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Abstract
Autism spectrum disorder (ASD) is a markedly heterogeneous condition with a varied pheno-

typic presentation. Its high concordance among siblings, as well as its clear association with spe-

cific genetic disorders, both point to a strong genetic etiology. However, the molecular basis of

ASD is still poorly understood, although recent studies point to the existence of sex-specific

ASD pathophysiologies and biomarkers. Despite this, little is known about how exactly sex influ-

ences the gene expression signatures of ASD probands. In an effort to identify sex-dependent

biomarkers and characterize their function, we present an analysis of a single paired-end post-

mortem brain RNA-Seq data set and a meta-analysis of six blood-based microarray data sets.

Here, we identify several genes with sex-dependent dysregulation, and many more with sex-

independent dysregulation. Moreover, through pathway analysis, we find that these sex-

independent biomarkers have substantially different biological roles than the sex-dependent bio-

markers, and that some of these pathways are ubiquitously dysregulated in both postmortem

brain and blood. We conclude by synthesizing the discovered biomarker profiles with the extant

literature, by highlighting the advantage of studying sex-specific dysregulation directly, and by

making a call for new transcriptomic data that comprise large female cohorts.
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1 | INTRODUCTION

Autism spectrum disorder (ASD) is a markedly heterogeneous condi-

tion with a varied phenotypic presentation and a spectrum of disabil-

ity for those affected. As a neurodevelopmental disorder, the ASD

syndrome is characterized by social abnormalities, language abnormal-

ities, and stereotyped behavioral patterns (Bailey, Phillips, & Rutter,

1996). The presence of a genetic link in ASD etiology is well-

established (Miles, 2011; Miyauchi & Voineagu, 2013), as first evi-

denced by ASD concordance among siblings and by a clear association

between ASD and specific genetic disorders (e.g., Fragile X mental

retardation; Bailey et al., 1996). This link has prompted a number of

transcriptomic studies (e.g., Glatt et al., 2012; Gupta et al., 2014;

Hertz-Picciotto et al., 2006) to identify gene expression signatures as

a biomarker that might help elucidate the etiology of ASD and aid in

its diagnosis (an important objective since early diagnosis and therapy

is shown to improve outcomes in ASD (Elder, Kreider, Brasher, &

Ansell, 2017). However, despite the number of transcriptomic studies

performed, the pathophysiology and biomarker profile of ASD are still

not known. Rather, these studies have tended to produce inconsistent

results, suggesting wide heterogeneity among both the individual

patients and the study populations, although several studies have con-

verged to find associations among neuron-specific genes (Gupta et al.,

2014; Parikshak et al., 2016; Voineagu et al., 2011). Indeed, ASD may

not have one signature at all, but instead multiple diverging signatures

(Tylee, Hess, et al., 2017).

Transcriptomic studies of ASD probands typically use cells col-

lected from either postmortem brains or blood in order to estimate

the mRNA abundance for thousands of gene transcripts, by way of

microarray technology or massively parallel high-throughput sequenc-

ing (RNA-Seq). As many expressed transcripts are a precursor to struc-

tural or functional proteins, these studies can provide an insight into

the functional state of a cell, capturing the common pathway for

hereditary predisposition and environmental exposure. Although post-

mortem brain studies have an advantage in that they look directly at

the tissue of interest, blood-based studies can identify clinically useful

biomarkers while also serving as a reliable proxy for gene expression

in the brain (Tylee, Kawaguchi, & Glatt, 2013), though a complete

understanding of ASD pathophysiology and its biomarker profile will

likely require careful consideration of both lines of evidence. To date,

more than a dozen studies have measured the transcriptomic profiles

of ASD probands and controls, the results of which have been summa-

rized by two separate meta-analyses (Ch'ng, Kwok, Rogic, & Pavlidis,

2015; Ning et al., 2015) and one mega-analysis (Tylee, Hess,

et al., 2017).

Sex is often called a risk factor for ASD, and it is stated that the

risk for a male to have ASD is four to five times higher than that for

females (Christensen et al., 2016; Werling, Parikshak, & Geschwind,

2016), although the magnitude of this difference may be partly due to

diagnostic biases (Lai, Lombardo, Auyeung, Chakrabarti, & Baron-

Cohen, 2015). A similar observation, that the increased male risk is

even higher among high-functioning ASD probands (Fombonne,

1999), likewise suggests that sex-specific mechanisms could influence

ASD pathophysiology and its biomarker profile. Further evidence for

sex-specific mechanisms is found in recent transcriptomic and

functional-imaging studies. For example, Tylee et al., using trans-

formed lymphoblastoid cell lines, found evidence for sex-specific dif-

ferential regulation of genes and pathways among ASD probands

(Tylee, Espinoza, et al., 2017). Similarly, Trabzuni et al. found sex-

specific differences in alternative splicing in adult human brains,

including for a well-known ASD risk gene NRXN3 (Trabzuni et al.,

2013). Functional brain connectivity studies using fRMI imaging have

also identified sexual heterogeneity among ASD probands, showing

dysregulation in sexually dimorphic brain regions across two large

studies (Floris, Lai, Nath, Milham, & Di Martino, 2018; Lai et al., 2013).

