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Abstract Detecting trends in species’ distribution and abundance are essential for conserving threatened
species, and depend upon effective monitoring programmes. Despite this, monitoring programmes are often
designed without explicit consideration of their ability to deliver the information required by managers, such
as their power to detect population changes. Here, we demonstrate the use of existing data to support the
design of monitoring programmes aimed at detecting declines in species occupancy. We used single-season
occupancy models and baseline data to gain information on variables affecting the occupancy and detectabil-
ity of the threatened brush-tailed rabbit-rat Conilurus penicillatus (Gould 1842) on the Tiwi Islands, Australia.
This information was then used to estimate the survey effort required to achieve sufficient power to detect
changes in occupancy of different magnitudes. We found that occupancy varied spatially, driven primarily by
habitat (canopy height and cover, distance to water) and fire history across the landscape. Detectability var-
ied strongly among seasons, and was three times higher in the late dry season (July–September), compared
to the early dry season (April–June). Evaluation of three monitoring scenarios showed that conducting sur-
veys at times when detectability is highest can lead to a substantial improvement in our ability to detect
declines, thus reducing the survey effort and costs. Our study highlights the need for careful consideration
of survey design related to the ecology of a species, as it can lead to substantial cost savings and improved
insight into species population change via monitoring.
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INTRODUCTION

The loss and fragmentation of natural habitats, intro-
duction of non-native species and global climate
change are driving declines in species distribution
and abundance worldwide (Chapin et al. 2000;
Butchart et al. 2010; Barnosky et al. 2011). Effective
conservation depends on the ability to detect popula-
tion trends through reliable, effective and efficient
monitoring programmes (Reynolds et al. 2011). Eco-
logical monitoring refers to the process of gathering
information about an ecological variable (e.g. species
distribution) at different points in time and space to
assess change (Yoccoz et al. 2001). But despite their
importance, monitoring programmes are often

designed without regard for their ability to deliver the
types of information required by land managers
(Legg & Nagy 2006; Guillera-Arroita et al. 2010;
Peel et al. 2015). Disregarding imperfect detection
(when a given method does not detect a species
where it occurs) can reduce the reliability of esti-
mates of population trends, particularly when detec-
tion varies in space or time (MacKenzie et al. 2002;
Wintle et al. 2004; Field et al. 2005). The purpose of
monitoring programmes differs from that of baseline
surveys, which are largely designed to collect infor-
mation on species distribution and richness (i.e. the
number of distinct species that occur within a
region). Baseline surveys may not be suitable for col-
lecting the types of data required to infer population
trends in some or all of the species they report on,
but they do provide valuable data that can be used to
inform monitoring programmes.
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A useful variable in ecological monitoring is occu-
pancy (the proportion of an area occupied by a spe-
cies) (Holt et al. 2002). Monitoring occupancy is
typically cheaper and less technically demanding than
measuring population abundance or density, which
can be expensive to implement on large scales
(Nimmo et al. 2015); consequently monitoring abun-
dance may suffer from limited statistical power to
detect change (Field et al. 2005), despite the avail-
able statistical methods to account for imperfect
detectability (Buckland et al. 1993; Royle 2004;
Borchers et al. 2012). Change in occupancy is con-
sidered an important measure of extinction risk, for
example in the International Union for the Conser-
vation of Nature (IUCN) Red List of Threatened
Species (IUCN 2012). Furthermore, occupancy
methods that account for imperfect detection
(MacKenzie et al. 2002) are commonly used for
large-scale monitoring programmes, and have been
applied across diverse taxa including mammals
(Wibisono et al. 2011), birds (Royle & K�ery 2007),
reptiles (McGrath et al. 2015), amphibians (Petitot
et al. 2014) and invertebrates (MacKenzie 2003).
Inadequate survey design can lead to low statistical

power to detect trends of interest (Guillera-Arroita &
Lahoz-Monfort 2012). Key decisions in the design of
occupancy surveys include the total survey effort
required to detect effect sizes of ecological relevance
with confidence, when and where to monitor and
how to allocate a survey budget, given the recognised
trade off between the effort applied at each given site
(and thus the quality of site-level data) (Mackenzie &
Royle 2005; Bailey et al. 2007). One way to guide
monitoring design decisions is to use existing data to
inform the likely values of relevant system parame-
ters. Based on these, the expected performance of
alternative monitoring strategies in meeting the
objectives of the monitoring programme can be
explored.
In this study, we use existing data to examine the

effectiveness of alternative monitoring strategies for
the threatened brush-tailed rabbit-rat Conilurus peni-
cillatus (Gould 1842), in one of its last remaining safe
havens, the Tiwi Islands in northern Australia. Aus-
tralia has suffered a remarkably high rate of mammal
extinctions over the past two centuries (Woinarski
et al. 2015), amounting to loss of at least 30 terres-
trial mammals (Fisher et al. 2014). The Tiwi Islands
are now one of the few areas in Australia to retain a
complete pre-European assemblage of mammals, but
recent evidence suggests that small mammal popula-
tions, including C. penicillatus, are in decline (Firth
et al. 2006a; Davies et al. 2016). The distinct Tiwi
Islands subspecies (C. penicillatus melibius, Thomas
1921; Kemper & Schmitt 1992) has also been high-
lighted as one of the 20 mammals most likely to go
extinct in the next two decades (Geyle et al. 2018),

suggesting that emergency action must be taken to
ensure its ongoing persistence.
We estimated the occupancy and detectability of

C. penicillatus using baseline data collected across the
Tiwi Islands in 2000–2002. We then used this infor-
mation to examine the statistical power of different
monitoring strategies for detecting declines of rele-
vance to the IUCN Red Listing. We note here that
the aim of this study is not to make recommenda-
tions to the IUCN for listing or assessment, but to
advise on how much monitoring effort is required to
confidently detect a decline when one occurs. With
this, we address in part the priority need to establish
an appropriate monitoring programme for this spe-
cies (see Woinarski et al. 2017).

