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Abstract
1.	 Colour	patterns	are	used	by	many	species	to	make	decisions	that	ultimately	affect	
their	Darwinian	fitness.	Colour	patterns	consist	of	a	mosaic	of	patches	that	differ	
in	geometry	and	visual	properties.	Although	traditionally	pattern	geometry	and	
colour	 patch	 visual	 properties	 are	 analysed	 separately,	 these	 components	 are	
likely	to	work	together	as	a	functional	unit.	Despite	this,	the	combined	effect	of	
patch	visual	properties,	patch	geometry,	and	the	effects	of	the	patch	boundaries	
on	animal	visual	systems,	behaviour	and	fitness	are	relatively	unexplored.

2.	 Here,	we	describe	boundary	strength	analysis	(BSA),	a	novel	way	to	combine	the	
geometry	of	 the	edges	 (boundaries	among	the	patch	classes)	with	the	receptor	
noise	estimate	(ΔS)	of	the	intensity	of	the	edges.	The	method	is	based	upon	known	
properties	of	vertebrate	and	invertebrate	retinas.	The	mean	and	SD	of	ΔS	(mΔS,	sΔS)	
of	a	colour	pattern	can	be	obtained	by	weighting	each	edge	class	ΔS	by	its	length,	
separately	for	chromatic	and	achromatic	ΔS.	This	assumes	those	colour	patterns,	
or	parts	of	the	patterns	used	in	signalling,	with	larger	mΔS and sΔS,	are	more	stimu-
lating	and	hence	more	salient	to	the	viewers.	BSA	can	be	used	to	examine	both	
colour	patterns	and	visual	backgrounds.

3.	 Boundary	strength	analysis	was	successful	in	assessing	the	estimated	conspicu-
ousness	of	colour	pattern	variants	in	two	species,	guppies	Poecilia reticulata and 
Gouldian	finches	Erythrura gouldiae,	both	polymorphic	for	patch	colour,	luminance	
and	geometry.	The	3D	representations	of	the	ΔS	of	patch	edges	(Fort	Diagrams)	
of	both	species	 show	that	 there	 is	 little	or	negative	geometric	correspondence	
between	the	chromatic	and	achromatic	edges.	All	individuals	have	mΔS	>	1.5	for	
both	chromatic	and	achromatic	measures,	indicating	the	high	within-pattern	con-
trast	expected	for	display	signals.	In	contrast	from	what	one	would	expect	from	
sexual	selection,	all	guppies	have	mΔS	less	than	expected	from	random	contacts	
between	 all	 pairs	 of	 patch	 colour/luminance	 classes.	 The	 correlation	 between	
chromatic	and	luminance	ΔS	is	negative	in	both	species	but	zero	when	correlating	
all	 possible	 kinds	 of	 edges	 between	 the	 colours	 of	 each	 species	 and	 morph,	
	indicating	nonrandom	colour	geometry.

4.	 The	pattern	difference	between	chromatic	and	achromatic	edges	in	both	species	
reveals	the	possibility	that	chromatic	and	achromatic	edges	could	function	differ-
ently.	 The	 smaller	 than	 random	 expected	 mΔS	 values	 in	 guppies	 suggests	 an	
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1  | INTRODUC TION

Colour	 patterns	 are	 important	 in	 survival	 and	 reproduction	 in	 di-
verse	species	because	they	affect	mating	success,	contests,	avoiding	
predators,	luring	prey	or	attracting	pollinators.	In	general,	the	fitness	
of	the	sender	(individual	with	the	colour	pattern)	is	affected	because	
the	receiver	(viewer	of	the	colour	pattern)	can	make	a	behavioural	or	
physiological	decision	about	the	sender,	based	upon	reception	and	
perception	of	the	sender’s	colour	pattern	(e.g.,	receivers	will	mate,	
fight,	attack,	be	lured	close	and	eaten,	pollinate	or	disperse	seeds).	
Colour	patterns	offer	an	effective	way	of	investigating	the	complex	
relationship	between	genes,	morphology,	performance,	fitness	and	
evolution	 (Arnold,	1983,	2003)	because	 the	 functions	of	most	co-
lour	 patterns	 are	 relatively	 easy	 to	 identify	 (Endler,	 1978,	 1980).	
However,	the	links	between	visual	properties,	perception,	receivers’	
decision-	making	processes	and	fitness	are	not	well	understood.

Decisions	 made	 by	 the	 receiver	 depend	 upon	 both	 the	 signal	
design	 of	 the	 colour	 pattern	 (the	 physical	 structure	 of	 the	 signal)	
and	 its	signal	content	 (information	about	the	signaller,	 reviewed	 in	
Endler,	 1993a).	 For	 both	 components,	 the	 first-	stage	 affecting	 fit-
ness	is	the	stimulation	of	the	receiver’s	retina	by	the	colour	pattern;	
all	subsequent	processes	leading	to	perception	and	decision-	making	
flow	through	this	step	(Lythgoe,	1979).	Although	all	components	of	a	
colour	pattern	may	affect	the	viewer’s	decision	making,	their	relative	
importance	in	retinal	and	brain	stimulation	is	not	known.	In	partic-
ular,	we	do	not	know	how	colour,	 luminance,	patch	size	and	patch	
geometry	work	together	to	affect	receiver	behaviour,	and	so	cannot	
yet	make	explicit	predictions	about	colour	pattern	properties	or	the	
behavioural	decisions	based	upon	them.