Moreover, recent work by Mitra et al. found evidence for pleiotropy

between common single nucleotide polymorphisms (SNPs) for sec-

ondary sex characteristics and ASD risk, as well as sex heterogeneity

on the X-chromosome, through a comprehensive SNP mega-analysis

combining 12 individual data sets from diverse genetic backgrounds

(Mitra et al., 2016). Taken together, it seems plausible that sex could

interact with other genetic and environmental factors to create sex-

specific ASD pathophysiologies and biomarker profiles.

As ASD is more common in males, it suggests that females may

have some underlying protection whereby a higher risk load is

required for them to become afflicted (Robinson, Lichtenstein,

Anckarsäter, Happé, & Ronald, 2013). One hypothesis posits that ASD

itself reflects a shift towards “extreme maleness” such that males are

necessarily predisposed (Baron-Cohen, 2002). In support of this,

females with ASD do harbor more and larger copy number variants

than males with ASD (Levy et al., 2011), and moreover exhibit differ-

ential penetrance given the same genetic etiology (Lionel et al., 2014),

although Mitra et al. found no evidence for an increased SNP load in

females (Mitra et al., 2016). Unfortunately, however, the increased

prevalence of ASD in males has led to the exclusion of females from

many transcriptomic studies (e.g., Alter et al., 2011; Hu et al., 2009;

Sarachana, Zhou, Chen, Manji, & Hu, 2010), making it difficult to

understand the male skew in ASD prevalence. Indeed, individual stud-

ies are often underpowered to detect subtle sex-specific differences,

if they contain female subjects at all. When female subjects are

included, sex is typically modeled as a simple covariate rather than an

ASD-sex interaction, meaning that only sex-independent, and not sex-

dependent, biomarkers are discovered. When male ASD is contrasted

with female ASD, it typically involves loosely comparing simple sex-

specific differences in a statistically anticonservative manner

(e.g., noting differential expression in males but not females, or vice

versa). To the best of our knowledge, no study has looked at whether

gene expression signatures show a sex-autism interaction across mul-

tiple studies and human tissues.

Using a meta-analysis of six blood-based microarray data sets and

an exploratory analysis of a single paired-end postmortem brain RNA-

Seq data set, we present an analysis of transcriptomic data that

focuses on comparing sex-dependent and sex-independent ASD bio-

markers across multiple tissues. By modeling the interaction of sex

and ASD directly, we identify biomarkers and functional pathways

that show sex-differences in ASD probands that are different than

those in control subjects. Then, for those biomarkers that show no

interaction, we pool male and female probands to look for sex-

independent biomarkers. Our results suggest that, despite low power,
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some genes have FDR-adjusted significant sex-dependent interac-

tions, while even more have significant sex-independent main effects.

Subsequent pathway analysis further shows that these sex-

independent biomarkers have substantially different biological roles

than the sex-dependent biomarkers, and that some of these pathways

are dysregulated in both postmortem brain and blood.

2 | METHODS

2.1 | Data acquisition

2.1.1 | Microarray data

We collected multiple microarray data sets to perform a meta-analysis

of sex-autism interactions and main effects of ASD (i.e., sex-

independent effects, where males and females are pooled). We refer-

enced two prior meta-analyses (Ch'ng et al., 2015; Ning et al., 2015),

and one mega-analysis (Tylee, Hess, et al., 2017), to prepare a list of

data sets to study. Of these data sets, we excluded any study that

(a) measured transcript expression from brain tissue, (b) had no female

cases, (c) used cell lines (i.e., GSE37772 and GSE43076), or (d) treated

cells (i.e., GSE32136, treated with PPA). Six data sets remained after

exclusion, as described in Table 1.

Data acquired from the Gene Expression Omnibus (GEO; Barrett

& Edgar, 2006) including, GSE6575 (Gregg et al., 2008) and

GSE18123 (Kong et al., 2012) were acquired already normalized and

were not modified further. The other data sets (i.e., the Glatt

et al. Wave I and Wave II data (Glatt et al., 2012), the CHARGE study

data (Hertz-Picciotto et al., 2006), and the Kong et al., 2013 data

(Kong et al., 2013) each underwent RMA normalization, quantile nor-

malization, and base-2 logarithm transformation. We filtered each

data set so that all subjects in the ASD group had a diagnosis of

autism spectrum disorder. Some typically developing subjects from

the Glatt et al. data sets were considered “Type-1 errors”.

2.1.2 | RNA-Seq data

We searched for relevant publicly available RNA-Seq data using the

Gene Expression Omnibus (GEO; Barrett & Edgar, 2006) with the term

(“expression profiling by high throughput sequencing”[DataSet Type]

AND (“autism spectrum disorder”[MeSH Terms] OR “autistic disor-

der”[MeSH Terms])) AND “homo sapiens”[Organism] (query made

January 2018). We restricted eligible data sets to those sequenced

with paired-end and nonpoly-A-selected libraries. After excluding any

data sets that used cell lines or did not have female cases, only one

experiment, GSE107241 (Wright et al., 2017), remained. These data

comprise a RiboZero Gold paired-end RNA-Seq data set from 52 post-

mortem dorsolateral prefrontal cortex tissue samples (10 ASD males,

3 ASD females, 30 control males, and 9 control females). No other

data met this search criteria.