METHODS

Study area

The Tiwi Islands comprise Melville (5788 km2) and Bath-
urst (1693 km2) Islands, and are ~20 km north of main-
land northern Australia. Both islands have similar
environments and experience a highly seasonal (wet–dry
tropical monsoonal) climate (average rainfall of 1860 mm
and 146 mm in the wet and dry seasons respectively)
(Bureau of Meteorology 2015). Vegetation includes
savanna woodland and open forest dominated by eucalypts
Eucalyptus and Corymbia spp., with smaller areas of Mela-
leuca woodland, sedgeland, grassland, rainforest, mangrove
and coastal dunes. Approximately 5% of the islands are
covered in short-rotation Acacia mangium forestry planta-
tions, mineral sand mining and urban areas (Richards
et al. 2012).

Study species

Conilurus penicillatus is a semi-colonial, medium-sized
(150 g) native rodent with a now patchy distribution in
northern Australia and southern New Guinea (Firth et al.
2010). It is listed as Vulnerable under the IUCN Red List
(Burbidge & Woinarski 2016), and under Australian (Envi-
ronment Protection and Biodiversity Conservation Act,
Australian Government 1999) legislation. It is listed as
Endangered under Northern Territory legislation (Northern
Territory Parks & Wildlife Conservation Act, Northern
Territory Government 2012). The species has suffered a
dramatic range contraction, most likely in response to
increases in the frequency, intensity and size of landscape
fires, and a consequent simplification of vegetation struc-
ture (Firth et al. 2010), which may make them more sus-
ceptible to predation by feral cats and other predators
(Woinarski et al. 2011; Davies et al. 2016). Conilurus penicil-
latus mostly occurs in tall open eucalypt forests and wood-
lands that burn infrequently, with a sparse to moderate
mid-storey and an under-storey of perennial grasses (of
which the seeds and stems are primary diet items, Firth
et al. 2005, 2010). Breeding in C. penicillatus is seasonal,
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occurring over at least 4 months with juveniles predomi-
nantly entering populations in the mid to late dry season
(June–September) (Taylor & Horner 1971; Firth 2007).

Survey data

We used data collected as part of a larger baseline wildlife
survey conducted in the early 2000s (Firth et al. 2006a). A
total of 338 sites were sampled in native vegetation across
the Tiwi Islands (223 sites on Melville Island and 115 on
Bathurst Island) (Fig. 1). Each site was visited only once
between 2000 and 2002. Approximately 53% of sites were
sampled during the early dry (Apr–Jun) season, while 33%
and 14% of sites were sampled during the late dry (Jul–
Sep) and late wet (Jan–Mar) seasons respectively. No sam-
pling took place during the early wet (Oct–Dec) season.
Sampling followed a protocol widely used across northern
Australia (Woinarski & Ash 2002); each site consisted of a
50 9 50 m quadrat, and included twenty Elliott traps
(33 9 10 9 9 cm) distributed evenly around the perimeter,
and one large cage trap (56 9 20 9 20 cm) located at each
corner (four in total), set for three consecutive nights and
checked early each day. All individuals caught were
released unmarked at the site of capture. The total number
of individuals captured was recorded for each trapping
night. Note that this sampling encompassed the entire
known range of the subspecies C. p. melibius.

Predictor variables

We selected covariates for inclusion in our occupancy mod-
els based on environmental and other variables considered
important for C. penicillatus, taken from published peer-
reviewed literature (in particular Firth et al. 2006a) (see

Table 1 for a detailed description justifying the inclusion of
each covariate). These included field-measured site charac-
teristics and remotely-sensed variables (i.e. geospatial lay-
ers). We had reason to suspect that C. penicillatus
detectability may vary seasonally (based on expert knowl-
edge), and thus explored this by including ‘season’ as a sur-
vey-specific covariate. We tested for collinearity between
each of the predictor variables, finding no correlation coef-
ficients larger than 0.7.

Occupancy-detectability analysis

Single-species, single-season occupancy models (MacKenzie
et al. 2002) were used to estimate occupancy and detection
probabilities of C. penicillatus across the Tiwi Islands. We
summarised survey data as binary detection/non-detection
histories at each sampling site, considering each trapping
night (here, meaning the entire set of traps deployed at each
site on each night) as one detection attempt. For reference,
we first calculated the species’ ‘na€ıve occupancy’ – the
estimate of site occupancy disregarding imperfect detection
(i.e. the proportion of sites with at least one detection
across three trapping nights). We then fitted models
(MacKenzie et al. 2002), which are formulated in terms of
parameters wi and pij, where wi (occupancy) is the proba-
bility that sampling site i is occupied by the species and pij
(detectability) is the probability of detecting the species at
sampling site i during survey j, conditional upon its pres-
ence. In its basic formulation, the model structure assumes
independence among sites and detections, no changes in
the occupancy status of sites (i.e. a site is either occupied
or empty across the whole survey period) and no false pos-
itive records. We first fitted a model assuming constant
detection and occupancy probabilities (null model) to the
data set. From the estimated detection probability and

Fig. 1. The location of the Tiwi Islands and all sites sampled during 2000–2002 across Bathurst and Melville Islands.
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assuming independence, we calculated the probability of
detecting the species at a presence site in at least one of k
visits, as p* = 1 � (1 � p)k. This quantity therefore reflects
species detectability given the cumulative effort applied to
the site (K�ery 2002). We then extended our models to
incorporate covariates (MacKenzie et al. 2002) for occu-
pancy and detectability (Table 1), to explore how these
probabilities vary in response to different site characteris-
tics. Covariates were related to these probabilities via a
logit-link function; thus the resulting models are effectively
an extension of the traditional logistic regression model to
account for imperfect detection.