Relating	patterns	 to	 fitness	has	been	successful	 for	 some	spe-
cies	with	cryptic	colour	pattern	components	(Troscianko,	Skelhorn,	
&	 Stevens,	 2017;	 Troscianko,	 Wilson-	Aggarwal,	 Stevens,	 &	
Spottiswoode,	2016),	but	there	is	a	tendency	in	the	literature	to	study	
only	 pattern	 or	 one	 or	 two	 colour	 pattern	 components.	 Previous	
attempts	 to	 quantify	 colour	 patterns	 have	 included	 mapping	 the	
pattern	components	(Van	Belleghem	et	al.,	2018),	mapping	pattern	
component	boundaries	(Stevens	&	Cuthill,	2006)	and	estimating	the	
distributions	 of	 relative	 pattern	 component	 edge	 lengths	 (Endler,	
2012).	Other	analyses	have	calculated	colour	patch	discriminability	

(Siddiqi,	Cronin,	 Loew,	Vorobyev,	&	Summers,	2004).	However,	 all	
of	 these	methods	 ignore	whether	or	not	 the	colour	patches	 share	
common	 boundaries.	 Colour	 patch	 boundaries	 are	 important	 be-
cause	adjacent	colour	patches	will	influence	the	visual	perception	of	
a	given	patch	as	well	as	the	contrast	across	the	boundary.

Here,	 we	 present	 boundary	 strength	 analysis	 (BSA),	 a	 way	 to	
combine	 the	effects	of	both	patch	properties	and	 the	 intensity	of	
patch	 edges	 (transitions	 between	 patches)	 based	 upon	 how	 they	
are	processed	by	the	visual	system	in	the	retina.	BSA	estimates	the	
effects	of	both	colour	and	patch	edges	by	combining	 two	existing	
methods	for	the	first	time,	one	for	discriminability	between	adjacent	
patches	 (ΔS,	Vorobyev	&	Osorio,	1998)	and	one	for	 the	geometric	
arrangement	 of	 patches	 (Endler,	 2012).	 Unlike	 all	 previous	 meth-
ods,	BSA	includes	the	estimated	visual	 intensity	of	the	boundaries	
(estimated	by	ΔS)	and	their	length,	rather	than	just	recording	which	
boundaries	 are	present,	 and	 calculates	ΔS	 statistics	only	between	
patches	which	 come	 in	 contact.	 This	 is	 consistent	with	 the	 oppo-
nent	 visual	 processes	 that	 detect	 colour	 and	 colour	 patch	 edges,	
and	 the	 fact	 that	 these	processes	sample	small	parts	of	 the	visual	
field	 (Dowling,	2012;	Kelber,	2016).	This	 allows	us	 to	begin	 to	ex-
amine	colour	patterns	less	arbitrarily,	by	incorporating	estimates	of	
how	strongly	patch	boundaries	 stimulate	 the	 retina	as	a	proxy	 for	
conspicuousness.

Boundary	strength	analysis	can	be	used	for	animal	and	plant	co-
lour	patterns	as	well	as	visual	backgrounds,	and	allows	investigation	
of	both	within	pattern	and	pattern-	background	contrast.	For	brevity,	
we	will	describe	and	give	examples	of	BSA	in	terms	of	within-	pattern	
contrast	 but	 the	 resulting	 statistics	 can	 be	 calculated	 for	 visual	
backgrounds	as	well	as	patterns	and	the	two	compared	to	estimate	
pattern-	background	contrast.

1.1 | Visual modelling of colour discrimination

We	use	the	receptor	noise	model	or	RN	(Vorobyev	&	Osorio,	1998;	
reviewed	in	Kelber,	Vorobyev,	&	Osorio,	2003)	to	estimate	detection	
thresholds	 for	 colour	 discrimination.	 The	 input	 to	 the	model	 con-
sists	of	the	relative	 light	 (photon)	captures	for	each	photoreceptor	
class	 in	 the	 viewer’s	 retina	 for	 two	 colour	 patches.	 The	output	 of	
the	RN	model	is	ΔS,	which	is	similar	to	a	multivariate	equivalent	to	

anti-predator	 function	 because	 guppies	 are	 never	 found	 without	 predators.	
Moreover,	mΔS	could	vary	with	predation	intensity	within	and	among	species.	BSA	
can	be	applied	to	any	colour	pattern	used	in	intraspecific	and	interspecific	behav-
iour.	Seven	predictions	and	four	questions	about	colour	patterns	are	presented.

5.	 In	species	which	are	very	convex	in	cross-section,	both	chromatic	and	luminance	mΔS 
change	with	viewing	angle;	geometry	of	signalling	is	as	important	as	signal	geometry.

K E Y W O R D S
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t	 in	 statistics	 in	 that	 it	 compares	 the	difference	between	 the	 two	
sets	of	cone	captures	 to	 the	standard	error	of	 the	difference;	 it	 is	
the	Mahalanobis	distance	of	multivariate	statistics	(Clark,	Santer,	&	
Brebner,	2017).	Like	other	signal/noise	measures	ΔS	=	1	is	regarded	
as	the	difference	required	for	two	colours	to	be	noticeable,	or	one	
just	noticeable	difference	 (JND).	RN	predictions	have	been	 tested	
using	behaviour	of	several	species,	and	work	reasonably	well	 (e.g.,	
Fleishman	et	al.,	 2016;	Kelber	 et	al.,	 2003;	Olsson,	 Lind,	&	Kelber,	
2015).	However,	RN	modelling	must	be	used	with	caution	for	four	
reasons:	 (a)	RN	was	designed	to	predict	discrimination	when	ΔS	 is	
near	one	(near	the	threshold),	and	may	be	inaccurate	for	colours	that	
are	very	different	(ΔS	>	1).	This	arises	because	the	relationship	be-
tween	 predicted	 difference	 and	 perceived	 difference	 is	 nonlinear.	
For	example,	consider	three	colours	A,	B	and	C.	Let	the	difference	
between	A	and	B	be	ΔS	=	2,	and	between	A	and	C	ΔS	=	8;	the	fre-
quent	implicit	assumption	is	that	ΔS	=	6	between	B	and	C.	Although	
the	 JND	scale	 suggests	 that	A	and	B	are	 almost	 as	 far	 apart	 as	A	
and	C,	 if	 the	perception	 response	 to	ΔS	 is	 logarithmic	 then	B	and	
C	may	not	be	perceived	as	very	different	from	each	other	and	both	
perceived	as	very	different	from	A.	(b)	Behaviour	observations	often	
show	that	some	colours	are	discriminated	as	predicted	by	RN	while	
others	are	not	(unpublished	observations;	Cheney,	pers.	comm	2017;	
Fleishman	et	al.,	2016;	Olsson	et	al.,	2015).	This	may	arise	from	pre-	
existing	colour	preferences.	Different	RN	models	need	to	be	used	at	
higher	and	lower	light	intensities	to	make	good	predictions	(Olsson	
et	al.,	2015;	Vorobyev	&	Osorio,	1998).	 (c)	Data	on	actual	receptor	
noise	values	are	scarce	yet	they	underpin	all	ΔS	calculations	(Olsson,	
Lind,	&	Kelber,	2017).	(d)	The	model	is	limited;	it	is	designed	to	cap-
ture	what	happens	during	early	processing	in	the	retina	and	does	not	
include	downstream	processing	in	the	brain,	including	decision	mak-
ing	as	well	as	perception.	Estimates	of	detection	and	discrimination	
depend	upon	animals	making	decisions.	Consequently,	the	RN	could	
be	correct	 in	 the	retina,	but	 later	neural	processes	may	mean	that	
behaviour-	tests	may	not	match	all	RN	predictions	(for	example	Dyer,	
Spaethe,	&	Prack,	 2008).	Despite	 these	 limitations,	what	 happens	
at	 the	early	 retinal	 level	 is	 important	because	all	visual	processing	
starts	there	(Lythgoe,	1979).	The	RN	model	must	be	treated	simply	
as	a	starting	point	analogous	to	the	Hardy–Weinberg	equilibrium	in	
population	genetics.	In	addition	to	providing	a	foundation,	RN	model	
estimates	of	ΔS	can	be	used	to	explore	the	visual	effect	of	the	entire	
colour	pattern,	not	just	differences	between	colour	pairs.