Prior to alignment and quantification, raw RNA-Seq reads were

trimmed using Trimmomatic (docker image quay.io/biocontainers/

trimmomatic:0.36–4; Bolger, Lohse, & Usadel, 2014) and quality con-

trol metrics were recorded (before and after trimming) using FastQC

(docker image biocontainers/fastqc:0.11.5; Andrews, 2010). We

aligned trimmed reads and quantified expression using Salmon (docker

image combinelab/salmon:0.9.0; Patro, Duggal, Love, Irizarry, & King-

sford, 2017) as run in pseudo-quantification mode with a k-mer index

of length 31. For the reference, we concatenated a human coding ref-

erence (i.e., GRCh38.90.cds) with the corresponding noncoding refer-

ence (i.e., GRCh38.90.ncrna).

2.2 | Meta-analysis of microarray data

Before proceeding with the meta-analysis, we established a set of

probes for each microarray platform that represent genes also repre-

sented by probes in the other platforms. In other words, we estab-

lished a final probe set based on the intersection of unique gene

symbols present in all microarray platforms under study.

For each microarray data set, and for each probe (i.e., of those

representing genes found in all data sets), we performed differential

expression analysis using limma (Version 3.34; Smyth, 2004), applying

the following steps: (1) fit a single model with the formula ~ASD + Sex

+ ASD:Sex + Age where ASD and Sex are each two-level factors

(except GSE6575, where the Age covariate is unknown), (2) define

contrasts for the sex-autism interaction and for the sex-independent

main effects, and (3) measure the differential expression for each con-

trast using the eBayes procedure. In other words, we fit a single model

but pulled out the appropriate contrasts in two steps.

Next, we transformed platform-specific probe p-values to HGNC

symbol p-values using AnnotationDbi (available from Bioconductor

(Huber et al., 2015). We resolved many-to-one mapping ambiguities

by FDR-adjusting the minimum p-value of all probes for a given gene

symbol (i.e., calculating a within-gene FDR correction). We then used

Fisher's method to perform a meta-analysis of the p-values obtained

from the differential expression analysis. For K studies, Fisher's

TABLE 1 The table details all studies included in the meta-analysis, and the number of probes available after establishing a final probe set. We

filtered each data set so that all subjects in the ASD group had a diagnosis of autism spectrum disorder. Some typically developing subjects from
the Glatt et al. data sets were considered “Type-1 errors”

Study ID Probes (intersect) Females (TD) Males (TD) Females (ASD) Males (ASD)

GSE6575 39,561 3 9 8 36

GSE18123 19,532 34 48 24 80

Glatt et al. Wave I 28,424 28 40 11 49

Glatt et al. Wave II 28,424 35 56 28 85

CHARGE 39,561 15 75 15 103

Kong et al., 2013 19,532 7 10 7 46
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method scores each gene based on negative two times the sum of the

logarithm of the p-values:

χ22K ¼ −2
XK

i

logpi

This score follows a χ2 distribution with 2 K degrees of freedom

(Mosteller & Fisher, 1948). Thus, for each gene, we computed a p-

value directly from this score. We corrected for multiple testing using

the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995).

2.3 | Differential expression analysis of RNA-
Seq data

We used DESeq2 (Version 3.6; Love, Huber, & Anders, 2014) to test

for differential transcript expression within the Salmon-generated

counts. We applied a conservative expression filter (i.e., at least

10 estimated counts per-gene in every sample) to the raw count

matrix to ensure that the high variability of lowly expressed tran-

scripts did not bias results due to the small group sizes. For each tran-

script that passed the expression filter, a single model was fit using

the formula ~ASD + Sex + ASD:Sex + Age (where Age is the age of

death). Interaction and sex-independent main effects were then

extracted from the model by specifying the relevant contrasts to the

DESeq2::results function. Again, we fit a single model but pulled out

the appropriate contrasts in two steps. We corrected for multiple test-

ing using the Benjamini-Hochberg procedure (Benjamini & Hoch-

berg, 1995).

2.4 | Adjustment of latent batch effects

To ensure that latent batch effects did not inflate the discovery of

false positives, we performed all analyses above with adjustment for

batch effects using sva (Version 3.26; Leek, 2014; Leek, Johnson, Par-

ker, Jaffe, & Storey, 2012), applying the following steps: (a) estimate

the number of surrogate variables while specifying the ASD * Sex

interaction as the variable of interest (via a 4-level factor that contains

“MaleASD”, “FemaleASD”, “MaleControl”, and “FemaleControl”) and

Age as an adjustment variable, (b) use the sva function (or, in the case

of Salmon-generated counts, the svaseq function) to estimate the sur-

rogate variables, and (c) include the surrogate variables in the differen-

tial expression model(s) described above. Generally speaking, using

sva yielded more conservative results than not using sva. All tables

and figures show results generated with sva except where otherwise

noted.

