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Abstract
1.	 Colour patterns are used by many species to make decisions that ultimately affect 

their Darwinian fitness. Colour patterns consist of a mosaic of patches that differ 
in geometry and visual properties. Although traditionally pattern geometry and 
colour patch visual properties are analysed separately, these components are 
likely to work together as a functional unit. Despite this, the combined effect of 
patch visual properties, patch geometry, and the effects of the patch boundaries 
on animal visual systems, behaviour and fitness are relatively unexplored.

2.	 Here, we describe boundary strength analysis (BSA), a novel way to combine the 
geometry of the edges (boundaries among the patch classes) with the receptor 
noise estimate (ΔS) of the intensity of the edges. The method is based upon known 
properties of vertebrate and invertebrate retinas. The mean and SD of ΔS (mΔS, sΔS) 
of a colour pattern can be obtained by weighting each edge class ΔS by its length, 
separately for chromatic and achromatic ΔS. This assumes those colour patterns, 
or parts of the patterns used in signalling, with larger mΔS and sΔS, are more stimu-
lating and hence more salient to the viewers. BSA can be used to examine both 
colour patterns and visual backgrounds.

3.	 Boundary strength analysis was successful in assessing the estimated conspicu-
ousness of colour pattern variants in two species, guppies Poecilia reticulata and 
Gouldian finches Erythrura gouldiae, both polymorphic for patch colour, luminance 
and geometry. The 3D representations of the ΔS of patch edges (Fort Diagrams) 
of both species show that there is little or negative geometric correspondence 
between the chromatic and achromatic edges. All individuals have mΔS > 1.5 for 
both chromatic and achromatic measures, indicating the high within-pattern con-
trast expected for display signals. In contrast from what one would expect from 
sexual selection, all guppies have mΔS less than expected from random contacts 
between all pairs of patch colour/luminance classes. The correlation between 
chromatic and luminance ΔS is negative in both species but zero when correlating 
all possible kinds of edges between the colours of each species and morph, 
indicating nonrandom colour geometry.

4.	 The pattern difference between chromatic and achromatic edges in both species 
reveals the possibility that chromatic and achromatic edges could function differ-
ently. The smaller than random expected mΔS values in guppies suggests an 
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1  | INTRODUC TION

Colour patterns are important in survival and reproduction in di-
verse species because they affect mating success, contests, avoiding 
predators, luring prey or attracting pollinators. In general, the fitness 
of the sender (individual with the colour pattern) is affected because 
the receiver (viewer of the colour pattern) can make a behavioural or 
physiological decision about the sender, based upon reception and 
perception of the sender’s colour pattern (e.g., receivers will mate, 
fight, attack, be lured close and eaten, pollinate or disperse seeds). 
Colour patterns offer an effective way of investigating the complex 
relationship between genes, morphology, performance, fitness and 
evolution (Arnold, 1983, 2003) because the functions of most co-
lour patterns are relatively easy to identify (Endler, 1978, 1980). 
However, the links between visual properties, perception, receivers’ 
decision-making processes and fitness are not well understood.

Decisions made by the receiver depend upon both the signal 
design of the colour pattern (the physical structure of the signal) 
and its signal content (information about the signaller, reviewed in 
Endler, 1993a). For both components, the first-stage affecting fit-
ness is the stimulation of the receiver’s retina by the colour pattern; 
all subsequent processes leading to perception and decision-making 
flow through this step (Lythgoe, 1979). Although all components of a 
colour pattern may affect the viewer’s decision making, their relative 
importance in retinal and brain stimulation is not known. In partic-
ular, we do not know how colour, luminance, patch size and patch 
geometry work together to affect receiver behaviour, and so cannot 
yet make explicit predictions about colour pattern properties or the 
behavioural decisions based upon them.

Relating patterns to fitness has been successful for some spe-
cies with cryptic colour pattern components (Troscianko, Skelhorn, 
& Stevens, 2017; Troscianko, Wilson-Aggarwal, Stevens, & 
Spottiswoode, 2016), but there is a tendency in the literature to study 
only pattern or one or two colour pattern components. Previous 
attempts to quantify colour patterns have included mapping the 
pattern components (Van Belleghem et al., 2018), mapping pattern 
component boundaries (Stevens & Cuthill, 2006) and estimating the 
distributions of relative pattern component edge lengths (Endler, 
2012). Other analyses have calculated colour patch discriminability 

(Siddiqi, Cronin, Loew, Vorobyev, & Summers, 2004). However, all 
of these methods ignore whether or not the colour patches share 
common boundaries. Colour patch boundaries are important be-
cause adjacent colour patches will influence the visual perception of 
a given patch as well as the contrast across the boundary.

Here, we present boundary strength analysis (BSA), a way to 
combine the effects of both patch properties and the intensity of 
patch edges (transitions between patches) based upon how they 
are processed by the visual system in the retina. BSA estimates the 
effects of both colour and patch edges by combining two existing 
methods for the first time, one for discriminability between adjacent 
patches (ΔS, Vorobyev & Osorio, 1998) and one for the geometric 
arrangement of patches (Endler, 2012). Unlike all previous meth-
ods, BSA includes the estimated visual intensity of the boundaries 
(estimated by ΔS) and their length, rather than just recording which 
boundaries are present, and calculates ΔS statistics only between 
patches which come in contact. This is consistent with the oppo-
nent visual processes that detect colour and colour patch edges, 
and the fact that these processes sample small parts of the visual 
field (Dowling, 2012; Kelber, 2016). This allows us to begin to ex-
amine colour patterns less arbitrarily, by incorporating estimates of 
how strongly patch boundaries stimulate the retina as a proxy for 
conspicuousness.