We ran preliminary models to determine which covari-
ates were likely to be good predictors of occupancy and
detectability using a step-wise approach, where individual
variables were dropped if considered unimportant (i.e.
where confidence intervals overlapped zero), finding only

two important predictors of detectability (season and fire
frequency). We then fitted all possible models resulting
from combinations of our chosen covariates: (two for
detectability and 10 for occupancy, leading to 4096 models
in total). We tested for nonlinear relationships for two
covariates, foliage projection cover (FPC) (in occupancy)
and fire frequency (in occupancy and detectability). Prelim-
inary results showed very little evidence of nonlinear rela-
tionship in these two covariates, so all models were fit with
linear relationships.

We used the Akaike Information Criterion (AIC) to rank
and identify the best performing models for the observed
data set (Burnham and Anderson 2002). The fit of the
most saturated model was assessed with a goodness-of-fit
test based on parametric bootstrapping and three test statis-
tics: Pearson’s chi-square, the sum of squared residuals
(SSE) and the Freeman-Tukey chi-square. This method

Table 1. Occupancy predictors considered for inclusion in single-season, single-species occupancy models of Conilurus
penicillatus on the Tiwi Islands.

Predictor Justification for inclusion Measurement Reference(s)

Canopy height An indicator of habitat suitability Height of tallest woody plants Firth et al. (2006a)
Canopy cover An indicator of habitat suitability Percentage foliage cover of canopy Firth et al. (2006a)
Mean annual
rainfall

An indicator of productivity Mean average rainfall in
10 years preceding survey,
derived for BOM gridded data

J. Woinarski,
pers obs

Total grass cover An indicator of potential
food availability

Percentage ground cover of grass
(annual and perennial)

Firth et al. (2005,
2006a, 2010)

Fire impact Fire impact may have a
strong influence
on critical resources
required for
species survival (i.e.
food availability,
hollow logs)

Five-point scale measuring the
apparent severity of fire impact,
from 1 (no sign of fire) to 5
(evidence of severe crown fire)

Firth et al.
(2010, 2006b);
Woinarski
et al. (2011);
Yates et al. (2008)

Fire frequency See above The number of times a site has
burnt in the 4 years preceding survey.
Derived from Landsat satellite imagery

See above

Distance to
nearest
watercourse

A highly significant
finding in previous
analysis across all quadrats,
indicative of variation in habitat

Measure in metres. Derived from a
digital elevation model

Firth et al. (2006a)

Foliage
projection cover

An indicator of
habitat suitability

The percentage of the site occupied by
the vertical projection of foliage or
measure of green vegetation on the
ground. Derived from Landsat
TM satellite imagery

Walker and
Hopkins (1990)

Basal area of
large trees

An indicator of a
critical resource
(i.e. hollows – more
likely to be
present in larger trees)

Total basal area (m2 ha�1)
of trees with
diameter at breast height >50 cm
Derived from two sweeps
of bitterlich gauge

Firth et al. (2006a,b);
Bennett et al.
(1993);
Whitford (2002);
Woolley et al. (2018)

Island A surrogate for the overall
population size
(due to area of habitat)
and related
meta-population dynamics,
differences between
disturbance histories,
predator densities and
composition of vegetation

155 sites on Bathurst Island and 223 on
Melville Island. Modelled
as a binary predictor
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simulates data sets based upon a fitted model, refits the
model and evaluates whether the observed frequency of his-
tories has a reasonable chance of happening if the model
assessed is assumed to be correct. We calculated Akaike
weights (wi,) for each model and summed the contributions
of each covariate (i.e. the sum of the Akaike weights ∑ wi)
to provide an indication of which covariates had substantial
support for explaining the observed data (but see Cade
2015). We conducted all analyses in R (R Development
Core Team, 2014), fitting models within the maximum-
likelihood framework of inference using the R-package
‘Unmarked’ (Fiske et al. 2010).

Power analysis

Using the methods outlined in Guillera-Arroita and Lahoz-
Monfort (2012), we identified the survey effort require-
ments to detect C. penicillatus occupancy declines of differ-
ent magnitudes with a given statistical power. These
methods provide approximations (equation 1) to calculate
how the power of a given occupancy-detection study
changes depending on the allocation of survey effort (i.e.
number of sites and replicate visits), assuming a standard
sampling design with k replicate surveys (here trap nights)
carried out at S sampling sites, and constant probabilities
of occupancy and detectability. The calculations assume
that two data sets are collected (one at time 1 and one at
time 2), analysed, and their estimated occupancy probabili-
ties with associated uncertainties compared to assess
whether there is evidence of a decline between these two
times. The probability of observing a significant difference
in occupancy (i.e. power), given a significance level a, is

G ¼ 1� b ¼ 1� U
za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22

p � w1 � w2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22

p
 !( )