2.5 | Pathway analysis and knowledge integration

We performed pathway analysis using GSEA (Version 3.0; Subrama-

nian et al., 2005) in PreRanked mode with classic enrichment and

1,000 permutations. Enrichment scores were calculated for specific

MSigDB (Version 6.1; Liberzon et al., 2011; Subramanian et al., 2005)

gene sets, including the curated KEGG (c2.cp.kegg; Kanehisa, Furumi-

chi, Tanabe, Sato, & Morishima, 2017), Gene Ontology Biological Pro-

cess (c5.bp; The Gene Ontology Consortium, 2017), Reactome (c2.cp.

reactome; Fabregat et al., 2018), and MSigDB Hallmark (h.all; Liberzon

et al., 2015) sets.

Based on the nature of the analyses, input rank lists were pre-

pared differently for the RNA-Seq and microarray results. For the

RNA-Seq analysis, we ranked transcripts based on the p-value, p, and

the direction of the fold-change, FC:

Rank¼ − log10 pð Þ× sign log2 FCð Þð Þ

where positive FC refers to upregulation in ASD for the sex-

independent main effects. Then, these transcript-level ranks were

converted into gene-level ranks based on the top transcript-level rank.

For the microarray meta-analysis, we ranked genes using the χ2 test

statistic (as calculated from Fisher's method). Note that since this lat-

ter metric is agnostic to the direction of expression changes (i.e., only

large χ2 test statistics suggest dysregulation), we focused here on

pathways enriched with a positive score (effectively making this path-

way enrichment test one-tailed). In both cases, we set α = 0.30.

3 | RESULTS

3.1 | Evidence for sex-dependent autism biomarkers

By modeling the sex-autism interaction directly, we can detect gene

expression signatures that have differential dysregulation in male ASD

probands when compared with female ASD probands. In other words,

we can find sexually dimorphic ASD biomarkers (e.g., a gene upregu-

lated in male ASD but not in female ASD, or vice versa). Despite small

study sizes, and disproportionately fewer females, we find some evi-

dence for a sex-autism interaction among biomarkers, especially

throughout the microarray meta-analysis data.

FIGURE 1 The violin plots show the base-2 logarithm-transformed

expression for the two transcripts with the largest interaction effect
from the RNA-Seq data (i.e., those with the smallest corrected
p-value). The solid lines show sex-specific mean expression
differences. The dashed line shows the sex-independent (i.e., pooled)
mean expression difference. The left and right transcripts are
associated with the DSP and SLC13A4 genes, respectively [Color
figure can be viewed at wileyonlinelibrary.com]
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From the analysis of the RNA-Seq data derived from postmortem

brain tissue, we find no transcripts with significant (FDR-adjusted p-

value <.05) sex-dependent dysregulation, although one of these tran-

scripts showed a significant interaction prior to batch correction with

sva. To illustrate what a sex-autism interaction might look like,

Figure 1 shows the per-group expression profiles for the two tran-

scripts with the largest interaction effect (i.e., those with the smallest

corrected p-value). Table 2 characterizes those transcripts with the

most sex-dependent dysregulation.

From the meta-analysis of the blood-based microarray data, we

find four genes with significant (FDR-adjusted) sex-dependent

dysregulation: TTF2, UTY, KCNJ8, and NCS1. Table 3 characterizes

those genes with the most sex-dependent dysregulation. For Fisher's

method, a very small p-value in only one study could cause the meta-

analysis to post a significant result (Tseng, Ghosh, & Feingold, 2012).

Therefore, it is useful to inspect visually how each study contributed

to the results of the meta-analysis. Figure 2 shows how each study

contributed to the meta-analysis findings by plotting the aggregate

Fisher score for each gene with large sex-dependent dysregulation,

along with the study-wise nominal significance (unadjusted p-value

<.05). Notably, several of the most significantly dysregulated genes

are at least nominally significant in more than one study.

TABLE 2 The table shows SVA-adjusted results for the sex-autism interaction for the RNA-Seq data (sorted by FDR-adjusted p-value). Note that

FDR-adjusted p-values are also shown for an analysis performed without the adjustment of latent batch effects

Transcript ID Gene symbol Transcript biotype Log 2 FC p-adj (SVA) p-adj (no SVA)

ENST00000354042 SLC13A4 Protein coding 3.27 .293 .1136846

ENST00000379802 DSP Protein coding 3.19 .293 .6534814

ENST00000262551 OGN Protein coding 2.97 .299 .8169099

ENST00000371625 PTGDS Protein coding 1.74 .299 .0329544

ENST00000223357 AEBP1 Protein coding 1.85 .529 .8713166

TABLE 3 The table shows genes with the most sex-dependent dysregulation (and their chromosomal position) for the meta-analysis results,

sorted by Fisher score and adjusted p-value. In addition, this table shows the Fisher score and adjusted p-value calculated for an analysis repeated
without the adjustment of latent batch effects

Location Fisher Fisher p-adj Fisher (no SVA) Fisher p-adj (no SVA)