Boundary strength analysis can be used for animal and plant co-
lour patterns as well as visual backgrounds, and allows investigation 
of both within pattern and pattern-background contrast. For brevity, 
we will describe and give examples of BSA in terms of within-pattern 
contrast but the resulting statistics can be calculated for visual 
backgrounds as well as patterns and the two compared to estimate 
pattern-background contrast.

1.1 | Visual modelling of colour discrimination

We use the receptor noise model or RN (Vorobyev & Osorio, 1998; 
reviewed in Kelber, Vorobyev, & Osorio, 2003) to estimate detection 
thresholds for colour discrimination. The input to the model con-
sists of the relative light (photon) captures for each photoreceptor 
class in the viewer’s retina for two colour patches. The output of 
the RN model is ΔS, which is similar to a multivariate equivalent to 

anti-predator function because guppies are never found without predators. 
Moreover, mΔS could vary with predation intensity within and among species. BSA 
can be applied to any colour pattern used in intraspecific and interspecific behav-
iour. Seven predictions and four questions about colour patterns are presented.

5.	 In species which are very convex in cross-section, both chromatic and luminance mΔS 
change with viewing angle; geometry of signalling is as important as signal geometry.
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t in statistics in that it compares the difference between the two 
sets of cone captures to the standard error of the difference; it is 
the Mahalanobis distance of multivariate statistics (Clark, Santer, & 
Brebner, 2017). Like other signal/noise measures ΔS = 1 is regarded 
as the difference required for two colours to be noticeable, or one 
just noticeable difference (JND). RN predictions have been tested 
using behaviour of several species, and work reasonably well (e.g., 
Fleishman et al., 2016; Kelber et al., 2003; Olsson, Lind, & Kelber, 
2015). However, RN modelling must be used with caution for four 
reasons: (a) RN was designed to predict discrimination when ΔS is 
near one (near the threshold), and may be inaccurate for colours that 
are very different (ΔS > 1). This arises because the relationship be-
tween predicted difference and perceived difference is nonlinear. 
For example, consider three colours A, B and C. Let the difference 
between A and B be ΔS = 2, and between A and C ΔS = 8; the fre-
quent implicit assumption is that ΔS = 6 between B and C. Although 
the JND scale suggests that A and B are almost as far apart as A 
and C, if the perception response to ΔS is logarithmic then B and 
C may not be perceived as very different from each other and both 
perceived as very different from A. (b) Behaviour observations often 
show that some colours are discriminated as predicted by RN while 
others are not (unpublished observations; Cheney, pers. comm 2017; 
Fleishman et al., 2016; Olsson et al., 2015). This may arise from pre-
existing colour preferences. Different RN models need to be used at 
higher and lower light intensities to make good predictions (Olsson 
et al., 2015; Vorobyev & Osorio, 1998). (c) Data on actual receptor 
noise values are scarce yet they underpin all ΔS calculations (Olsson, 
Lind, & Kelber, 2017). (d) The model is limited; it is designed to cap-
ture what happens during early processing in the retina and does not 
include downstream processing in the brain, including decision mak-
ing as well as perception. Estimates of detection and discrimination 
depend upon animals making decisions. Consequently, the RN could 
be correct in the retina, but later neural processes may mean that 
behaviour-tests may not match all RN predictions (for example Dyer, 
Spaethe, & Prack, 2008). Despite these limitations, what happens 
at the early retinal level is important because all visual processing 
starts there (Lythgoe, 1979). The RN model must be treated simply 
as a starting point analogous to the Hardy–Weinberg equilibrium in 
population genetics. In addition to providing a foundation, RN model 
estimates of ΔS can be used to explore the visual effect of the entire 
colour pattern, not just differences between colour pairs.

1.2 | Assessment of patch edges

Previous work with colour discrimination and ΔS has not ac-
counted for whether compared patches were in contact or sepa-
rated by other colours. Here, we explore ΔS explicitly for patches 
which come into contact because what happens at the patch edges 
may be important. The neurobiological justification for assessing 
the effects of edges (transitions between patches) is described 
in detail in Elder and Sachs (2004), Stevens and Cuthill (2006), 
Troscianko et al. (2017) and Endler (2012). Briefly, the photore-
ceptors in both vertebrate and invertebrate visual systems are 

connected to neurons that calculate the differences between the 
photoreceptor outputs over a small visual field. Groups of photo-
receptors involved in opponency are called units and can not only 
detect colour but also serve as edge detectors. Units consist of 
two adjacent groups (zones) of photoreceptors covering a small 
part of the visual field, and a ganglion cell calculates the differ-
ence in outputs between the two groups’ opponency (Dowling, 
2012; Dyer, Paulk, & Reser, 2011; Kelber, 2016; Sanes & Zipursky, 
2010). If the photoreceptors in the two zones are sensitive to 
different wavelengths, then the unit outputs are colour signals 
because colour is based upon intensity differences among dif-
ferent parts of the visible spectrum. Edges between patches of 
different colours are detected if the edge cuts across the bound-
ary between the unit zones. If the photoreceptors in the unit are 
sensitive to the same wavelengths then the outputs result from 
patch edges at the zone boundary regardless of chroma if they 
differ in luminance. Both edge types are detected depending 
upon the physical size of the retinal unit relative to the image 
and/or how rapidly the eye scans the colour pattern (Dowling, 
2012; Elder & Sachs, 2004; Gegenfurtner & Sharpe, 1999; Kelber, 
2016; Sanes & Zipursky, 2010). The stronger the edges (steeper 
gradients and greater differences between the patches, yielding 
larger ΔS between the two patches), the stronger the signal they 
produce in the units. The longer the edges the more units that 
they will stimulate. Consequently, both the geometry and reflec-
tance spectra of patches in colour patterns affect edge intensity 
and conspicuousness. Both chromatic and achromatic opponent 
units operate over small parts of the visual field, suggesting that 
local colour pattern properties may be more important than 
global properties.