þ U
�za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22

p � w1 � w2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22

p
 ! (1)

where w1 and w2 are the true underlying occupancy proba-
bilities in the two times, Φ(x) is the cumulative distribution
function for the standard normal distribution, za/2 is the
upper 100a⁄2-percentage point for the standard normal dis-
tribution (e.g. 1.96 for a = 0.05), r2i ¼ wi 1� wi þ Fið Þ=Si is
the variance of the occupancy estimator, and F = 1� p�ð Þ=
p � �kpð1� pÞk�1
n o

. For convenience, hereafter we defined
R to be the proportional difference in occupancy, so that
w2 ¼ w1 1� Rð Þ, with R > 0 representing a decline. For a
given R, the power to detect the decline increases both as
the number of sampling sites (S) and the number of repeat
visits (k) increases.

We applied equation 1 using the fitted estimates
obtained for occupancy and detectability to explore the
number of sampling sites required to achieve a given power
for detecting changes in C. penicillatus occupancy. We set
w1 to the occupancy estimated as part of our analysis
described above, and set w2 to reflect three different magni-
tudes of decline (i.e. effect size) corresponding to the
IUCN Red List decline thresholds for threatened species

based on rule A2c (a decline in the area of occupancy
where the cause may not have ceased): 80%, 50% and 30%
declines over relevant time periods (in the case of C. penicil-
latus, 10 years, which is greater than three generations)
(Burbidge & Woinarski 2016). We did not consider crite-
rion A1 (declines in area of occupancy where the cause of
decline has ceased) because there is evidence to suggest
some threatening processes are ongoing and could cause
rapid declines in this species (Davies et al. 2016; Woinarski
et al. 2017).

The calculations above assume the species is monitored
twice: once at the beginning and once at the end of the per-
iod over which change is considered. More frequent moni-
toring will yield greater statistical power to detect the same
decline, and simulations can be run to compute power for
different survey designs (e.g. see Table 1 in Guillera-
Arroita & Lahoz-Monfort 2012). The calculations also
assume independence in the occupancy status of sites
across time steps. Accounting for dependence may lead to
increased power to detect declines. Thus, by assuming
independence, we are being conservative in our evaluation
(i.e. power will be as indicated or greater; see appendix 2
in Guillera-Arroita & Lahoz-Monfort 2012). Where survey
data across multiple seasons are available from the same
sites, multi-season models can be fitted to parameterise
probabilities of extinction and colonisation that reflect the
dependence in occupancy status of sites across time, and
the information accounted for in sample size assessments
(Popescu et al. 2012). This implies that future monitoring
should continue sampling the same sites, which is unlikely
to be the case here.

For all of our analyses, we set alpha (a) to 0.2 and beta
(b) to 0.8. Our rationale behind this choice is that it better
reflects the ratio of Type I and Type II costs in threatened
species conservation, where committing a Type II error
(i.e. not detecting a decline when one has occurred) could
have implications that ultimately lead to extinction. In con-
trast, the general 0.05:0.8 convention assumes that the cost
of making a Type I error is four times more important than
the cost of making a type II error (for detailed reviews on
setting alpha and beta values see Di Stefano 2003). Sample
code for the power analysis conducted in this study is avail-
able online as a supplementary material in Guillera-Arroita
and Lahoz-Monfort (2012).

Monitoring scenarios

We considered three different monitoring scenarios:
In ‘Scenario A’ the assumption is that monitoring will

target C. penicillatus likely habitat, excluding the more mar-
ginal sites. To calculate average occupancy to inform survey
design, we took the 200 sites with the highest probability of
occupancy as determined by our best model (Table 1).
This eliminated low probability sites (less than 0.07 proba-
bility) that largely reflected habitats unlikely to be suitable
for C. penicillatus; for example, treeless plains and mangrove
forests (Firth et al. 2006a). This monitoring regime also
assumes that surveys are conducted during the late dry sea-
son (July–September) when C. penicillatus detectability is
highest, and therefore assumes a sampling effort of two
repeat visits to each site (as this is sufficient for detecting

© 2018 Ecological Society of Australia doi:10.1111/aec.12667
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C. penicillatus with greater than 95% confidence, as dis-
cussed in the results section below). This is the monitoring
regime that takes the greatest account of the model results.
Scenario B targets the same type of sites, but assumes sur-
veys are conducted year round (i.e. the design assumes a
level of detectability as averaged throughout the year, and
thus assumes a sampling effort of four repeat visits to each
site. Scenario C takes what may be considered a na€ıve
approach in targeting a random selection of sites and con-
ducting surveys all year round (i.e. detectability averaged
throughout the year), effectively ignoring knowledge gained
through the modelling process. Like Scenario B, Scenario
C too assumes a sampling effort of four repeat visits to each
site. Four nights were chosen as this reflects the current
standards for sampling of small mammals across the North-
ern Territory (Gillespie et al. 2015), and thus would realis-
tically be applied if one had not modelled pilot data to
better inform monitoring (i.e. the conditions under
Scenario A).

For these monitoring scenarios, we considered the extent
of sampling required to detect changes relevant to IUCN
conservation status categories (i.e. 30%, 50%, 80%) across
two monitoring episodes, here assumed to be 10 years apart
(i.e. matching the time period relevant to the IUCN crite-
rion A).