TTF2 1p13.1 52.80272 .0080909 30.30688 1.0000000

UTY Yq11.221 49.17813 .0352693 45.32043 .1644908

KCNJ8 12p12.1 48.80700 .0409512 41.60015 .7040022

NCS1 9q34.11 48.69443 .0428454 33.16947 1.0000000

RAP2C Xq26.2 47.97863 .0571022 25.06737 1.0000000

CHST11 12q23.3 47.29425 .0750785 21.86910 1.0000000

MAP1B 5q13.2 47.18032 .0785676 44.44789 .2320088

CRHR1 17q21.31 47.15296 .0794259 43.43498 .3450932

PAFAH1B1 17p13.3 46.36425 .1087281 17.26173 1.0000000

SH3BGR 21q22.2 46.35975 .1089168 32.82178 1.0000000

PAK3 Xq23 45.67211 .1430652 46.45645 .1048620

FMO1 1q24.3 44.77510 .2038808 32.85009 1.0000000

TROVE2 1q31.2 44.42306 .2341680 21.84958 1.0000000

BNC2 9p22.3-p22.2 44.40285 .2360233 39.13101 1.0000000

DCUN1D1 3q26.33 44.08602 .2672865 40.02468 1.0000000

HECA 6q24.1 44.06996 .2689620 33.92752 1.0000000

RORA 15q22.2 43.52061 .3335278 34.11106 1.0000000

ARHGAP35 19q13.32 43.40139 .3494222 41.54671 .7186470

CAMK1D 10p13 43.34605 .3570412 23.46336 1.0000000

SLC27A6 5q23.3 43.26356 .3687130 42.46235 .5041354

SNX13 7p21.1 43.07811 .3963678 27.35225 1.0000000

ACKR2 3p22.1 43.06703 .3980622 36.05068 1.0000000

KCNN2 5q22.3 42.76385 .4479560 44.03212 .2731511

TEX35 1q25.2 42.72490 .4547740 40.79263 .9608426

TMEM56 1p21.3 42.56794 .4833811 34.90678 1.0000000

SYTL4 Xq22.1 42.49851 .4965789 40.68910 .9997724

AZGP1 7q22.1 42.48820 .4985441 27.40362 1.0000000
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3.2 | Evidence for sex-independent autism
biomarkers

In situations where a sex-autism interaction is not detectable, we can

proceed to measure sex-independent main condition effects by pool-

ing male ASD probands with female ASD probands (and male controls

with female controls), without having to model sex as a covariate.

Genes with significant sex-independent main effects have large unidi-

rectional effect sizes in male ASD probands, female ASD probands, or

both. Yet, because the interaction is tested first, we can interpret the

main condition effects as sex-independent.

From the analysis of the RNA-Seq data derived from postmortem

brain tissue, we find seven transcripts with significant (FDR-adjusted

p-value <.05) sex-independent differential expression. Of these, only

one transcript showed significant upregulation in ASD (with all others

showing downregulation). Figure 3 shows the expression profile for

the two transcripts with the most significant sex-independent main

effects. Table 4 characterizes those transcripts with significant sex-

independent dysregulation. Interestingly, several of the transcripts

called differentially expressed by the analysis are annotated as non-

coding RNA species.

From the meta-analysis of blood-based microarray data, we find

over 20 genes with significant (FDR-adjusted) sex-independent dysre-

gulation. Table 5 characterizes those genes with the most sex-

independent dysregulation. As in figure 2, figure 4, shows how each

FIGURE 2 The figure shows genes with the most significant sex-dependent dysregulation (i.e., a sex-autism interaction) according to the meta-

analysis of the microarray data. Above, the bar plot shows the χ2 score for each gene as calculated using Fisher's method (where the dark bars

indicate that the gene has an FDR-adjusted p-value <.05). Below, the dot plot shows whether a gene showed a nominally significant sex-
dependent dysregulation at an unadjusted p-value <.05 for a given study. Note that most genes selected for by the meta-analysis show at least
nominal significance across multiple studies

FIGURE 3 The violin plots show base-2 logarithm-transformed

expression for the two most significant main effects (i.e., of the ASD
condition) from the RNA-Seq data. The solid lines show sex-specific
mean expression differences. The dashed line shows the sex-
independent (i.e., pooled) mean expression difference. The left and
right transcripts are associated with the SNORD17 and RNU2-2P
genes, respectively [Color figure can be viewed at
wileyonlinelibrary.com]
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study contributed to the meta-analysis findings by plotting the aggre-

gate Fisher score for each gene with large sex-independent dysregula-

tion, along with the study-wise nominal significance (unadjusted p-value

<.05). Again, most genes selected as statistically significant by the

meta-analysis are at least nominally significant in more than one study.

3.3 | Pathway enrichment of ASD biomarkers

In an effort to summarize the biological relevance of the biomarker

profiles generated above, we used the complete ranked lists of the

differentially expressed transcripts and genes in four separate gene

set enrichment analyses to identify common differentially regulated

pathways. Four enrichment profiles were generated using the sex-

dependent RNA-Seq brain biomakers, sex-independent RNA-Seq

brain biomarkers, sex-dependent microarray blood biomarkers, and

sex-independent microarray blood biomarkers.