The effects of edges also depend upon the visual acuity (res-
olution angle) of the viewer as well as the distance between the 
viewer and the colour pattern. Acuity effects may eliminate or 
modify visual contrast, particularly if the visual fields of the op-
ponent units are larger than the patches. Although opponent units 
are known to cover a small part of the visual field, their actual sizes 
are unknown in most species. Moreover, there may be higher-
order units in the brain which will not be accounted for by the 
retinal estimations. For these reasons, calculations of edge effects 
must be done with good data on acuity and viewing distance, and 
results treated as a first approximation, even if the unit field sizes 
are known.

2  | MATERIAL S AND METHODS

Let C be the number of colour and luminance classes in a given colour 
pattern. The challenge of this, and any other colour pattern analysis, is 
identifying the C classes and making identification repeatable. This is 
a classic image analysis problem known as image segmentation, and is 
particularly problematic where there are colour or luminance gradients. 
One could identify the classes by (human) eye, but for almost all diurnal 
nonprimate animals their vision is sufficiently different from humans 
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that human-based classifications may range from unreliable to mislead-
ing, particularly if there are UV reflecting patches present. Another 
method is to move a portable reflectance spectrometer sensor over the 
animal’s body to determine how patch reflectance spectra vary. If any 
of the spectra vary more than is visible to the human eye then samples 
must be taken from both the invisible and visible patches and labelled 
accordingly. A third method which is less likely to miss patches invisible 
to humans is to scan the entire body evenly in a grid with a spectrome-
ter and use various clustering methods to classify the colour/luminance 
patches by spectral clusters. This can be refined by doing clustering of 
calibrated photographic pixels (Van Belleghem et al., 2018), spectra or 
cone stimulations and clustering based upon ΔS (van den Berg et al., in 
preparation). A final stage is ensuring that all patches in the segmented 
image are visible with the viewer’s visual acuity and viewing distance. In 
what follows, we will assume that the patch classification into C classes 
has been completed along with a matching list of cone captures esti-
mated from patch spectra (Endler & Mielke, 2005) or from calibrated 
photographs (Troscianko & Stevens, 2015).

All cone capture estimates should be made under the normal 
viewing conditions in the wild. This includes the distances between 
signals and receivers as well as light intensity because visual acu-
ity declines with declining light and the combination of the visual 
acuity of the viewer and the viewing distance affects the smallest 
patch which can be resolved. If two patches are not resolved at the 
ordinary distance and light intensity, then the two patches should 
be combined into a single patch and the patch spectrum should be 
an average of the two spectra, weighted at each wavelength by the 
relative areas of the two indistinguishable patches. The geometry of 
patches should be relevant to the viewer’s vision and visual condi-
tions during viewing.

2.1 | Relative frequency of each patch edge class

The first stage of analysis of a colour pattern is to estimate the 
lengths or relative frequencies of the C edges between adjacent 
colour/luminance patch classes. A C × C matrix should be made 
to organize the list of all possible edge or colour/luminance tran-
sition classes (example in Table S1). For C classes there are at 
most E = C(C − 1)/2 different edge or transition classes (Endler, 
2012). Note that in any one colour pattern, it is likely that not all 
patch classes will contact all other classes, especially for larger C. 
Consequently, the number of observed kinds of different tran-
sitions (edges) among patches, n, will be less than the maximum 
possible number of edge classes, E. A simple example is found in 
the North American coral snakes Micrurus fulvius and Micrurus eu-
ryxanthus, where there are colloquial phrases to distinguish them 
from the Batesian mimetic king snakes Lampropeltis species, such 
as “red on yellow, beware the fellow, red on black, it’s all right 
Jack.” There are three possible transitions in these snakes: red-
yellow, yellow-black and red-black, but red-black is a missing tran-
sition in these coral snakes, while and red-yellow is missing from 
the mimics (this is not true for other coral snake species). Once 
the edge classes are determined, they need to be mapped onto 

the outline of the animal. An example using a male guppy Poecilia 
reticulata is shown in Figure 1a–c.

The relative frequency or length of each transition class can be 
obtained from one of two methods. Measure the length for each 
edge directly from the edge map (Figure 1c) or extract edges from 
the zone map of the patch pattern. A zone map is simply a digital mo-
saic diagram of the same size as the original image where each pixel 
contains a label for the colour/luminance class in which it is found 
(Figure 1b); this is also known as a label matrix. The zone map also 
allows additional parameters to be extracted (Endler, 2012). Because 
pixels are in a square array, diagonal distances as well as horizon-
tal or vertical distances will have to be used for slanted edges, but 
this should produce minor errors if the pixel spacing is small enough. 
Accumulating the colour/luminance class transitions over all adjacent 
pixels in the zone map yields a transition or adjacency matrix, where 
rows and columns correspond to the colour classes (as in Table S1). 
The transition matrix diagonal entries are proportional to each co-
lour’s relative area. The off-diagonals yield the relative frequency of 
each transition class or edge (Endler, 2012). This matrix is symmetric 
with separate estimates of a particular transition class in both the 
upper and lower off-diagonals (Table S1). For further analysis, add 
the equivalent upper and lower off-diagonals together in order to ob-
tain frequencies of each patch edge type (Table S2); these numbers 
are equivalent to lengths of edges extracted directly from the image 
(Figure 1c), and, like lengths, can be divided by their grand total to 
yield relative edge lengths. The result of either method is a C × C 
lower off-diagonal transition or edge matrix, TE (Table S2), where the 
lower off-diagonal numbers are the lengths or frequencies of the 
edge class defined by the intersection of the corresponding row and 
column. For example, if a particular cell (row i and column j) has the 
value fij, then fij is the frequency of the transition between colours i 
and j in both directions. Potential transitions between colours which 
are not observed because the appropriate patches do not come in 
contact will be represented by fij = 0. A given fij in TE estimates how 
commonly two colour/luminance classes share a common edge or 
the size of each patch type boundary.