1.2 | Assessment of patch edges

Previous	 work	 with	 colour	 discrimination	 and	 ΔS	 has	 not	 ac-
counted	for	whether	compared	patches	were	in	contact	or	sepa-
rated	by	other	colours.	Here,	we	explore	ΔS	explicitly	for	patches	
which	come	into	contact	because	what	happens	at	the	patch	edges	
may	be	important.	The	neurobiological	justification	for	assessing	
the	effects	of	 edges	 (transitions	between	patches)	 is	 described	
in	 detail	 in	 Elder	 and	 Sachs	 (2004),	 Stevens	 and	Cuthill	 (2006),	
Troscianko	et	al.	 (2017)	and	Endler	 (2012).	Briefly,	 the	photore-
ceptors	 in	 both	 vertebrate	 and	 invertebrate	 visual	 systems	 are	

connected	to	neurons	that	calculate	the	differences	between	the	
photoreceptor	outputs	over	a	small	visual	field.	Groups	of	photo-
receptors	involved	in	opponency	are	called	units	and	can	not	only	
detect	colour	but	also	serve	as	edge	detectors.	Units	consist	of	
two	adjacent	groups	 (zones)	of	photoreceptors	covering	a	small	
part	of	the	visual	field,	and	a	ganglion	cell	calculates	the	differ-
ence	 in	outputs	between	 the	 two	groups’	opponency	 (Dowling,	
2012;	Dyer,	Paulk,	&	Reser,	2011;	Kelber,	2016;	Sanes	&	Zipursky,	
2010).	 If	 the	 photoreceptors	 in	 the	 two	 zones	 are	 sensitive	 to	
different	 wavelengths,	 then	 the	 unit	 outputs	 are	 colour	 signals	
because	 colour	 is	 based	 upon	 intensity	 differences	 among	 dif-
ferent	parts	of	 the	visible	spectrum.	Edges	between	patches	of	
different	colours	are	detected	if	the	edge	cuts	across	the	bound-
ary	between	the	unit	zones.	If	the	photoreceptors	in	the	unit	are	
sensitive	to	the	same	wavelengths	then	the	outputs	result	from	
patch	edges	at	 the	 zone	boundary	 regardless	of	 chroma	 if	 they	
differ	 in	 luminance.	 Both	 edge	 types	 are	 detected	 depending	
upon	 the	 physical	 size	 of	 the	 retinal	 unit	 relative	 to	 the	 image	
and/or	 how	 rapidly	 the	 eye	 scans	 the	 colour	 pattern	 (Dowling,	
2012;	Elder	&	Sachs,	2004;	Gegenfurtner	&	Sharpe,	1999;	Kelber,	
2016;	Sanes	&	Zipursky,	2010).	The	stronger	the	edges	(steeper	
gradients	and	greater	differences	between	the	patches,	yielding	
larger	ΔS	between	the	two	patches),	the	stronger	the	signal	they	
produce	 in	 the	units.	The	 longer	 the	edges	 the	more	units	 that	
they	will	stimulate.	Consequently,	both	the	geometry	and	reflec-
tance	spectra	of	patches	in	colour	patterns	affect	edge	intensity	
and	conspicuousness.	Both	chromatic	and	achromatic	opponent	
units	operate	over	small	parts	of	the	visual	field,	suggesting	that	
local	 colour	 pattern	 properties	 may	 be	 more	 important	 than	
global	properties.

The	effects	of	edges	also	depend	upon	the	visual	acuity	(res-
olution	angle)	of	 the	viewer	as	well	as	 the	distance	between	the	
viewer	 and	 the	 colour	 pattern.	 Acuity	 effects	 may	 eliminate	 or	
modify	visual	 contrast,	particularly	 if	 the	visual	 fields	of	 the	op-
ponent	units	are	larger	than	the	patches.	Although	opponent	units	
are	known	to	cover	a	small	part	of	the	visual	field,	their	actual	sizes	
are	 unknown	 in	 most	 species.	 Moreover,	 there	 may	 be	 higher-	
order	 units	 in	 the	 brain	which	will	 not	 be	 accounted	 for	 by	 the	
retinal	estimations.	For	these	reasons,	calculations	of	edge	effects	
must	be	done	with	good	data	on	acuity	and	viewing	distance,	and	
results	treated	as	a	first	approximation,	even	if	the	unit	field	sizes	
are	known.

