reviews (29, 101, 148)]. In some 287 

instances, studies suggest that measurement of a panel of circulating miRNAs may be an 288 

alternative approach to conventional biomarkers for early detection in acute myocardial 289 

infarction (125, 131). Whilst circulating miRNAs may be useful for diagnostics and 290 

monitoring purposes, large-scales studies are still required before circulating miRNAs can be 291 

successfully used as biomarkers for cardiovascular pathologies. 292 
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lncRNAs – The expression of lncRNAs is altered in a number of human diseases, including 293 

cardiovascular disease, and is associated with disease development and progression (see 294 

review (75)). Using single nucleotide polymorphism (SNP) arrays and GWAS, the lncRNA 295 

Myocardial Infarction Associated Transcript (MIAT) was identified at a susceptible 296 

chromosomal location in over 3000 patients with myocardial infarction (compared to control 297 

patients) (66). GWAS have identified novel disease-associated DNA regions, including a 298 

“hotspot” on human chromosome 9p21, the strongest genetic susceptibility locus for 299 

cardiovascular disease (20). The lncRNA gene, Antisense non-coding RNA in the INK4 300 

locus (ANRIL) resides in this hotspot and is associated with atherosclerosis in patients with 301 

suspected coronary artery disease, although its role is yet to be understood (59). The lncRNA 302 

long intergenic non-coding RNA (LIPCAR) was identified as a potential biomarker for heart 303 

failure from transcriptomic analyses of plasma from patients with cardiac pathology post 304 

myocardial infarction (69). Increased levels of LIPCAR in the plasma of patients with 305 

chronic heart failure was also associated with increased risk of future cardiovascular death 306 

(69). However, there are currently too few studies to know whether lncRNAs will be suitable 307 

biomarkers for cardiovascular disease.  308 

circRNAs – circRNAs have been less extensively studied in human hearts, with the majority 309 

of studies focusing on their potential as biomarkers (see reviews (129, 147)). Due to their 310 

closed loop structure, they may represent more stable biomarkers than their linear ncRNA 311 

counterparts. Patients with high circular ANRIL expression developed less coronary artery 312 

disease, suggesting that circANRIL has an atheroprotective role (which is opposite to that of 313 

linear ANRIL as described above) (60). In order to predict patient outcomes following 314 

myocardial infarction, Vausort and colleagues identified that patients who had low levels of 315 

the circRNA myocardial infarction-associated circular RNA (MICRA) were at higher risk to 316 

develop left ventricular cardiac dysfunction (121). Due to their biological properties, 317 
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circRNAs have emerged as novel biomarkers, however more research is needed to elucidate 318 

their biological function. It is hoped that identification of circRNAs as biomarkers will aid in 319 

the diagnosis of cardiovascular disease and personalized medicine in the future. 320 

ncRNAS IN EXOSOMES 321 

Exosomes are small (30-140 nm), membranous vesicles that are ubiquitously expressed by 322 

cells in vivo (51) and play an important role in tissue crosstalk (Figure 3). Their ability to 323 

transport peptides, lipids and genetic material results in functional changes in the recipient 324 

tissue or organ (51). Regulatory proteins, mRNAs and miRNAs transported within the 325 

exosomal lumen elicit some of these changes (51, 90, 138). MiRNAs comprise up to 76.2% 326 

of exosomal RNA species (63), along with lncRNAs (3.36%), piRNA (1.31%), snoRNA 327 

(0.18%) and snRNA (0.01%) (63). The remaining exosomal RNA includes coding, ribosomal 328 

(9.16%) and transfer (1.24%) RNA (63). The role of exosomal lncRNA, piRNA, snoRNA 329 

and snRNA in cardiac hypertrophy has not been investigated thus far. However, the role of 330 

exosomal miRNA, which represents a more highly concentrated bioactive pool of circulating 331 

miRNAs (ci-miRNAs) than riboprotein-bound miRNAs (2, 27), has been extensively 332 

researched in heart failure (see review (29)). 333 

Emerging evidence suggests that cardiac and vascular cells, including cardiac fibroblasts (5, 334 

17, 82), cardiomyocytes (17, 132) and H9c2 cells (17, 44) secrete and internalize exosomes 335 