Monitoring costs

We calculated the costs associated with conducting moni-
toring to detect declines in occupancy of differing magni-
tudes (corresponding to the IUCN Red List Criteria)
under each of the three monitoring scenarios described
above. This includes the costs associated with equipment,
bait for traps, travel and field assistant salaries (Garden
et al. 2007; De Bondi et al. 2010) (details of estimated
expenditure can be found in Appendix S1). While we pro-
vide an estimate of equipment expenses, we focus on the
costs required to implement ongoing monitoring under
each scenario, including in our calculations only 10% of
the initial equipment costs. This was considered appropri-
ate to account for minor repairs and replacement associated
with the ongoing use of equipment.

RESULTS

Na€ıve occupancy (the proportion of sites with
C. penicillatus detections) was 0.15. The null model
(containing no covariates) estimated an occupancy of
0.18 (SE � 0.02) and a detectability of 0.47
(SE � 0.05) (per trapping night). No single model
was clearly superior in explaining the patterns of
occupancy and detectability (Table 2). Island,
canopy height, canopy cover, fire impact, distance to
the nearest watercourse, mean rainfall and foliage
projection cover were all important predictors
(Table 2), featuring in all the top candidate models
(those within four AIC units of the best fitting
model); the only exception was fire impact which was

absent from the last top ranked model. All of the vari-
ables considered to be important predictors of occu-
pancy had a summed Akaike weight ≥93% (appendix
2). Basal area of large trees, fire frequency and total
grass cover featured in some of the competing models
as explanatory variables for the variation in observed
occupancy, but had little support (summed Akaike
weights ≤36%, Appendix S2). Both season and fire
frequency had high support for explaining variation in
detectability, featuring in all top ranked models
(Table 2) and with summed Akaike weights >99%
(Appendix S2). The overall direction and effect size
of the estimated relationships (regression coefficients)
remained similar for each of the covariates across all
top ranked models (Appendix S3). Therefore, we
focus on the top ranked model as an explanation for
the observed data. The model suggests that the prob-
ability of C. penicillatus occupying a site increases with
canopy height, distance from the nearest watercourse,
foliage projection cover and mean annual rainfall, and
decreases with canopy cover, increasing fire impact
and Island (with occupancy lower on Bathurst Island)
(Fig. 2a).
We found that detectability varied seasonally

(Fig. 2b), with nightly detection probabilities much
higher in the late dry season (July–September), 0.78
(SE � 0.02), compared to the early dry (Apr–June),
0.26 (SE � 0.08) or late wet (January–March), 0.31
(SE � 0.08). This suggests that surveys conducted in
the late dry season would require far less effort (i.e.
fewer repeat visits) to ensure high certainty that
C. penicillatus is detected when present (Fig. 3).
We calculated the number of survey sites required

for detecting declines of 30, 50 and 80% in C. peni-
cillatus occupancy under each monitoring scenario
(Fig. 4). Our results show that fewer sites and visits
were required under Scenario A compared with
Scenario B, and less than half the number of sites
were required under Scenario A compared with
Scenario C to detect declines corresponding to each
IUCN threatened category (Vulnerable, Endangered
and Critically Endangered) (see Fig. 4 and
Appendix S4).
The relative costs associated with the ability to

detect declines corresponding to each IUCN threat-
ened category (Vulnerable, Endangered and Critically
Endangered) for all monitoring scenarios are outlined
in Table 3. Scenario A is the most cost-effective
method for detecting declines of a magnitude great
enough to nominally qualify C. penicillatus for a
threatened (or more threatened) status, saving
approximately $11 700, $40 500 and $123 200 com-
pared with Scenario B and approximately $46 800,
$150 200 and $467 800 compared with Scenario C
(for allocation of Critically Endangered, Endangered
and Vulnerable threat categories respectively)
(Table 3).

doi:10.1111/aec.12667 © 2018 Ecological Society of Australia
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DISCUSSION

Monitoring is a critical component of threatened spe-
cies conservation, but requires sufficient power to
detect and reliably estimate population trends (Guil-
lera-Arroita & Lahoz-Monfort 2012). We show how
a quantitative assessment of statistical power based
on existing data can inform the design of monitoring
to ultimately improve our ability to detect policy-rele-
vant species’ declines.
We found that detectability for C. penicillatus is

reasonably high (0.45 on average per trapping night),
but varies greatly throughout the year: detection
rates in the late dry season were three times higher
than in the early dry (0.78 compared to 0.26).
Although seasonal variability in detection of wildlife
is well known for other taxa and generally consid-
ered in the timing of surveys, for example in butter-
flies (Pellet 2008), burrowing owls (Latif et al.
2012), bats in maternity caves (Baudunette et al.
1994) and amphibians (Sewell et al. 2010), there is
little evidence in the literature to suggest that such
variability has been considered when monitoring

mammals in a tropical climate. In highly seasonal
environments (i.e. those closer to the poles), sea-
sonal changes (and subsequent changes in detectabil-
ity) are more obvious, particularly for species that
hibernate (i.e. mountain pygmy possums, Geiser &
Broome 1991) or go into torpor (i.e. bats, Geiser &
Brigham 2000). Here, we show that explicit consid-
eration of monitoring design, based on seasonal vari-
ability, can be critical, even in contexts where
seasonality and changes in temperature are less
apparent (i.e. in areas closer to the equator). Our
findings have strong implications for the cost-effec-
tiveness of monitoring and management of C. penicil-
latus, and potentially other threatened taxa with
similar ecologies and life history characteristics in
seasonal environments. They also demonstrate the
need to account for imperfect detection when analys-
ing survey data, as otherwise, declines may be
masked or exaggerated by seasonal inconsistency in
sampling and seasonal variation in detectability.
Several factors could explain the higher probability

of detection during the late dry season compared
with the early dry season. Food resources are more

Table 2. Akaike information criterion, mean occupancy and mean detectability estimates for the candidate set of single-
season occupancy models for Conilurus penicillatus on the Tiwi Islands of the Northern Territory. The null model outputs are
provided for comparison.