2  | MATERIAL S AND METHODS

Let	C	be	the	number	of	colour	and	luminance	classes	in	a	given	colour	
pattern.	The	challenge	of	this,	and	any	other	colour	pattern	analysis,	is	
identifying	the	C	classes	and	making	identification	repeatable.	This	is	
a	classic	image	analysis	problem	known	as	image	segmentation,	and	is	
particularly	problematic	where	there	are	colour	or	luminance	gradients.	
One	could	identify	the	classes	by	(human)	eye,	but	for	almost	all	diurnal	
nonprimate	animals	 their	vision	 is	sufficiently	different	 from	humans	
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that	human-	based	classifications	may	range	from	unreliable	to	mislead-
ing,	 particularly	 if	 there	 are	UV	 reflecting	 patches	 present.	 Another	
method	is	to	move	a	portable	reflectance	spectrometer	sensor	over	the	
animal’s	body	to	determine	how	patch	reflectance	spectra	vary.	If	any	
of	the	spectra	vary	more	than	is	visible	to	the	human	eye	then	samples	
must	be	taken	from	both	the	invisible	and	visible	patches	and	labelled	
accordingly.	A	third	method	which	is	less	likely	to	miss	patches	invisible	
to	humans	is	to	scan	the	entire	body	evenly	in	a	grid	with	a	spectrome-
ter	and	use	various	clustering	methods	to	classify	the	colour/luminance	
patches	by	spectral	clusters.	This	can	be	refined	by	doing	clustering	of	
calibrated	photographic	pixels	(Van	Belleghem	et	al.,	2018),	spectra	or	
cone	stimulations	and	clustering	based	upon	ΔS	(van	den	Berg	et	al.,	in	
preparation).	A	final	stage	is	ensuring	that	all	patches	in	the	segmented	
image	are	visible	with	the	viewer’s	visual	acuity	and	viewing	distance.	In	
what	follows,	we	will	assume	that	the	patch	classification	into	C	classes	
has	been	completed	along	with	a	matching	list	of	cone	captures	esti-
mated	from	patch	spectra	(Endler	&	Mielke,	2005)	or	from	calibrated	
photographs	(Troscianko	&	Stevens,	2015).

All	 cone	 capture	 estimates	 should	 be	made	 under	 the	 normal	
viewing	conditions	in	the	wild.	This	includes	the	distances	between	
signals	 and	 receivers	 as	well	 as	 light	 intensity	 because	 visual	 acu-
ity	 declines	with	 declining	 light	 and	 the	 combination	of	 the	 visual	
acuity	of	 the	viewer	and	the	viewing	distance	affects	the	smallest	
patch	which	can	be	resolved.	If	two	patches	are	not	resolved	at	the	
ordinary	distance	and	 light	 intensity,	 then	 the	 two	patches	should	
be	combined	into	a	single	patch	and	the	patch	spectrum	should	be	
an	average	of	the	two	spectra,	weighted	at	each	wavelength	by	the	
relative	areas	of	the	two	indistinguishable	patches.	The	geometry	of	
patches	should	be	relevant	to	the	viewer’s	vision	and	visual	condi-
tions	during	viewing.

2.1 | Relative frequency of each patch edge class

The	 first	 stage	of	 analysis	 of	 a	 colour	pattern	 is	 to	 estimate	 the	
lengths	or	 relative	 frequencies	of	 the	C	edges	between	adjacent	
colour/luminance	 patch	 classes.	 A	C × C	 matrix	 should	 be	 made	
to	organize	the	list	of	all	possible	edge	or	colour/luminance	tran-
sition	 classes	 (example	 in	 Table	S1).	 For	 C	 classes	 there	 are	 at	
most	 E = C(C	−	1)/2	 different	 edge	 or	 transition	 classes	 (Endler,	
2012).	Note	that	in	any	one	colour	pattern,	it	is	likely	that	not	all	
patch	classes	will	contact	all	other	classes,	especially	for	larger	C. 
Consequently,	 the	 number	 of	 observed	 kinds	 of	 different	 tran-
sitions	 (edges)	 among	patches,	n,	will	 be	 less	 than	 the	maximum	
possible	number	of	edge	classes,	E.	A	simple	example	is	found	in	
the	North	American	coral	snakes	Micrurus fulvius and Micrurus eu-
ryxanthus,	where	there	are	colloquial	phrases	to	distinguish	them	
from	the	Batesian	mimetic	king	snakes	Lampropeltis	species,	such	
as	 “red	 on	 yellow,	 beware	 the	 fellow,	 red	 on	 black,	 it’s	 all	 right	
Jack.”	 There	 are	 three	 possible	 transitions	 in	 these	 snakes:	 red-	
yellow,	yellow-	black	and	red-	black,	but	red-	black	is	a	missing	tran-
sition	in	these	coral	snakes,	while	and	red-	yellow	is	missing	from	
the	mimics	 (this	 is	 not	 true	 for	 other	 coral	 snake	 species).	Once	
the	 edge	 classes	 are	 determined,	 they	 need	 to	 be	mapped	 onto	

the	outline	of	the	animal.	An	example	using	a	male	guppy	Poecilia 
reticulata	is	shown	in	Figure	1a–c.