Figure 5 shows the KEGG pathways enriched by the biomarkers

as ranked by the analysis of the RNA-Seq data. Interestingly, all signifi-

cant enrichment occurred in the same direction. Figure 6 shows the

KEGG pathways enriched by the biomarkers as ranked by the analysis

TABLE 4 The table shows SVA-adjusted results for the main effects (i.e., of the ASD condition) for the RNA-Seq data (sorted by FDR-adjusted

p-value). Note that FDR-adjusted p-values are also shown for an analysis performed without the adjustment of latent batch effects

Transcript ID Gene symbol Transcript biotype Log 2 FC p-adj (SVA) p-adj (no SVA)

ENST00000390930 SNORD17 snoRNA −2.98 1.54e−05 .0000102

ENST00000410396 RNU2-2P snRNA −4.76 4.04e−05 .0000000

ENST00000613119 snRNA −3.23 9.18e−05 .0000000

ENST00000258526 PLXNC1 Protein coding 0.48 .00468 .4273372

ENST00000393775 IGSF11 Protein coding −1.18 .00468 1.0000000

ENST00000459255 SCARNA10 snoRNA −1.71 .00468 .0014803

ENST00000618786 RN7SL1 Misc RNA −1.35 .0124 .0026454

TABLE 5 The table shows genes with the most sex-independent dysregulation (and their chromosomal position) for the meta-analysis results,

sorted by Fisher score and adjusted p-value. In addition, this table shows the Fisher score and adjusted p-value calculated for an analysis repeated
without the adjustment of latent batch effects

Location Fisher Fisher p-adj Fisher (no SVA) Fisher p-adj (no SVA)

ARHGAP35 19q13.32 69.93173 .0000060 59.58783 .0004856

GIMAP8 7q36.1 59.63083 .0004774 52.83287 .0079551

UCHL3 13q22.2 55.73392 .0024208 26.61452 1.0000000

SPART 13q13.3 55.39389 .0027862 42.18348 .5444711

MAGED2 Xp11.21 54.65897 .0037735 31.43801 1.0000000

ZNF721 4p16.3 54.38812 .0042188 46.99662 .0833787

TCEAL8 Xq22.1 54.30254 .0043699 31.39363 1.0000000

KIF13B 8p12 53.86902 .0052226 44.83078 .1953472

COX19 7p22.3 51.12904 .0160066 51.00574 .0167250

POLR1A 2p11.2 50.82535 .0181073 32.52993 1.0000000

NUCB2 11p15.1 50.20003 .0233305 49.91295 .0260057

EIF3A 10q26.11 49.84351 .0269484 47.30791 .0736972

GNG5 1p22.3 49.73328 .0281743 23.65365 1.0000000

HNRNPA3P1 10q11.21 49.54482 .0304006 51.23881 .0152201

KLF1 19p13.13 49.43419 .0317868 35.96265 1.0000000

GNPDA1 5q31.3 48.90133 .0393978 41.09008 .8257563

SART3 12q23.3 48.88131 .0397143 52.43134 .0093729

CCNC 6q16.2 48.87932 .0397440 16.14519 1.0000000

UBE2A Xq24 48.87429 .0398222 23.54974 1.0000000

ESF1 20p12.1 48.70005 .0427109 39.78234 1.0000000

ZNF740 12q13.13 48.63177 .0438971 46.72013 .0930420

MTERF4 2q37.3 48.49211 .0464282 37.44203 1.0000000

CCP110 16p12.3 47.96099 .0574500 28.55662 1.0000000

JUND 19p13.11 47.85553 .0599253 37.46297 1.0000000

MTERF1 7q21.2 47.82145 .0607453 29.44710 1.0000000

ZNF569 19q13.12 47.57334 .0670814 36.67860 1.0000000

PGM1 1p31.3 46.90219 .0876872 37.26441 1.0000000

ECI2 6p25.2 46.79028 .0916801 51.52112 .0135729

ARHGAP8 22q13.31 46.67208 .0960926 46.17090 .1155403
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of the microarray data. Unlike the RNA-Seq enrichment analysis, the

meta-analysis enrichment analysis is agnostic to direction. Figure 7

compares the overlap between these significant pathways. For the

sex-dependent analyses, no pathways are enriched in both the RNA-

Seq and microarray data. However, for the sex-independent analyses,

two pathways are enriched in both data (i.e., Ribosome and Protea-

some), though this observation might have occurred by chance. Note

that we also tested for enrichment among the Gene Ontology Biologi-

cal Process, Reactome, and MSigDB Hallmarks gene sets, all of which

show more examples of overlap between the separate sex-

independent analyses (see the Supplementary Information for more

details). We make the complete pathway enrichment results for the

interaction and main effects found in the RNA-Seq and microarray

data sets all available at https://doi.org/10.5281/zenodo.1421429.