ID Candidate models AIC ΔAIC Wi

Occupancy Detectability

w (�SE) CI P (�SE) CI

1 P (S + FF) Ψ (IS + CH + CC + FI +
DW + RF + FC)

426.38 0.00 0.22 0.24 (0.07) 0.13 0.34 0.45 (0.07) 0.31 0.59

2 P (S + FF) Ψ (IS + CH + CC + FI +
DW + RF + GC + FC)

426.48 0.10 0.21 0.25 (0.07) 0.13 0.41 0.44 (0.07) 0.30 0.58

3 P (S + FF) Ψ (BA + IS + CH + CC +
FI + DW + RF + GC + FC)

427.77 1.40 0.11 0.25 (0.07) 0.12 0.42 0.44 (0.07) 0.30 0.58

4 P (S + FF) Ψ (BA + IS + CH + CC +
FI + DW + RF + FC)

427.82 1.44 0.11 0.24 (0.07) 0.13 0.40 0.45 (0.07) 0.31 0.59

5 P (S + FF) Ψ (IS + CH + CC +
FI + FF + DW + RF + FC)

428.28 1.90 0.08 0.24 (0.07) 0.12 0.40 0.45 (0.08) 0.31 0.59

6 P (S + FF) Ψ (IS + CH + CC +
FI + FF + DW + RF + TC + FC)

428.40 2.09 0.08 0.25 (0.08) 0.12 0.42 0.44 (0.08) 0.30 0.58

7 P (S + FF) Ψ (IS + CH + CC +
FI + DW + RF + TC)

429.25 2.87 0.05 0.25 (0.07) 0.13 0.40 0.44 (0.08) 0.29 0.58

8 P (S + FF) Ψ (BA + IS + CH + CC +
FI + FF + DW + RF + TC + FC)

429.77 3.39 0.04 0.25 (0.08) 0.11 0.43 0.44 (0.08) 0.30 0.58

9 P (S + FF) Ψ (BA + IS + CH +
CC + FI + FF + DW + RF + FC)

429.81 3.42 0.04 0.24 (0.07) 0.11 0.41 0.45 (0.07) 0.30 0.59

10 P (S + FF) Ψ (IS + BA + CH+CC +
FI + FF + DW + RF + GC)

429.84 3.45 0.04 0.25 (0.07) 0.13 0.41 0.44 (0.08) 0.29 0.58

11 P (S + FF) Ψ (IS + CH + CC + DW +
RF + TC + FC)

430.12 3.74 0.03 0.26 (0.08) 0.13 0.43 0.42 (0.07) 0.29 0.56

Null P (.) Ψ (.) 496.20 NA NA 0.18 (0.02) 0.14 0.23 0.47 (0.05) 0.37 0.57

AIC, Akaike Information Criterion, ΔAIC, Akaike unit difference,Wi, Akaike weight,w, mean probability of occupancy, P, mean
probability of detection, SE, standard error, CI, confidence intervals, S, season, FF, fire frequency, BA, basal area of large trees, IS,
island, CH, canopy height, CC, canopy cover, FI, fire impact, DW, distance to watercourse, RF, mean rainfall, GC, total grass
cover and FC, foliar projection cover.[Correction added on 14 November 2018, after first online publication: The Akaike unit dif-
ference on row 2 has been corrected from ‘0.01’ to ‘0.10’.]
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abundant during the early dry season (related to
plant productivity following wet conditions), poten-
tially reducing the chance of an individual entering a
trap in search of bait. Seasonal variation may also
relate to C. penicillatus breeding patterns; high num-
bers of juveniles at the end of the dry season may
result in higher trap success due to increased relative
abundance and/or inexperienced, less cautious indi-
viduals. Conilurus penicillatus is just one example of a
species displaying strong seasonal breeding cycles – it
can be expected of other rodents and some dasyurids
(i.e. the northern quoll Dasyurus hallucatus) –

highlighting the importance of accounting for this
when examining population trends.
The most important variables driving occupancy of

C. penicillatus (canopy height, canopy cover, fire
impact and distance to nearest watercourse) were con-
sistent with a previous analysis of this data (Firth et al.
2006a). This species shows a preference for eucalypt
forests with taller trees, less intense fire and drier
upland areas. While fire is thought to influence the
occupancy of C. penicillatus, the results of this study
were somewhat equivocal. Fire frequency was not a
strong predictor for occupancy, while fire impact – a

Fig. 2. Standardised regression coefficients (with 95% confidence intervals) for the best model predictors of Conilurus
penicillatus (a) occupancy and (b) detectability.

doi:10.1111/aec.12667 © 2018 Ecological Society of Australia
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field-based measure of the apparent severity of fire –
had greater support, and was negatively correlated
with occupancy. Firth et al. (2010) found that late dry
season fires contribute to a reduction in both juvenile
and adult survival probabilities in C. penicillatus due to
a greater impact on vegetation cover and the loss of
important resources such as den sites (i.e. logs). Simi-
larly, McDonald et al. (2016) concluded that fire is an
important driver of grass cover, which influences the
occupancy patterns of another rare rodent (the criti-
cally endangered central rock-rat Zyzomys

pedunculatus). This outcome suggests recent severe fire
events are shaping C. penicillatus occupancy rather
than the number of fires that has occurred over time.
More intense fire may lead to lower perennial grass
species diversity, and thus a reduction in the availabil-
ity and variety of seed (Russell-Smith et al. 2000).
Fire impacts may also be synergistic with other poten-
tial causes of declines, such as predation by feral cats,
with cat abundance and hunting efficiency shown to
increase in areas that have been subject to recent
intensive fires in other comparable environments in

Fig. 3. The probability of detecting Conilurus penicillatus in the early dry season, late dry season and late wet season, assum-
ing a mean value of fire frequency.