The	relative	frequency	or	length	of	each	transition	class	can	be	
obtained	 from	one	 of	 two	methods.	Measure	 the	 length	 for	 each	
edge	directly	from	the	edge	map	(Figure	1c)	or	extract	edges	from	
the	zone	map	of	the	patch	pattern.	A	zone	map	is	simply	a	digital	mo-
saic	diagram	of	the	same	size	as	the	original	image	where	each	pixel	
contains	a	 label	for	the	colour/luminance	class	 in	which	it	 is	found	
(Figure	1b);	this	is	also	known	as	a	label	matrix.	The	zone	map	also	
allows	additional	parameters	to	be	extracted	(Endler,	2012).	Because	
pixels	 are	 in	a	 square	array,	diagonal	distances	as	well	 as	horizon-
tal	or	vertical	distances	will	have	to	be	used	for	slanted	edges,	but	
this	should	produce	minor	errors	if	the	pixel	spacing	is	small	enough.	
Accumulating	the	colour/luminance	class	transitions	over	all	adjacent	
pixels	in	the	zone	map	yields	a	transition	or	adjacency	matrix,	where	
rows	and	columns	correspond	to	the	colour	classes	(as	in	Table	S1).	
The	transition	matrix	diagonal	entries	are	proportional	to	each	co-
lour’s	relative	area.	The	off-	diagonals	yield	the	relative	frequency	of	
each	transition	class	or	edge	(Endler,	2012).	This	matrix	is	symmetric	
with	separate	estimates	of	a	particular	 transition	class	 in	both	 the	
upper	 and	 lower	off-	diagonals	 (Table	S1).	 For	 further	 analysis,	 add	
the	equivalent	upper	and	lower	off-	diagonals	together	in	order	to	ob-
tain	frequencies	of	each	patch	edge	type	(Table	S2);	these	numbers	
are	equivalent	to	lengths	of	edges	extracted	directly	from	the	image	
(Figure	1c),	and,	 like	lengths,	can	be	divided	by	their	grand	total	to	
yield	 relative	 edge	 lengths.	 The	 result	 of	 either	method	 is	 a	C × C 
lower	off-	diagonal	transition	or	edge	matrix,	TE	(Table	S2),	where	the	
lower	 off-	diagonal	 numbers	 are	 the	 lengths	 or	 frequencies	 of	 the	
edge	class	defined	by	the	intersection	of	the	corresponding	row	and	
column.	For	example,	if	a	particular	cell	(row	i and column j)	has	the	
value fij,	then	fij	is	the	frequency	of	the	transition	between	colours	i 
and j	in	both	directions.	Potential	transitions	between	colours	which	
are	not	observed	because	the	appropriate	patches	do	not	come	in	
contact	will	be	represented	by	fij	=	0.	A	given	fij in TE	estimates	how	
commonly	 two	colour/luminance	 classes	 share	 a	 common	edge	or	
the	size	of	each	patch	type	boundary.

2.2 | Magnitude hence salience of patch boundaries

The	second	and	novel	stage	of	analysis	 is	an	estimate	of	how	con-
spicuousness	the	edge	is	likely	to	be	to	a	given	viewer	under	given	
environmental	 conditions.	The	 receptor	noise	ΔS	 estimate	 for	any	
pair	of	colours	is	an	estimate	of	edge	conspicuousness	or	strength	
because	 colour	 and/or	 luminance	 differences	 are	 easier	 to	 detect	
for	larger	ΔS.	We	can	obtain	photon	captures	for	each	patch	using	
the	 irradiance	 spectrum	 illuminating	 the	pattern	 in	nature,	 the	 re-
flectance	spectrum	of	the	patch	in	the	direction	of	the	viewer,	the	
transmission	spectrum	of	the	air	or	water	between	the	pattern	and	
viewer	in	nature,	the	transmission	spectrum	of	the	eye	optics,	and	
the	absorption	spectra	of	the	visual	pigments	in	each	photoreceptor	
class	 (Endler,	Cole,	&	Kranz,	 2005;	 Endler	&	Mielke,	 2005;	Kelber	
et	al.,	2003;	Lythgoe,	1979).	We	obtain	the	ΔS	for	all	possible	pairs	
of	patches	 in	 the	colour	pattern	 (as	did	Siddiqi	 et	al.,	 2004)	based	
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upon	 the	 photoreceptor	 captures,	 the	 relative	 abundance	 of	 each	
photoreceptor,	and	an	assumption	about	the	level	of	receptor	noise	
(the	Weber	fraction,	Kelber	et	al.,	2003).	Methods	for	obtaining	ΔS 
are	well	established,	including	in	the	r	package	pavo	(Maia,	Eliason,	
Bitton,	Doucet,	&	Shawkey,	2013).	The	ΔS	 for	each	kind	of	colour	
class	 comparison	 is	 then	 placed	 in	 the	 appropriate	 row	 and	 col-
umn	in	a	second	matrix	with	C	rows	and	C	columns	(same	format	as	
Table	S2).	It	is	only	necessary	to	fill	in	the	lower	off-	diagonal	because	
the	upper	off	diagonal	should	be	identical,	and	the	diagonals	will	be	
zero	(no	difference	in	a	comparison	of	the	same	colour).	This	yields	a	
C × C	transition	or	ΔS	matrix	TS	with	data	in	the	lower	off-	diagonal,	
where	each	entry	sij	is	the	ΔS	for	patch	colour/luminance	classes	in-
dicated	by	row	i and column j.	Two	different	Ts	should	be	calculated	
by:	(a)	using	all	the	photoreceptors	used	in	colour	vision	(e.g.,	cones	
in	 vertebrates)	 to	 obtain	 chromatic	ΔS	 and	 (b)	 using	 the	 specific	
photoreceptor(s)	used	in	luminance	to	get	luminance	or	achromatic	
ΔS.	Consequently	the	result	will	be	two	ΔS	transition	matrices,	TSC 
from	the	chromatic	ΔS	calculations	and	TSL	 from	the	 luminance	or	

achromatic	ΔS	 calculations.	 The	 rows	 and	 columns	of	TSC and TSL 
must	correspond	exactly	in	both	length	(C)	and	row	order	to	the	rows	
and	columns	of	TE.