4 | DISCUSSION

In this report, we present an analysis of several ASD transcriptomic

studies, including a meta-analysis of six blood-based microarray data

sets and an exploratory analysis of RNA-Seq data derived from post-

mortem brain. In both analyses, we focus on identifying sex-

dependent and sex-independent biomarker profiles for ASD by

modeling the sex-autism interaction directly. In addition to identifying

transcript and gene biomarkers, we use gene set enrichment analysis

to summarize the observed dysregulation at the pathway level,

contrasting sex-dependent pathway enrichment with sex-independent

pathway enrichment. In doing so, we find that some pathways are

across both tissues (i.e., Ribosome and Proteasome), though this

observation might have occurred by chance.

Despite small sample sizes in all studies, we found evidence for

the existence of some sex-dependent biomarkers in human tissue.

The meta-analysis identified four genes with significant (FDR-

adjusted) sex-dependent dysregulation in the blood: TTF2, UTY,

KCNJ8, and NCS1. One of these, TTF2, plays an important role in nor-

mal thyroid development (De Felice & Di Lauro, 2004). Interestingly, a

loss of thyroid hormone homoeostasis has been linked to ASD

(Berbel, Navarro, & Román, 2014; Khan, Harney, Zavacki, & Sajdel-

Sulkowska, 2014). As it is well-known that thyroid diseases have a

sex-specific presentation (Bauer, Glenn, Pilhatsch, Pfennig, & Why-

brow, 2014), it seems plausible that thyroid abnormalities could con-

tribute to a sexually dimorphic ASD signature. Some thyroid-

disrupting environmental chemicals have also been linked to an

altered risk for autism (Braun et al., 2014; Lyall, Croen, Sjödin, et al.,

2017), including one study showing sexually dimorphic associations

(Lyall, Croen, Weiss, et al., 2017). The other, UTY, is a Y-chromosome

gene (with considerable homology to an X-chromosome homolog),

making any interpretation of its differential dysregulation difficult.

Two other genes, KCNJ8 and NCS1, are involved in potassium and

calcium channel activity, respectively, the latter of which has been

implicated in autism (Handley, Lian, Haynes, & Burgoyne, 2010).

Although the RNA-Seq analysis did not yield any significant

FIGURE 4 The figure shows genes with the most significant sex-independent main effects (i.e., of the ASD condition) according to the meta-

analysis of the microarray data. Above, the bar plot shows the χ2 score for each gene as calculated using Fisher's method (where the dark bars
indicate that the gene has an FDR-adjusted p-value <.05). Below, the dot plot shows whether a gene showed a nominally significant sex-
independent main effect at an unadjusted p-value <.05 for a given study. Note that most genes selected for by the meta-analysis show at least
nominal significance across multiple studies
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interactions, it is not surprising considering this data set contained

only three female ASD probands. Nevertheless, the large (albeit non-

significant) effect sizes warrant repeat studies with bigger cohorts and

more female ASD probands.

By modeling the sex-autism interaction directly, we are able to

follow-up the sex-dependent analysis with a secondary sex-

independent analysis for any transcript or gene whose expression did

not significantly interact with sex. Using the same regression model,

we contrast the pooled male ASD probands and female ASD probands

against the pooled male controls and female controls to calculate the

main effects (which we can interpret as sex-independent biomarkers).

Here, over 20 transcripts and genes exceeded the threshold for FDR-

adjusted significance. Interestingly, for the RNA-Seq data, several of

the significant biomarkers are not protein-coding genes, highlighting

the value of using nonpoly-A-selected libraries to quantify both coding

and noncoding transcripts. For the microarray meta-analysis, several of

the sex-independent biomarkers are associated with key neurodeve-

lopmental processes, including some X-chromosome genes. For exam-

ple, MAGED2, differentially expressed in ASD probands, is located on

an X-linked intellectual disability hotspot (i.e., Xp11.2; Langnaese,

Kloos, Wehnert, Seidel, & Wieacker, 2001; Moey et al., 2016) which, if

causally relevant, could contribute to the male risk bias.

FIGURE 5 The dot plot shows results from a GSEA of the RNA-Seq data against the MSigDB KEGG pathways. For the sex-autism interaction

and the main effect results, a KEGG pathway (y-axis) has a circle (or triangle) if it is enriched (or depleted). The size of the points indicates the
absolute normalized enrichment score. The color indicates the FDR. Note that only points with an FDR < 0.3 are plotted (see Methods). The
enrichment score is defined as the degree to which a gene set is overrepresented at the top or bottom of a ranked gene list as calculated by
GSEA. The ratio of this to the expected enrichment score of all permutations is the normalized enrichment score (NES) [Color figure can be
viewed at wileyonlinelibrary.com]
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For both the microarray meta-analysis and the RNA-Seq analysis,

we tested the ranked sex-dependent and sex-independent biomarker

profiles separately for pathway-level enrichment. We found some

pathway enrichment for the sex-dependent profiles, and even more

for the sex-independent profiles. Importantly, very few of the

enriched pathways were the same for both the interaction and main

effects. This suggests that males and females exhibit unique pathway-

level signatures that, if causally relevant, might further suggest the

existence of both sex-specific and common ASD pathophysiologies.