Fig. 4. The number of sampling sites required to achieve a statistical power of 0.8 to detect change when Conilurus penicilla-
tus occupancy has declined by 30, 50 or 80%. These declines correspond to the IUCN Red List criteria for allocation of Vul-
nerable (VU), Endangered (EN) and Critically Endangered (CR) conservation status. Three monitoring scenarios are
considered: (a) core sites surveyed when detectability is highest (late dry season), given two repeat visits to a trap site; (b) core
sites surveyed across the year (i.e. average detectability), given four repeat visits to a trap site; and (c) random selection of
sites sampled across the year, given four repeat visits to a trap site. Scenario C takes no account of the information provided
by the model.
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northern Australia (McGregor et al. 2014; Leahy et al.
2015; Davies et al. 2016).
The power to detect population trends can be

improved by increasing the sampling effort, but there
are always financial and logistical constraints limiting
the effort that can be applied to a particular monitor-
ing programme. Alternative methods have been pro-
posed for improving power; one example is excluding
sites with a low probability of occupancy (Rhodes
et al. 2006). This approach is explored in this study,
where we considered a strategy that targeted sites
with a probability of C. penicillatus occupancy greater
than 7%, therefore focusing our inference on declines
in its core distribution. Our results show that to
detect smaller proportional changes in occupancy
(<50%), a substantial improvement in power can be
achieved by targeting suitable habitats, reducing the
survey effort (and thus costs) required to detect
declines. Conducting sampling when detectability is
highest improves power and reduces costs further.
Species’ presence can be inferred with high confi-
dence in two repeat visits when monitoring is con-
ducted during the late dry season, while four times
as many visits are necessary to infer the same level of
confidence in the early dry season.
One note of caution is that, in assessing the power

to detect a decline, we are identifying the ability to
detect that there is a decline, but this does not neces-
sarily imply that the true magnitude of that decline is
estimated. For example, a power of 0.8 for detecting
a decline of 30% between two sampling times indi-
cates that, given there is a true decline of 30%, there
is an 80% chance that the statistical analysis of the
data identifies a decline greater than 0. The esti-
mated decline may be smaller than the true decline,
and may be insufficient to allocate to a threatened
category. One can formulate a more stringent null

hypothesis to guide the survey design. For example,
we could design the sampling to ensure there is high
power to estimate a decline greater than X, when the
true decline is Y, but this naturally leads to greater
sample size requirements (Guillera-Arroita & Lahoz-
Monfort 2012). Note, however that one cannot set
X = Y, as this would require an infinite sample size
(to obtain an estimate of the truth with no uncer-
tainty).
Another important consideration is that as a species

declines, its detectability may also decline, thus leading
to greater difficulty in detecting a change between sam-
pling occasions. Conilurus penicillatus has declined on
the Tiwi Islands in the last 15 years, attributed primar-
ily to predation by feral cats (most likely a consequent
result of changing fire regimes and associated impacts
on vegetation cover). On Melville Island, it is now
restricted to areas with low probabilities of cat occu-
pancy and high shrub density, where predation effects
are thought to be effectively diminished (Davies et al.
2016). Trap success in 2015 was less than a third of
that reported in monitoring conducted in 2000–2002
(Davies et al. 2016), suggesting that the species is likely
to have lower probabilities of both occupancy and
detectability across the Island. In the light of new data,
we must recognise that there is a possibility that two
trap nights, sampled during the late dry season when
detectability of this species is highest, may now be
insufficient for obtaining high (>95%) confidence in
detection.
If one has reason to suspect that a decline has

occurred between two samples, then it may be worth-
while calculating power against different levels of
detectability during the early stages of survey design.
This would allow for a more conservative approach to
be developed that can meet the project objectives in the
event of a decrease in detectability between sampling
occasions. In the context of C. penicillatus, implement-
ing alternative trap methods could overcome limita-
tions associated with decreasing detectability through
time. Motion-sensor cameras are a non-invasive survey
tool that have been successfully used for several mam-
mals of varying sizes (Rendall et al. 2014; McDonald
et al. 2015; Welbourne et al. 2015), including C. peni-
cillatus (Davies et al. 2016). Once deployed, cameras
may be left in the field for long durations of time, thus
collecting data across a greater temporal scale with
fewer resources (De Bondi et al. 2010). The data
obtained from cameras can be analysed in a similar way
to provide insights into survey design and power to
detect change (Davies et al. 2016).
Designing an effective monitoring programme will

depend upon the objectives of the study, however, if
practitioners are interested in detecting a decline of
magnitude great enough for allocation to a ‘threat-
ened’ category (Vulnerable, Endangered, Critically
Endangered), then implementing a monitoring

Table 3. Costs associated with our ability to detect decli-
nes of varying magnitude in Conilurus penicillatus occupancy
under the three differing monitoring Scenarios: (A) core
sites surveyed when detectability is highest (late dry sea-
son), assuming two repeat visits to a trap site; (B) core sites
surveyed across the year (i.e. average detectability), assum-
ing four repeat visits to a trap site; and (C) random selec-
tion of sites sampled across the year, assuming four repeat
visits to a trap site. Scenario C takes no account of the
information provided by the model. Costs are based on the
estimated expenditure described in Appendix S1, and the
number of sites required for allocation of each threatened
category (Appendix S4).