The	matrix	TE	 should	 contain	 the	 relative	 frequencies	 of	 each	
kind	of	 transition	and	the	matrices	TSC and TSL	 should	contain	the	
RN	estimate	of	how	differently	(ΔS)	the	two	adjacent	colours	in	the	
corresponding	TE	entry	stimulate	the	retina	with	respect	to	chroma-
ticity	or	 luminance,	 respectively.	They	should	have	 the	same	 form	
as	Table	S2.	The	 lower	off-	diagonal	values	of	 these	 three	matrices	
should	be	 converted	 into	 vectors	 (one-	dimensional	 lists)	 of	 length	
E = C(C	−	1)/2,	and	placed	together	in	a	E	×	3	data	matrix	for	conve-
nience	in	further	calculations	(see	Table	S3).	This	data	matrix	has	the	
edge	length,	the	chromatic	ΔS,	and	the	luminance	ΔS	for	the	transi-
tion	(edge)	class	k in row k;	call	these	fk,	sck and slk	where	k	=	1,	2,	…,	n 
patch	 classes.	 Table	S3	 shows	 an	 example	 where	 k = a,	b,	…,	f and 
n	=	9.

The	 data	 matrix	 provides	 a	 correspondence	 between	 edge	
lengths	 and	 their	 estimated	 visual	magnitudes	 or	 salience.	 This,	

F IGURE  1 Example	analysis	of	a	male	
guppy	colour	pattern.	(a)	Photograph	of	
a	guppy	(scale	not	shown).	(b)	Part	of	the	
resulting	zone	map	indicated	by	the	circle	
in	panels	(a)	and	(c).	Each	pixel	has	a	code	
indicating	which	colour/luminance	class	
overlaps	that	pixel	(see	Endler,	2012	for	
details).	(c)	Edge	map;	this	can	either	be	
derived	directly	from	the	photograph	(a)	
or	from	the	zone	map	(b).	(d)	Diagram	in	
which	the	x,y	(horizontal)	coordinates	
correspond	to	the	edge	map	in	(c)	and	the	
vertical	axis	corresponds	to	the	chromatic	
ΔS	between	adjacent	patches	under	
specific	ambient	light	conditions.	(e)	as	in	
(d)	but	for	luminance	ΔS.	Note	the	lack	of	
topographic	correspondence	between	the	
chromatic	and	luminance	diagrams.	For	
brevity	we	will	refer	to	(d)	and	(e)	as	“Fort	
Diagrams”	because	they	resemble	old	
fashioned	fortresses)
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along	with	an	annotated	map	of	the	patch	boundaries	(Figure	1c),	
allows	 plotting	 the	 geometry	 of	 estimated	 patch	 boundary	
strengths	for	both	chromatic	and	luminance	ΔS.	In	these	diagrams,	
the	x	and	y	axes	are	as	in	Figure	1c	and	the	z-	axis	is	proportional	to	
ΔS.	Figure	1d,e	show	3D	plots	of	chromatic	and	luminance	edge	ΔS 
for	the	guppy	shown	in	Figure	1a.	We	will	call	these	diagrams	“fort	
diagrams”	because	they	resemble	forts	and	“fort”	means	strong	in	
French	and	Latin,	 so	 also	 refers	 to	boundary	 strength.	Note	 the	
very	different	geometric	patterns	of	chromaticity	and	 luminance	
boundaries	in	Figure	1d,e;	the	guppy	shows	high	edge	contrasts	in	
different	places	for	chromaticity	and	luminance.	More	specifically,	
luminance	contrast	is	dominated	by	the	black	patch	edges	almost	
independently	of	the	patch	class	they	contact.	Note	the	very	high	
luminance ΔS	(height)	where	a	black	patch	contacts	the	very	highly	
reflective	silver	patch	towards	the	front	of	the	guppy	in	(compare	
Figure	1a,e).

2.3 | Combining patch properties and edges

If	edges	contribute	significantly	to	the	conspicuousness	of	the	en-
tire	colour	pattern,	then	we	may	be	able	to	capture	at	least	part	of	
what	makes	a	colour	pattern	conspicuous	by	obtaining	an	aggregate	
measure	of	 the	edge	magnitudes.	We	suggest	 the	mean,	 standard	
deviation	and	CV	of	 the	edges’	ΔS,	weighted	by	 their	correspond-
ing	lengths	or	frequencies.	These	are	calculated	from	either	the	sck 
(chromatic	ΔS)	or	slk	(luminance	ΔS)	as	sk	from	TSC or TSL,	and	using	
the	fk	(from	TE)	as	weights	in	the	formulae:

where	E	is	the	number	of	all	possible	different	kinds	of	edges	and	
n	is	the	number	of	observed	transitions	(Sk)	or	those	with	nonzero	
fk	 (Filliben,	 Heckert,	 &	 Lipman,	 1996);	 n	≤	E.	 The	 Supplemental	
Appendix	provides	a	MATLAB	function	to	calculate	the	weighted	
mean	 and	 standard	 deviation;	 the	 equivalent	 functions	 in	 r are 
wt.mean	and	wt.sd	within	 the	 r	 package	SDMTools	 (VanDerWal,	
Falconi,	Januchowski,	Shoo,	&	Storlie,	2014).	Formulae	1–3	are	the	
same	formulae	used	to	calculate	the	mean,	SD	and	CV	of	chroma	
and	 luminance	 for	overall	within-	contrast	measurements,	 substi-
tuting	chroma	or	luminance	for	sk	and	mean	chroma	or	luminance	
for	 mΔS;	 but	 circular	 statistics	 have	 to	 be	 used	 for	 hue	 angles	
(Endler	&	Mielke,	2005).