(5, 39). These exosomes can influence cardiac function, inducing proliferation, angiogenesis, 336 

autophagy and importantly, cardiac hypertrophy. Exosome release may be constitutive, or 337 

induced by various stimuli including calcium concentration, mitogens, cytokines or stress 338 

(39). In humans and murine models, both healthy and ischemic cardiomyocytes release 339 

exosomes in vivo (106). Exosomes secreted from various cardiac and vascular cell types 340 

promote angiogenesis, tissue protection and repair post-ischemia in animal models (3, 22, 341 
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26). Of particular interest, cardiac-derived exosomes can play a positive role in cases of 342 

ischemic tissue repair and regeneration (64, 70).  343 

 344 

Exosomal content plays an important role in cardiomyocyte health. The exosomal cargo is 345 

not merely a reflection of the relative abundance of compounds on the parental cell. Rather, 346 

exosomal cargo is selectively secreted or conserved in various pathophysiological conditions 347 

(144). By regulating cell proliferation, apoptosis, cytokine production, immune modulation 348 

and metastasis (62), exosomal miRNAs play an integral role in cross-talk between cells and 349 

tissues in many cardiac pathologies. For example, hypoxia stimulated C2C12 cells (mouse 350 

skeletal myoblasts) secreted miR-29a-enriched exosomes, which were then endocytosed into 351 

cardiomyocytes (142). 352 

MiR-21-3p provides an example of exosome-derived miRNA species involved in cardiac 353 

hypertrophy. MiR-21-3p was differentially expressed in aging murine hearts (146) and highly 354 

expressed in failing human hearts when compared to non-failing human hearts (143). 355 

Exosomes enriched in miR-21-3p were released from neonatal rat cardiac fibroblasts and 356 

internalized by neonatal cardiomyocytes, leading to an increase in cardiomyocyte size in vitro 357 

(5), via the regulation of Sorbs2 and Pdlim5. Of interest, pharmacological inhibition of miR-358 

21-3p attenuated pressure overload induced cardiac hypertrophy in a murine model (5), 359 

suggesting that manipulation of exosomal cargo may represent a possible treatment pathway. 360 

The miR-212/-132 family has been implicated in pathological cardiac hypertrophy (40) and 361 

cardiomyocyte autophagy (118) and is regulated by Angiotensin-II (Ang-II) (40), a peptide 362 

hormone playing an important role in cardiovascular disease (82). Ang-II stimulated exosome 363 

release from cardiac fibroblasts (82) increased activation of the Ang-II-AT1R axis and 364 
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pathological cardiac hypertrophy (82), possibly via exosomal proteins (141) and miR-132 365 

(82).  366 

Peroxisome proliferator-activated receptor gamma (PPARγ) and miR-200a are suggested to 367 

control cross-talk between adipose tissue and cardiac tissue. PPARγ is a master regulator of 368 

adipose tissue signalling (1), and its activation induces cardiac hypertrophy in murine 369 

cardiomyocytes (112). Cardiac-specific activation of PPARγ in rat and in mouse models 370 

induced cardiac hypertrophy (35, 80). There is evidence to suggest that systemic activation of 371 

PPARγ may also induce cardiac hypertrophy (35, 57), suggesting a role for exosome-372 

mediated crosstalk. Activation of PPARγ in murine adipocytes stimulated the release of 373 

exosomes enriched in miR-200a (41). These exosomes targeted cardiomyocytes and induced 374 

cardiac hypertrophy via activation of the mammalian target of rapamycin (mTOR) signaling 375 

pathway (41). Treatment with an antagomir for miR-200a blunted cardiomyocyte 376 

hypertrophy in vitro (41). This phenomenon was maintained in a mouse model of 377 

hypertrophy induced by rosiglitazone treatment (a PPARγ agonist), where specific ablation of 378 

PPARγ in adipocytes blunted cardiac hypertrophy (41). These data provide a possible 379 

pathway by which adipocyte-derived exosomes mediate cardiac health; and suggests a 380 

possible role for exosome-mediated crosstalk.  381 

Exosomes released from skeletal muscle also contain many miRNA species that are 382 

implicated in cardiac hypertrophy, including miR-1, -133a/b, -222 and -208a (30, 52). In 383 

humans, the expression of exosomal miR-1, -222 and -208a was significantly upregulated 384 