2.2 | Magnitude hence salience of patch boundaries

The second and novel stage of analysis is an estimate of how con-
spicuousness the edge is likely to be to a given viewer under given 
environmental conditions. The receptor noise ΔS estimate for any 
pair of colours is an estimate of edge conspicuousness or strength 
because colour and/or luminance differences are easier to detect 
for larger ΔS. We can obtain photon captures for each patch using 
the irradiance spectrum illuminating the pattern in nature, the re-
flectance spectrum of the patch in the direction of the viewer, the 
transmission spectrum of the air or water between the pattern and 
viewer in nature, the transmission spectrum of the eye optics, and 
the absorption spectra of the visual pigments in each photoreceptor 
class (Endler, Cole, & Kranz, 2005; Endler & Mielke, 2005; Kelber 
et al., 2003; Lythgoe, 1979). We obtain the ΔS for all possible pairs 
of patches in the colour pattern (as did Siddiqi et al., 2004) based 
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upon the photoreceptor captures, the relative abundance of each 
photoreceptor, and an assumption about the level of receptor noise 
(the Weber fraction, Kelber et al., 2003). Methods for obtaining ΔS 
are well established, including in the r package pavo (Maia, Eliason, 
Bitton, Doucet, & Shawkey, 2013). The ΔS for each kind of colour 
class comparison is then placed in the appropriate row and col-
umn in a second matrix with C rows and C columns (same format as 
Table S2). It is only necessary to fill in the lower off-diagonal because 
the upper off diagonal should be identical, and the diagonals will be 
zero (no difference in a comparison of the same colour). This yields a 
C × C transition or ΔS matrix TS with data in the lower off-diagonal, 
where each entry sij is the ΔS for patch colour/luminance classes in-
dicated by row i and column j. Two different Ts should be calculated 
by: (a) using all the photoreceptors used in colour vision (e.g., cones 
in vertebrates) to obtain chromatic ΔS and (b) using the specific 
photoreceptor(s) used in luminance to get luminance or achromatic 
ΔS. Consequently the result will be two ΔS transition matrices, TSC 
from the chromatic ΔS calculations and TSL from the luminance or 

achromatic ΔS calculations. The rows and columns of TSC and TSL 
must correspond exactly in both length (C) and row order to the rows 
and columns of TE.

The matrix TE should contain the relative frequencies of each 
kind of transition and the matrices TSC and TSL should contain the 
RN estimate of how differently (ΔS) the two adjacent colours in the 
corresponding TE entry stimulate the retina with respect to chroma-
ticity or luminance, respectively. They should have the same form 
as Table S2. The lower off-diagonal values of these three matrices 
should be converted into vectors (one-dimensional lists) of length 
E = C(C − 1)/2, and placed together in a E × 3 data matrix for conve-
nience in further calculations (see Table S3). This data matrix has the 
edge length, the chromatic ΔS, and the luminance ΔS for the transi-
tion (edge) class k in row k; call these fk, sck and slk where k = 1, 2, …, n 
patch classes. Table S3 shows an example where k = a, b, …, f and 
n = 9.

The data matrix provides a correspondence between edge 
lengths and their estimated visual magnitudes or salience. This, 

F IGURE  1 Example analysis of a male 
guppy colour pattern. (a) Photograph of 
a guppy (scale not shown). (b) Part of the 
resulting zone map indicated by the circle 
in panels (a) and (c). Each pixel has a code 
indicating which colour/luminance class 
overlaps that pixel (see Endler, 2012 for 
details). (c) Edge map; this can either be 
derived directly from the photograph (a) 
or from the zone map (b). (d) Diagram in 
which the x,y (horizontal) coordinates 
correspond to the edge map in (c) and the 
vertical axis corresponds to the chromatic 
ΔS between adjacent patches under 
specific ambient light conditions. (e) as in 
(d) but for luminance ΔS. Note the lack of 
topographic correspondence between the 
chromatic and luminance diagrams. For 
brevity we will refer to (d) and (e) as “Fort 
Diagrams” because they resemble old 
fashioned fortresses)
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along with an annotated map of the patch boundaries (Figure 1c), 
allows plotting the geometry of estimated patch boundary 
strengths for both chromatic and luminance ΔS. In these diagrams, 
the x and y axes are as in Figure 1c and the z-axis is proportional to 
ΔS. Figure 1d,e show 3D plots of chromatic and luminance edge ΔS 
for the guppy shown in Figure 1a. We will call these diagrams “fort 
diagrams” because they resemble forts and “fort” means strong in 
French and Latin, so also refers to boundary strength. Note the 
very different geometric patterns of chromaticity and luminance 
boundaries in Figure 1d,e; the guppy shows high edge contrasts in 
different places for chromaticity and luminance. More specifically, 
luminance contrast is dominated by the black patch edges almost 
independently of the patch class they contact. Note the very high 
luminance ΔS (height) where a black patch contacts the very highly 
reflective silver patch towards the front of the guppy in (compare 
Figure 1a,e).