The	weighted	mean	mΔS	 is	an	estimate	of	the	average	conspic-
uousness	 of	 the	 whole	 pattern	 but	 weighting	 longer	 edges	 more	
than	 shorter	 ones.	 Similarly,	 the	 weighted	 standard	 deviation	 sΔS 
measures	how	variable	the	edge	magnitudes	are	over	the	entire	pat-
tern	weighted	by	their	lengths.	The	coefficient	of	variation	CV	is	the	
standard	deviation	relative	to	the	mean.	If	it	is	known	that	the	viewer	
attends	only	to	part	of	the	pattern	then	mΔS and sΔS	should	be	cal-
culated	over	the	relevant	part	of	the	colour	pattern.	The	assumption	
here	 is	 that	 a	 longer	 edge	will	 stimulate	more	opponency	units	 in	
the	retina,	and	when	the	pattern	is	moving,	a	longer	edge	will	sweep	
out	more	 of	 the	 retinal	 area	 than	 a	 smaller	 edge.	 It	 is	 not	 known	
or	obvious	whether	 the	mean,	standard	deviation,	or	even	the	CV	
would	be	a	better	predictor	of	 salience.	For	example,	a	 larger	mΔS 
might	be	more	stimulating,	but	it	is	unknown	whether	this	should	be	
accompanied	by	a	smaller	sΔS	for	consistently	high	stimulation	over	
the	entire	pattern,	or	a	 larger	sΔS	 and	hence	 less	predictable	edge	
magnitude	to	prevent	sensory	adaptation.	Using	CV	instead	of	the	
standard	deviation	might	be	important	if	a	given	degree	of	variation	
is	not	more	important	for	small	versus	larger	means.	These	conjec-
tures	can	only	be	answered	by	extensive	behavioural	studies	with	
different	mΔS and sΔS,	measured	 under	 the	 appropriate	 conditions	
and	appropriate	parts	of	the	body.

Boundary	strength	analysis	can	be	applied	 to	an	animal	colour	
pattern	in	order	to	estimate	within-	pattern	visual	contrast.	They	can	
also	be	applied	to	visual	backgrounds	to	estimate	within-	background	
contrast,	and	 if	so	estimates	of	signal-	background	contrast	can	be	
made	by	comparing	parameters	of	animal	and	background.	For	sim-
plicity	the	examples	will	concentrate	on	within-	signal	contrast.

3  | E X AMPLES AND THEIR IMPLIC ATIONS

To	illustrate	and	explore	the	biological	significance	of	BSA,	we	chose	
two	species	that	are	polymorphic	in	their	patch	colour,	luminance	and	
geometry,	male	guppies	P. reticulata	and	Gouldian	finches	Erythrura 
gouldiae,	because	they	have	very	different	signal	and	signalling	ge-
ometry.	This	allows	us	to	showcase	the	power	of	the	method	in	col-
our	pattern	research	and	the	important	effects	of	local	patterns	and	
viewing	angle	between	the	sender	and	receiver.

3.1 | Guppy examples and implications

Male	 guppies	 are	 extremely	 polymorphic	 in	 patch	 geometry	 and	
properties	(Endler,	1978,	1980).	Figure	2	shows	Fort	diagrams	of	six	
male	guppies	in	the	same	format	as	Figure	1c,d,	ordered	by	decreas-
ing	 chromatic	mΔS	 and	 calculated	 in	 open/cloudy	 light	 conditions	
(Endler,	 1993b).	 The	 numbers	 are	mΔS	 and	 CV	 from	 Equations	(1)	
and	(3).	These	six	randomly	selected	guppies	yield	five	observations:	
(a)	Each	guppy	has	edges	with	unique	geometry.	This	goes	with	the	
considerable	polymorphism	of	male	guppy	colour	patterns	(photos	in	
Endler,	1978).	(b)	There	is	little	geometric	correspondence	between	
the	strength	and	positions	of	chromatic	and	achromatic	(luminance)	
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edges;	 the	peaks	 in	 chromaticity	do	not	 correspond	with	peaks	 in	
luminance,	and	both	depend	upon	which	pair	of	patches	 form	 the	
edge.	 (c)	The	spatial	correlation	between	chromatic	and	 luminance	
ΔS	 is	 always	 negative	within	 a	 guppy	 although	 not	 always	 signifi-
cantly	so	(Figure	3a,b).	(d)	The	negative	correlation	between	the	two	
ΔS	is	not	present	when	we	consider	all	possible	patch	combinations	
(Figure	3c);	patch	contacts	and	hence	boundary	strengths	are	clearly	
nonrandom.	(e)	Guppies	differ	in	how	variable	their	ΔS	heights	are,	
indicating	variation	in	which	patches	form	common	edges.

Maximum	 chroma	 and	 luminance	 should	 be	 negatively	 cor-
related	 because	 the	 only	 way	 to	 increase	 chroma	 is	 to	 remove	
parts	 of	 a	 spectrum.	Removing	part	 of	 the	 spectral	 radiance	 re-
duces	 luminance.	 At	 the	 same	 time,	 it	 increases	 the	 differences	
in	 stimulation	 among	different	photoreceptor	 classes,	 increasing	
chroma	 (Endler	&	Mielke,	2005;	Endler	&	Théry,	1996;	Endler	et	
al.,	2005).	However,	mΔS and sΔS	depend	upon	geometry	as	well	as	

patch	properties	and	consequently	predictions	based	upon	patch	
properties	 alone	may	be	 invalid.	 For	 example,	 chromatic	 and	 lu-
minance mΔS	might	even	be	positively	 correlated	 if	 sexual	 selec-
tion	 jointly	 increases	 both	 luminance	 and	 chromatic	mΔS,	 which	
would	 make	 males	 more	 conspicuous.	We	 tested	 for	 a	 possible	
chromatic-	luminance	relationship	by	analysing	200	male	guppies.	
The	two	mΔS	are	positively	correlated	(Figure	3d).	This	is	not	what	
one	 would	 expect	 from	 random	 patch	 geometry,	 where	 every	
patch	class	has	an	equal	probability	of	contacting	the	others	(see	
also	Figure	3a,c).	 It	 suggests	 that	 particular	 colours	 are	 adjacent	
and	adjacency	has	evolved	to	set	particular	levels	of	overall	con-
spicuousness,	as	estimated	by	mΔS.	Random	associations	yield	dif-
ferent	mΔS.	The	relationship	for	sΔS	is	also	positive	(Figure	3e),	but	
the	200	points	are	widely	scattered	and	appear	in	3	clumps.	This	
suggests	 partially	 discontinuous	 variation	 among	 fish	 boundary	
ΔS,	and	could	result	from	polymorphic	colour	pattern	genes	that	