(30), and miR-133b tended to be upregulated (52) after an acute bout of exercise in vivo. It is 385 

well established that cardiomyocytes internalize exosomes, and that the species present in 386 

exercise-induced exosomes derived from skeletal muscle regulate cardiac hypertrophy. Thus, 387 

while there is no direct evidence that these exosomes were internalized by cardiac cells, it is 388 

possible these miRNAs were involved in the regulation of cardiac hypertrophy, via exosome-389 
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mediated crosstalk. However, this is yet to be elucidated and provides an intriguing pathway 390 

for future research. 391 

Exosomes are attractive therapeutic targets for many chronic diseases, including cardiac 392 

hypertrophy (39). Due to their biophysical properties, the isolation and manipulation of 393 

exosomal contents is relatively straightforward (37). In addition, exosomes have a natural 394 

ability to cross biological barriers, such as the blood brain barrier (71). These vesicles 395 

therefore constitute possible ‘trojan horses’ to deliver drugs and other therapeutic substances 396 

(39), which would otherwise be free in the circulation and susceptible to damage and 397 

degradation. Several exosomal miRNA species may play a role in either the attenuation, or 398 

the pathogenesis of cardiac hypertrophy. By manipulating the expression of these species in 399 

exosomes, practitioners may have the potential to treat such pathologies in a targeted and 400 

effective manner. 401 

ncRNAs as POTENTIAL THERAPEUTIC TARGETS FOR CARDIOVASCULAR 402 

DISEASE 403 

Of the ncRNAs, the ability of miRNAs to target several genes within a similar signaling 404 

network or pathway may give them an advantage as potential therapeutic targets over other 405 

ncRNAs. Although, this can also be considered a drawback as it may cause undesirable 406 

responses. As miRNAs control pathophysiological processes of the heart, including 407 

cardiomyocyte cell death, autophagy, contractility, fibrosis and hypertrophy, investigators 408 

have performed numerous preclinical studies demonstrating the therapeutic potential of 409 

miRNAs for the treatment of cardiovascular disease, which have been extensively reviewed 410 

elsewhere (13, 56). 411 
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Despite promising preclinical studies demonstrating therapeutic efficacy of miRNA inhibitors 412 

there are currently no clinical trials for cardiovascular disease. However, there are positive 413 

advancements of RNA-based therapeutics (siRNAs, miRNAs) in other areas of disease (24). 414 

Translational hurdles 415 

miRNAs - The majority of preclinical and clinical studies employ antisense oligonucleotides 416 

that can inhibit the miRNA of interest. These inhibitors are non-tissue specific and are taken 417 

up by several organs (namely the liver and kidney) upon systemic administration. This may 418 

be problematic given the ubiquitous expression of some miRNAs, and the different functions 419 

of miRNAs in different tissues and/or oncogenic effects. In these instances, a targeted-tissue 420 

specific approach may be preferred. Further, with advances in next generation sequencing 421 

and systems biology, it has become apparent that cardiac miRNAs that regulate transcription 422 

can indirectly regulate other cardiac miRNAs (86, 96). This can lead to unexpected effects of 423 

antisense oligonucleotide therapies due to the regulation of the mRNA targets of the 424 

secondary miRNAs. Thus, a better understanding of precisely how miRNAs molecules 425 

interact with one another and regulate complex signaling networks is important for the 426 

successful design of miRNA-based therapies. 427 

Other important aspects to consider when considering miRNA-based therapies for the clinic 428 

is i) the potential that miRNA inhibitors may affect RNA species beyond the intended target 429 

(96, 113), ii) whether targeting an individual miRNA or miRNA family will confer more 430 

therapeutic benefit (9), iii) the use of inhibitors that are specific to the seed region which can 431 

block the expression of entire miRNA families (94), and iv) that disease severity and sex can 432 

influence therapeutic outcome (8, 14, 36). 433 

LncRNAs - There are a number of limitations that need to be resolved before lncRNAs can 434 

be taken to the clinic (see comprehensive reviews (46, 48, 88)). The lack of 435 
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conservation/homology of lncRNAs between different species makes both identification and 436 

clinical testing of human lncRNAs challenging, and translation from bench to clinic more 437 

difficult. The cellular location of lncRNAs needs to be considered before they can be 438 

developed as therapeutic targets. lncRNAs reside in multiple cellular extracellular locations, 439 

and some pharmacological agents may not penetrate the intracellular compartment of interest 440 