Proportional decline
in occupancy

Costs (AU$)

A B C

30% 265 356 388 515 733 130
50% 86 814 127 310 237 060
80% 27 846 39 510 74 630

doi:10.1111/aec.12667 © 2018 Ecological Society of Australia
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regime capable of detecting smaller declines (i.e.
≤30%) within an allocated budget would be ideal. As
we have shown here, detecting a larger decline
requires less resources than detecting a small decline,
so designing a monitoring regime that is capable of
detecting smaller declines will lead to increased con-
fidence in our ability to detect more catastrophic
declines (i.e. >50%).
However, land practitioners must also consider the

scale and frequency at which monitoring takes place.
The IUCN Red List Criteria applies to declines across
a species’ entire distribution, and is generally applied
at the species level. Though the population of C. peni-
cillatus on the Tiwi Islands is considered a distinct sub-
species (C. p. melibius), a reported decline in this
population alone would not be sufficient to upgrade
its’ conservation status at the species level. A recent
study (Geyle et al. 2018) identifying the Australian
mammals most likely to go extinct in the next two dec-
ades placed both Australian subspecies (C. penicillatus
melibius and the mainland C. penicillatus penicillatus) in
the top 20 most at risk suggesting that each may
require emergency intervention to ensure their ongo-
ing persistence. Gaining an understanding of popula-
tion trends for both subspecies is thus crucial if we are
to improve their conservation outlook.
The frequency in which monitoring occurs is also

important. In this case, we have used a 10-year inter-
val, as it is related to the generation time for which a
decline must occur for a species to be eligible for
conservation status assessment. However, in practise,
if monitoring occurs more frequently, there is more
likelihood of detecting a decline in a time-sensitive
manner, and subsequently managers will be able to
respond more effectively and rapidly to the threats
driving such declines.
Despite some limitations of our approach, power

analyses provide important insight into whether a study
is worth conducting by identifying if the change consid-
ered meaningful can be detected with reasonable prob-
ability using an affordable sample size. Power analysis
is an important tool in the development of effective
monitoring regimes capable of achieving the desired
study outcomes (Guillera-Arroita & Lahoz-Monfort
2012). We show how existing data can be used to esti-
mate parameters required to determine optimal sample
sizes, and thus provide powerful insights into the effec-
tiveness of existing monitoring methods at achieving
different research and management goals. Our findings
demonstrate that a targeted, fit-for-purpose monitoring
protocol has greater power to detect declines for
C. penicillatus than a design targeted at multiple spe-
cies. However, we recognise that in many cases, partic-
ularly at large spatial scales, single-species monitoring
is often impractical. For example, the Tiwi Islands are
home to many threatened species that have suffered
widespread declines across northern Australia. Future

research should explore ways to optimise power for
detecting simultaneous declines in multiple threatened
species to ensure better use of resources, especially
given the sudden collapse of a wide range of small
mammals in Kakadu National Park on the adjacent
mainland in recent decades (Woinarski et al. 2011).
We suggest targeting several species with similar eco-
logical needs, habitat preferences and life history char-
acteristics, as this study highlights the importance of
targeting particular sites based upon the local habitat
characteristics present and seasonal fluctuations in
detectability.
Monitoring programmes that detect a change in

abundance or occupancy, while of great importance,
simply identify the problem, which is only one of the
steps contributing to threatened species conservation.
Ideally, monitoring programmes should provide some
insight into the potential causes of such change, and
designs should thus synchronously include site level
consideration of the putative threatening factors (Lin-
denmayer et al. 2012). As demonstrated here, good
sampling design can provide information not only on
trends but also on factors influencing those trends. In
this case, our analysis indicates that fire regimes are
associated with variation among site occupancy, and
hence may be contributing to the observed pattern of
decline. Such careful consideration of survey design
will ultimately lead to a far greater level of confidence
in our ability to detect declines, and understand the
reasons for them, which in turn may lead to more
informed and better conservation outcomes.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in
the online version of this article at the publisher’s
web-site:

Appendix S1. Estimated costs associated with moni-
toring Conilurus penicillatus on the Tiwi Islands.
Appendix S2. The summed Akaike weights for each
occupancy and detectability covariate corresponding

to the candidate set of single-season occupancy mod-
els in Table 1.
Appendix S3. Standardised coefficient and confi-
dence interval graphs for the first 5 candidate models
(i.e. within 2 Akaike unit difference) (Table 2),
demonstrating that the overall direction and effect
size of estimated relationships remained similar
across all top ranked models.
Appendix S4. The number of sites required to
detect declines of varying magnitudes (30, 50 and
80%), corresponding to the IUCN Red List criteria
for allocation of Vulnerable, Endangered and Criti-
cally Endangered threat status under each of the
three Scenarios (A, B and C, detailed in the main
text), given two repeat visits to each site for Scenario
A and four repeat visits to each site for Scenarios B
and C. Power (b) = 0.8 and alpha (a) = 0.2.
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