2.3 | Combining patch properties and edges

If edges contribute significantly to the conspicuousness of the en-
tire colour pattern, then we may be able to capture at least part of 
what makes a colour pattern conspicuous by obtaining an aggregate 
measure of the edge magnitudes. We suggest the mean, standard 
deviation and CV of the edges’ ΔS, weighted by their correspond-
ing lengths or frequencies. These are calculated from either the sck 
(chromatic ΔS) or slk (luminance ΔS) as sk from TSC or TSL, and using 
the fk (from TE) as weights in the formulae:

where E is the number of all possible different kinds of edges and 
n is the number of observed transitions (Sk) or those with nonzero 
fk (Filliben, Heckert, & Lipman, 1996); n ≤ E. The Supplemental 
Appendix provides a MATLAB function to calculate the weighted 
mean and standard deviation; the equivalent functions in r are 
wt.mean and wt.sd within the r package SDMTools (VanDerWal, 
Falconi, Januchowski, Shoo, & Storlie, 2014). Formulae 1–3 are the 
same formulae used to calculate the mean, SD and CV of chroma 
and luminance for overall within-contrast measurements, substi-
tuting chroma or luminance for sk and mean chroma or luminance 
for mΔS; but circular statistics have to be used for hue angles 
(Endler & Mielke, 2005).

The weighted mean mΔS is an estimate of the average conspic-
uousness of the whole pattern but weighting longer edges more 
than shorter ones. Similarly, the weighted standard deviation sΔS 
measures how variable the edge magnitudes are over the entire pat-
tern weighted by their lengths. The coefficient of variation CV is the 
standard deviation relative to the mean. If it is known that the viewer 
attends only to part of the pattern then mΔS and sΔS should be cal-
culated over the relevant part of the colour pattern. The assumption 
here is that a longer edge will stimulate more opponency units in 
the retina, and when the pattern is moving, a longer edge will sweep 
out more of the retinal area than a smaller edge. It is not known 
or obvious whether the mean, standard deviation, or even the CV 
would be a better predictor of salience. For example, a larger mΔS 
might be more stimulating, but it is unknown whether this should be 
accompanied by a smaller sΔS for consistently high stimulation over 
the entire pattern, or a larger sΔS and hence less predictable edge 
magnitude to prevent sensory adaptation. Using CV instead of the 
standard deviation might be important if a given degree of variation 
is not more important for small versus larger means. These conjec-
tures can only be answered by extensive behavioural studies with 
different mΔS and sΔS, measured under the appropriate conditions 
and appropriate parts of the body.

Boundary strength analysis can be applied to an animal colour 
pattern in order to estimate within-pattern visual contrast. They can 
also be applied to visual backgrounds to estimate within-background 
contrast, and if so estimates of signal-background contrast can be 
made by comparing parameters of animal and background. For sim-
plicity the examples will concentrate on within-signal contrast.

3  | E X AMPLES AND THEIR IMPLIC ATIONS

To illustrate and explore the biological significance of BSA, we chose 
two species that are polymorphic in their patch colour, luminance and 
geometry, male guppies P. reticulata and Gouldian finches Erythrura 
gouldiae, because they have very different signal and signalling ge-
ometry. This allows us to showcase the power of the method in col-
our pattern research and the important effects of local patterns and 
viewing angle between the sender and receiver.

3.1 | Guppy examples and implications

Male guppies are extremely polymorphic in patch geometry and 
properties (Endler, 1978, 1980). Figure 2 shows Fort diagrams of six 
male guppies in the same format as Figure 1c,d, ordered by decreas-
ing chromatic mΔS and calculated in open/cloudy light conditions 
(Endler, 1993b). The numbers are mΔS and CV from Equations (1) 
and (3). These six randomly selected guppies yield five observations: 
(a) Each guppy has edges with unique geometry. This goes with the 
considerable polymorphism of male guppy colour patterns (photos in 
Endler, 1978). (b) There is little geometric correspondence between 
the strength and positions of chromatic and achromatic (luminance) 
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edges; the peaks in chromaticity do not correspond with peaks in 
luminance, and both depend upon which pair of patches form the 
edge. (c) The spatial correlation between chromatic and luminance 
ΔS is always negative within a guppy although not always signifi-
cantly so (Figure 3a,b). (d) The negative correlation between the two 
ΔS is not present when we consider all possible patch combinations 
(Figure 3c); patch contacts and hence boundary strengths are clearly 
nonrandom. (e) Guppies differ in how variable their ΔS heights are, 
indicating variation in which patches form common edges.

Maximum chroma and luminance should be negatively cor-
related because the only way to increase chroma is to remove 
parts of a spectrum. Removing part of the spectral radiance re-
duces luminance. At the same time, it increases the differences 
in stimulation among different photoreceptor classes, increasing 
chroma (Endler & Mielke, 2005; Endler & Théry, 1996; Endler et 
al., 2005). However, mΔS and sΔS depend upon geometry as well as 

patch properties and consequently predictions based upon patch 
properties alone may be invalid. For example, chromatic and lu-
minance mΔS might even be positively correlated if sexual selec-
tion jointly increases both luminance and chromatic mΔS, which 
would make males more conspicuous. We tested for a possible 
chromatic-luminance relationship by analysing 200 male guppies. 
The two mΔS are positively correlated (Figure 3d). This is not what 
one would expect from random patch geometry, where every 
patch class has an equal probability of contacting the others (see 
also Figure 3a,c). It suggests that particular colours are adjacent 
and adjacency has evolved to set particular levels of overall con-
spicuousness, as estimated by mΔS. Random associations yield dif-
ferent mΔS. The relationship for sΔS is also positive (Figure 3e), but 
the 200 points are widely scattered and appear in 3 clumps. This 
suggests partially discontinuous variation among fish boundary 
ΔS, and could result from polymorphic colour pattern genes that 