Although few KEGG pathways are enriched among the sex-dependent

results, there are dozens of significantly enriched sex-dependent path-

ways across other tested gene sets (see Supplementary Information

for more details). Among the pathways enriched in the sex-

independent meta-analysis results, there are a number of pathways

for known neurodevelopmental and neurodegenerative diseases,

including Huntingtons, Parkinsons, Alzheimers, and amyotrophic lat-

eral sclerosis (ALS), suggesting that at least some of these ASD bio-

markers may have functions important to general brain health.

Considering that the sex-dependent and sex-independent biomarkers

and pathways differ, it seems plausible that molecular diagnostics

could benefit from modeling sex-specific processes directly.

In addition to finding that pathway enrichment differs consider-

ably between the sex-dependent and sex-independent biomarker pro-

files, we found that some sex-independent pathways (e.g., Ribosome

FIGURE 6 The dot plot shows results from a GSEA of the meta-analysis data against the MSigDB KEGG pathways. For the sex-autism

interaction and the main effect results, a KEGG pathway (y-axis) has a circle if it is enriched. The size of the points indicates the absolute
normalized enrichment score. The color indicates the FDR. Note that only points with an FDR < 0.3 are plotted (see Methods). The enrichment
score is defined as the degree to which a gene set is overrepresented at the top or bottom of a ranked gene list as calculated by GSEA. The ratio
of this to the expected enrichment score of all permutations is the normalized enrichment score (NES) [Color figure can be viewed at
wileyonlinelibrary.com]
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and Proteasome) were enriched across both the RNA-Seq and micro-

array data. Interestingly, this overlap exists despite the fact that ana-

lyses were performed on different human tissues, and with different

transcript quantification assays. In fact, more than 50 Gene Ontology

pathways were enriched among both sets of ranked sex-independent

biomarkers, even though no gene products showed significant differ-

ential expression in both data. This overlap is consistent with a broad

literature supporting common pathway-level signatures across the

widely heterogeneous population of ASD probands. If true, it may be

advantageous to model pathway-level dysregulation directly, for

example in machine learning applications Quinn, Lee, Venkatesh, and

Nguyen (2018).

When we compare our pathway enrichments to the previous

ASD mega-analysis pathway enrichments (Tylee, Hess, et al., 2017),

we observe several complementary results. First, we found positive

enrichment of the MAPK pathway in our sex-dependent RNA-Seq

results, agreeing with the male-specific enrichment of Mek targets

found in the Tylee et al. study (Tylee, Hess, et al., 2017). Second, we

found an enrichment of the ribosome-related pathway in both of our

sex-independent analyses, agreeing with the ribosome-related path-

way enrichment identified by the sex-independent mega-analysis

(Tylee, Hess, et al., 2017). Third, we found an enrichment of the Toll-

like receptor (TLR) signaling pathway in our sex-independent meta-

analysis results, agreeing with the TLR 3 and 4 signaling pathway

enrichment identified by the sex-independent mega-analysis (Tylee,

Hess, et al., 2017). Importantly, these complementary results exist

despite considerable differences in statistical methodology and data

set inclusion. The Wright et al. study which generated the RNA-Seq

study did not test for KEGG enrichment. However, we both found

SNORD17 to be differentially expressed independent of sex (Wright

et al., 2017).

Our analysis is not without limitations. First, although we used

sva to adjust for latent batch effects, it is still possible that some resid-

ual batch effects remain because they coincide with the diagnostic

label (e.g., undocumented comorbidities or medication use). This

would confound the discovered biomarker profile, causing spurious

results. Second, as with any observational study, it is impossible to

conclude whether the gene expression signatures, and their associ-

ated pathways, are causally related to ASD. Third, this analysis is likely

underpowered to detect all sex-autism interactions, owing to the small

sample sizes and disproportionately smaller female cohorts. Yet, based

on the extant literature, which clearly highlights sex as an ASD risk

factor, and the results published here, we believe that modeling the

sex-autism interaction should become a mainstay of ASD transcrip-

tomic research. Advantageously, interaction modeling is compatible

with the most commonly used softwares for batch-effect correction

(Leek et al., 2012), RNA-Seq analysis (Love et al., 2014), and microar-

ray analysis (Smyth, 2004). Yet, this analytical technique cannot offer

any benefit if transcriptomic studies continue to systematically

exclude female subjects (e.g., Alter et al., 2011; Hu et al., 2009; Sara-

chana et al., 2010). Although there seems to exist a strong skew in the

prevalence of male ASD, this very fact underlies the importance of

studying female ASD: a complete understanding of the molecular

basis of ASD will require the intentional study of both sex-dependent

and sex-independent mechanisms, as well as their differences and

commonalities.

FIGURE 7 The UpSet plot (Lex, Gehlenborg, Strobelt, Vuillemot, & Pfister, 2014) shows set intersections (and their sizes) from a GSEA of four

results against the MSigDB KEGG pathways. Set identity is indicated by the joined lines. Set size is indicated by the top bar chart. The bar chart
on the left shows the total set size for each individual GSEA run. Results are filtered using a liberal FDR threshold of FDR < 0.15 for the RNA-Seq
data and FDR < 0.3 for the meta-analysis data (see Methods)
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