(6). Finally, the relationship between lncRNA structure and function is well not well 441 

understood and needs to be further elucidated. 442 

Other ncRNAs- The therapeutic potential of targeting other ncRNAs in the heart including 443 

piRNAs, circRNAs and snoRNAs is largely unknown. However, in the cancer field this is 444 

being actively explored (83, 92, 145). It is therefore likely that these ncRNAs will also be 445 

targeted in the heart in the coming years. 446 

Emerging technologies to deliver ncRNAs to the heart 447 

The most common approach for targeted delivery is to use adeno-associated viral vectors 448 

(AAVs), and human clinical trials targeting mRNAs have been undertaken without any 449 

adverse side effects (149). There are limited reports of using AAVs for miRNA inhibition in 450 

the heart (67) and developing a cardiac-specific approach may prove to be more challenging 451 

(10). Other non-viral methods have recently been developed that have the potential to deliver 452 

miRNA therapeutics to the heart, including ultrasound microbubbles (133), light-induced 453 

miRNA inhibitor activation (a technique which facilitates local delivery) (108), unlockable 454 

core-shell nanocomplexes (93), hydrogels (cross-linked polymers capable of carrying and 455 

releasing therapeutics after injection in tissues) (130), neutral lipid emulsions (116) and 456 

negatively-charged calcium phosphate nanoparticles (33). Finally, CRISPR/cas9 technology 457 

could be used to edit ncRNAs and has been shown to be an efficient and stable technology 458 
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for inhibiting miRNAs in vitro and in vivo (25). The emergence of these new technologies 459 

may make a cardiac-specific ncRNA drug a reality. 460 

CONCLUSION 461 

It is clear from the studies conducted in the last two decades that ncRNAs have an important 462 

role in physiological and pathological cardiac hypertrophy. miRNAs are able to regulate 463 

cardiac hypertrophy by targeting genes in multiple hypertrophic-related signaling pathways, 464 

whereas the mechanism of lncRNAs are more complex – not only can they directly interact 465 

with genes, they can act on hypertrophy-related genes by acting as RNA sponges of miRNAs. 466 

The role of circRNAs in cardiac hypertrophy remain poorly understood. Preclinical studies 467 

suggest that miRNAs and lncRNAs can be promising therapeutic targets for the treatment of 468 

cardiovascular disease, and technologies to deliver ncRNAs to the heart are being developed. 469 

Future studies are warranted to further understand the molecular mechanisms of ncRNA and 470 

their regulatory networks in cardiac hypertrophy and disease. 471 
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FIGURE LEGENDS 973 

Figure 1: Functional interactions between the different classes of ncRNAs. LncRNAs, 974 

mRNAs, miRNAs and circRNAs are all transcribed from genomic DNA. LncRNAs and 975 

mRNAs can be translated into polypeptides. The green arrows indicate ‘activation’. The blue 976 

lines indicate ‘inhibition’. Dashed lines indicate that the nature of the interaction is still 977 

unknown. 978 

Figure 2: Schematic of the most prominent and extensively studied ncRNAs in 979 

physiological and pathological hypertrophy. Increased workload on the heart leads to heart 980 

enlargement that is either physiological (due to exercise) or pathological (due to cardiac 981 

disease). A number of ncRNAs (miRNAs and lncRNAs) have been identified to play 982 

important roles in physiological and pathological hypertrophy, of which the most extensively 983 

studied are presented. Little is known about the role of lncRNAs and circRNAs in 984 

physiological hypertrophy, and the role of circRNAs in pathological hypertrophy requires 985 

further investigation. 986 

Figure 3: Exosomal secretion mediates cross-talk between different tissues. Exosomes 987 

contain miRNAs, lncRNAs and potentially piRNAs. When released in cardiomyocytes, these 988 

ncRNAs have the potential to promote or protect against cardiac hypertrophy. 989 
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