F IGURE  2 Examples of Fort Diagrams 
for 6 different guppy colour patterns, 
arranged in order of decreasing chromatic 
mΔS. Rows correspond to the same 
individual guppy and columns refer to 
the guppy’s chromatic or luminance Fort 
diagram, respectively. Numbers under 
the diagrams for each row are chromatic 
mΔS and CV (left column) and luminance 
mΔS and CV (right column) for the same 
guppy. Note the lack of topographic 
correspondence between the chromatic 
and luminance diagrams, and the variation 
among individuals
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control particular sets of spots (review in Endler, 1978). The cor-
relation and clumping for CV (Figure 3f) is lower than for mΔS and 
sΔS. Patterns of variation in boundary strength could predict fit-
ness in any species because they affect pattern conspicuousness 
and hence colour pattern function and fitness.

Figure 4 shows chromatic and luminance mΔS and sΔS distri-
butions for the 200 guppies analysed. The means are moderately 
symmetrically and unimodally distributed but the standard devi-
ations are multimodal, as in Figure 3e,f. Note that mΔS > 1.5 indi-
cates that, on average, the boundaries are detectable by females, 
but some may not be (mΔS = 1 is one JND, the threshold for distin-
guishing patches). Patches with similar colours or luminance which 
would lead to smaller ΔS and mΔS tend not to be adjacent. In gen-
eral, we hypothesise that having adjacent patches with larger ΔS 
would be advantageous in conspicuous signalling, but disadvanta-
geous for crypsis. If most boundaries are not detectable and a few 

were, this might be a previously unrecognised form of disruptive 
colouration.

The thick black line in Figure 4 is the estimate for randomly ar-
ranged patch classes, as opposed to their observed geometry. This 
was calculated by letting every patch class contact every other patch 
class as in Figure 3c. For mΔS, it is larger than actually found in any 
fish, and for sΔS, it is larger than all fish except for chromatic sΔS where 
it is larger than 98% of the fish. This suggests that the observed co-
lour patterns are less conspicuous than they would be if the patches 
were arranged at random. One would at first think that this is con-
trary to that expected because we assume that females should mate 
with males with larger mΔS because they are more conspicuous than 
those with smaller mΔS. However, visually hunting predators are al-
ways present in natural guppy populations, resulting in variation in 
the trade-off between sexual selection and predation (Endler, 1978, 
1980). We speculate that guppies have been selected over millions 

F IGURE  3 Relationships between 
chromatic and luminance edge statistics 
in guppies. (a) Significant negative 
correlation between chromatic and 
luminance ΔS within a guppy having an 
average correlation value. (b) Distribution 
of the correlations among 11 guppies; all 
are negative but two are not significantly 
negative. (c) Lack of correlation between 
all possible chromatic and luminance 
edges; note the larger rage and higher 
joint values compared to a. (d) The 
relationship between chromatic and 
luminance mΔS of 200 guppies. (e) 
Relationship for sΔS. (f) relationship for 
CVΔS
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of generations for optimal edge strengths balancing sexual selection 
and predation. We predict that samples taken from high predation 
populations would have distributions of mΔS and sΔS that extensively 
overlap ΔS = 1, indicating less conspicuous coloration representing 
the local balance between sexual selection and predation. This may 
apply to any species where there is a shifting balance between sex-
ual selection and predation.

3.2 | Gouldian finch examples and implications

Gouldian finches provide examples of additional insights that can be 
gained from BSA. Gouldian finches have three polymorphs differing 
in head colour: black, yellow (golden) or red. Both males and females 
are coloured with females having less chromatic colours and a mauve 
rather than a purple chest. Unlike guppies, which have a relatively 
flat surface that is displayed towards females, Gouldian finches have 
a 3D colour pattern in which the relative proportion of patches and 
edges changes with viewing angle. Consequently, we present Fort 
diagrams from Gouldian finches seen at two viewing angles: a ¾ view 
and a side view (Figure 5a,b). The analysis of the ¾ view is shown in 
Figures 5 and 6 and the side view in Figure 7. More details are shown 
in the Supplemental Appendix.

Like guppies, there is a divergence between chromatic and lumi-
nance ΔS (Figure 5c–h) and the spatial correlation between them is 
negative (except in the golden female morph). However, with fewer 
points than in the guppy data, none of the correlations are signifi-
cant. Nevertheless, each correlation is smaller than the correlation 
between all possible pairs of colours for that morph and gender (see 

Supplemental Appendix) suggesting that the negative correlation 
has some function in both species.

Given that the chromatic and achromatic patterns are different and 
almost complementary we suggest that the chromatic and achromatic 
components of colour patterns could be used for different functions, 
such as sexual selection, species recognition, or defense. Chromaticity 
and luminance are processed independently, and there is variation in 
their relative importance in stimulus choice and discrimination, among 
many species including crabs, psyllids, honeybees, bumblebees, flies, 
hawkmoths, birds and humans (Baldwin & Johnsen, 2012; Dyer et al., 
2008; Farnier, Dyer, & Steinbauer, 2014; Giurfa, Vorobyev, Brandt, 
Posner, & Menzel, 1997; Keil, Miskovic, Gray, & Martinovic, 2013; 
Kelber, 2005, 2016; Osorio & Vorobyev, 2005; White & Kemp, 2016, 
2017; White, Rojas, Mappes, Rautiala, & Kemp, 2017; Zhou, Ji, Gong, 
Gong, & Liu, 2012). This suggests that chromatic and achromatic chan-
nels could have different functions in any taxa. There are also distance 
effects, probably due to the fact that in many animals, visual acuity 
is greater for achromatic than chromatic stimuli. For example, bees 
use chromatic cues when they subtend larger angles on their retina 
and achromatic cues when the visual angles are smaller (Giurfa et al., 
1997). This means that achromatic cues may be more useful at greater 
distances than chromatic cues, especially at lower light levels when 
acuity decreases, and colour vision stops working at still lower irradi-
ances. Moreover, chromatic and luminance components are roughly 
independent in natural scenes (Hansen & Gegenfurtner, 2009), sug-
gesting that crypsis may be possible independently of signalling. The 
functional differences between chromatic and achromatic edges are 
worth further investigation.

F IGURE  4 The distributions of 
chromatic and luminance edge statistics 
mΔS and sΔS of the 200 guppies in 
Figures 3 and 4. (a) Chromatic mΔS, (b) 
chromatic sΔS, (c) luminance mΔS, (d) 
luminance sΔS. All guppies have mΔS > 1 
indicating that adjacent patches are 
always discriminable to guppies under 
the environmental conditions. The thick 
vertical lines show the same statistics if 
the colour patches were distributed at 
random over each guppy’s body; every 
patch class had an equal probability of 
contacting the others. Almost all guppies 
show smaller values than expected from 
random patch locations
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Gouldian finches also illustrate that: (a) The viewing angle 
significantly affects the perceived relative area of each patch, 
significantly affecting mΔS and sΔS; the ¾ view having higher mΔS 
and often higher sΔS than the side view (Table 1). This highlights 
the importance of recording the viewing angle during visual 
signalling. (b) Sexual dimorphism within each morph is associ-
ated with reduced edge intensities, mΔS and sΔS, in females of 
all morphs for both chromatic and achromatic ΔS (Figure 6, 
Table 1), with less reduction in achromatic ΔS (Table 1). This il-
lustrates the utility of BSA in estimating sexual dimorphism. (c) 
Within males or females, the three morphs differ in chromatic 

mΔS with the golden and red morphs similar but different from 
the black morph (Table 1). They differ less in achromatic mΔS, 
and there is surprisingly little variation in sΔS among morphs; 
perhaps this is the sign of a species-specific signal. (d) There is 
a clear difference in pattern between the head and the rest of 
the body, with the head values larger than the body. The dif-
ference in location-specific edge intensities is stronger in the 
side view. This reiterates the importance of calculations using 
the same view angle as used by the viewers, but it also shows a 
weakness of using mΔS and sΔS calculated over the entire body. It 
may be reasonable in guppies or other species that present the 

F IGURE  5 Gouldian finche edge 
maps and fort diagrams. (a) Edge map 
traced from a 3/4 view photograph. 
(b) Edge map traced from a side view 
photograph. (c–h) Fort diagrams of the 
three male morphs (rows) showing the 
difference in pattern for chromatic and 
luminance ΔS (columns) in the 3/4 view
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entire side of a relatively flat surface to the viewer, but it will 
be inaccurate if the viewer attends more to some parts of the 
body than the others. The stronger edges in the Gouldian finch 
heads may be associated with, and even selected by, conspecif-
ics paying more attention to the heads than the rest of the body. 
The rest of the body may be used in species recognition and, 
or, reduction of predator risk. Consequently, mΔS and sΔS should 

be calculated on the parts of the colour pattern used in social 
interactions for signal design assessment whereas they should 
be calculated separately on the parts of the body seen by pred-
ators (using predator vision parameters). These two functions 
may be spatially separated. Clearly we need to know about the 
geometry of signalling as much as the geometry of the signals for 
accurate use of BSA.

F IGURE  6 Fort diagrams showing 
sexual dimorphism in the black (a,b,e,f) 
and golden-headed morphs (c,d,g,h) 
with respect to both chromatic (a–d) and 
luminance (e–h) ΔS in the 3/4 view. The 
red-headed morph does not differ very 
much from the golden-headed morph 
(see Supplemental Appendix for all fort 
diagrams)
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4  | GENER AL PREDIC TIONS

Because BSA can be used to analyse any animal or plant colour pat-
tern, it is useful to make some general predictions, based upon the 
assumption that edges are important in colour pattern detection and 
perception (Dowling, 2012; Gegenfurtner & Sharpe, 1999; Stevens & 
Cuthill, 2006), and that stronger edges (larger ΔS and greater length) 
are more effective than weaker edges.

1.	 If mΔS is important in intraspecific signalling then it should 
predict behaviours such as mate choice or any other visually 
based choice behaviour. The relative importance of chromatic 
and luminance mΔS is unknown, and this may vary among 
higher taxonomic groups. Consequently, we predict that the 

relationship between mΔS, pattern conspicuousness, deci-
sion-making, and fitness will be context, habitat and species 
specific. Restriction of mΔS to calculations just over the part 
of the colour pattern tracked by viewers should be limited 
to species with well-studied signalling geometry, or will have 
to wait for more advances in eye-tracking methodologies

2.	 If sΔS is important in colour pattern conspicuousness then it 
should predict visually-based choices. However, it is not clear 
whether larger or smaller sΔS increases the overall conspicuous-
ness. Small sΔS (or CV) could give a consistently higher stimulation 
to the retina. However, larger sΔS might be more effective if spa-
tially similar ΔS (low sΔS) leads to sensory adaptation and hence 
inefficient reception. This could be particularly true for fast mov-
ing patterns.

F IGURE  7 Fort diagrams of side views 
of the black (a,b,e,f) and golden-headed 
(c,d,g,h) morphs. See Supplemental 
Appendix for all fort diagrams
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3.	 For colour patterns, or components used in signalling, edges 
should have mΔS > 1 with respect to chromatic and luminance ΔS; 
edges with ΔS ≤ 1 are unlikely to be detected. Patterns with small 
mΔS have fewer detectable edges, leading to inefficient visual sig-
nalling. For crypsis, having mostly undetectable edges (mΔS ≤ 1) is 
an advantage. However, if the background has many ΔS > 1 and 
the animal has many ΔS ≤ 1 the animal’s shape will be conspicu-
ous. If both have many ΔS > 1 then the pattern may be cryptic 
(Endler, 1978) or disruptively coloured (Endler, 2006).

4.	 For colour patterns or pattern parts used in signalling, the distri-
bution of both mΔS and sΔS should be different from those of the 
visual background with respect to either chromatic or luminance 
ΔS or both. The animal-background colour pattern component 
distributions should be similar for cryptic species, or parts of the 
colour patters that are seen more often by predators than 
conspecifics.

5.	 The animal-background match or mismatch of both mΔS and sΔS 
should differ in different parts of the animal’s body for species 
that are usually seen by predators from one viewing angle (e.g., 
above or behind) and by conspecifics from another viewing angle 
(e.g., frontal; e.g., Salticid spiders); parts viewed by predators 
should be more cryptic than parts viewed by conspecifics. Colour 
pattern functions could not only differ in regions of the body 
viewed from different angles, but may also differ when viewed 

from different distances because this may cause some adjacent 
patches to blend (Endler, 1978).

6.	 For prey species living in areas over a range of predation inten-
sities, the fraction of edges with ΔS ≤ 1 should be relatively 
higher in areas with higher predation because ΔS ≤ 1 leads to 
poorer perception of separate patches, but the opposite is 
needed for disruptive colouration. The absolute fraction of 
edges with ΔS ≤ 1 should depend upon the background patch 
pattern. For example, in visual backgrounds with highly con-
trasting patches (most ΔS ≫ 1, large mΔS) the mΔS and the dis-
tributions of ΔS in the animal and backgrounds should be more 
similar in areas of higher predation intensity than areas of 
lower predation. For prey species that use only parts of the 
pattern for signalling, the signalling components should be 
smaller, with shorter edges and lower ΔS in areas of greater 
predation risk.

7.	 For species attending more to chromaticity than luminance in in-
traspecific signalling the chromatic mΔS and most or all chromatic 
ΔS should be larger than 1 with the opposite for luminance. This 
ensures that the pattern is maximally conspicuous to the receiv-
er’s visual system. A similar pattern should appear for luminance 
mΔS and ΔS in species using luminance more than chromaticity.

5  | GENER AL QUESTIONS

There is so little known about the implications of estimates of patch 
boundary strengths that predictions are limited, but there are sev-
eral questions which are worth further investigation until we can 
make explicit predictions.

1.	 Which is more important in intraspecific signalling, mΔS or sΔS? 
If both are important, does their relative importance change 
with the complexity of the visual background or the mixture 
of different intraspecific and interspecific viewers?

2.	 mΔS and sΔS estimate the effects of patch boundaries on the overall 
colour pattern conspicuousness. It is also possible that within-pat-
tern variation in hue, chroma and luminance of patches also affect 
overall conspicuousness, regardless of whether or not they come 
into contact (Endler & Mielke, 2005). What is the relative impor-
tance of overall variation in hue, chroma, luminance, and edge 
properties? Which measures successfully predict mate choice and 
survival under specific visual and ecological conditions?

3.	 Do different aspects of salience allow for “private channels,” al-
lowing mitigation of the trade-off between being conspicuous to 
potential mates and inconspicuous to predators? This might be 
most likely if, for example, predators used different visual pro-
cessing, different components of the colour patterns, or different 
viewing distances and angles than the prey use for intraspecific 
signalling.

4.	 How do patch and patch edge properties communicate signal con-
tent? Do they constrain content enough to make predictions 

TABLE  1 Gouldian finch mean (mΔS) and SD (sΔS) of patch edge 
chromatic (Cr) and luminance (Lm) ΔS, weighted by edge lengths

Cr mΔS Cr sΔS Lm mΔS Lm sΔS

Morph-gender-
view

7.56 4.97 11.07 10.43 Black, Male, 3/4 
view

5.71 4.25 7.84 9.29 Black, Male, 
Side view

4.49 2.64 8.55 6.53 Black, Female, 
3/4 view

3.19 2.21 5.78 6.50 Black, Female, 
Side view

12.30 5.46 11.84 11.08 Golden, Male, 
3/4 view

8.58 5.55 9.75 10.91 Golden, Male, 
Side view

6.70 3.43 9.90 10.41 Golden, Female, 
3/4 view

4.77 3.57 8.33 9.91 Golden, Female, 
Side view

11.44 4.94 12.95 9.56 Red, Male, 3/4 
view

7.96 4.95 9.68 10.10 Red, Male, Side 
view

5.75 2.98 11.80 9.30 Red, Female, 
3/4 view

4.40 3.25 9.76 9.24 Red, Female, 
Side view
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about the kind and amount of information to be transmitted to 
conspecifics?

In sum, within the limitations outlined in Sections 1.1 and 1.2, BSA 
will enable these questions to be addressed in any species that use 
vision to make decisions based upon reception and perception of a 
sender’s colour pattern.
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