F IGURE  2 Examples	of	Fort	Diagrams	
for	6	different	guppy	colour	patterns,	
arranged	in	order	of	decreasing	chromatic	
mΔS.	Rows	correspond	to	the	same	
individual	guppy	and	columns	refer	to	
the	guppy’s	chromatic	or	luminance	Fort	
diagram,	respectively.	Numbers	under	
the	diagrams	for	each	row	are	chromatic	
mΔS	and	CV	(left	column)	and	luminance	
mΔS	and	CV	(right	column)	for	the	same	
guppy.	Note	the	lack	of	topographic	
correspondence	between	the	chromatic	
and	luminance	diagrams,	and	the	variation	
among	individuals
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control	particular	sets	of	spots	(review	in	Endler,	1978).	The	cor-
relation	and	clumping	for	CV	(Figure	3f)	is	lower	than	for	mΔS and 
sΔS.	Patterns	of	variation	 in	boundary	 strength	could	predict	 fit-
ness	in	any	species	because	they	affect	pattern	conspicuousness	
and	hence	colour	pattern	function	and	fitness.

Figure	4	 shows	 chromatic	 and	 luminance	mΔS and sΔS	 distri-
butions	for	the	200	guppies	analysed.	The	means	are	moderately	
symmetrically	 and	 unimodally	 distributed	 but	 the	 standard	 devi-
ations	are	multimodal,	as	 in	Figure	3e,f.	Note	that	mΔS > 1.5 indi-
cates	that,	on	average,	the	boundaries	are	detectable	by	females,	
but	some	may	not	be	(mΔS	=	1	is	one	JND,	the	threshold	for	distin-
guishing	patches).	Patches	with	similar	colours	or	luminance	which	
would	lead	to	smaller	ΔS and mΔS	tend	not	to	be	adjacent.	In	gen-
eral,	we	hypothesise	that	having	adjacent	patches	with	 larger	ΔS 
would	be	advantageous	in	conspicuous	signalling,	but	disadvanta-
geous	for	crypsis.	If	most	boundaries	are	not	detectable	and	a	few	

were,	 this	might	be	a	previously	unrecognised	form	of	disruptive	
colouration.

The	thick	black	line	in	Figure	4	is	the	estimate	for	randomly	ar-
ranged	patch	classes,	as	opposed	to	their	observed	geometry.	This	
was	calculated	by	letting	every	patch	class	contact	every	other	patch	
class	as	in	Figure	3c.	For	mΔS,	it	is	larger	than	actually	found	in	any	
fish,	and	for	sΔS,	it	is	larger	than	all	fish	except	for	chromatic	sΔS	where	
it	is	larger	than	98%	of	the	fish.	This	suggests	that	the	observed	co-
lour	patterns	are	less	conspicuous	than	they	would	be	if	the	patches	
were	arranged	at	random.	One	would	at	first	think	that	this	is	con-
trary	to	that	expected	because	we	assume	that	females	should	mate	
with	males	with	larger	mΔS	because	they	are	more	conspicuous	than	
those	with	smaller	mΔS.	However,	visually	hunting	predators	are	al-
ways	present	in	natural	guppy	populations,	resulting	in	variation	in	
the	trade-	off	between	sexual	selection	and	predation	(Endler,	1978,	
1980).	We	speculate	that	guppies	have	been	selected	over	millions	

F IGURE  3 Relationships	between	
chromatic	and	luminance	edge	statistics	
in	guppies.	(a)	Significant	negative	
correlation	between	chromatic	and	
luminance ΔS	within	a	guppy	having	an	
average	correlation	value.	(b)	Distribution	
of	the	correlations	among	11	guppies;	all	
are	negative	but	two	are	not	significantly	
negative.	(c)	Lack	of	correlation	between	
all	possible	chromatic	and	luminance	
edges;	note	the	larger	rage	and	higher	
joint	values	compared	to	a.	(d)	The	
relationship	between	chromatic	and	
luminance mΔS	of	200	guppies.	(e)	
Relationship	for	sΔS.	(f)	relationship	for	
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of	generations	for	optimal	edge	strengths	balancing	sexual	selection	
and	predation.	We	predict	that	samples	taken	from	high	predation	
populations	would	have	distributions	of	mΔS and sΔS	that	extensively	
overlap	ΔS	=	1,	 indicating	less	conspicuous	coloration	representing	
the	local	balance	between	sexual	selection	and	predation.	This	may	
apply	to	any	species	where	there	is	a	shifting	balance	between	sex-
ual	selection	and	predation.

3.2 | Gouldian finch examples and implications

Gouldian	finches	provide	examples	of	additional	insights	that	can	be	
gained	from	BSA.	Gouldian	finches	have	three	polymorphs	differing	
in	head	colour:	black,	yellow	(golden)	or	red.	Both	males	and	females	
are	coloured	with	females	having	less	chromatic	colours	and	a	mauve	
rather	than	a	purple	chest.	Unlike	guppies,	which	have	a	relatively	
flat	surface	that	is	displayed	towards	females,	Gouldian	finches	have	
a	3D	colour	pattern	in	which	the	relative	proportion	of	patches	and	
edges	changes	with	viewing	angle.	Consequently,	we	present	Fort	
diagrams	from	Gouldian	finches	seen	at	two	viewing	angles:	a	¾	view	
and	a	side	view	(Figure	5a,b).	The	analysis	of	the	¾	view	is	shown	in	
Figures	5	and	6	and	the	side	view	in	Figure	7.	More	details	are	shown	
in	the	Supplemental	Appendix.

Like	guppies,	there	is	a	divergence	between	chromatic	and	lumi-
nance ΔS	(Figure	5c–h)	and	the	spatial	correlation	between	them	is	
negative	(except	in	the	golden	female	morph).	However,	with	fewer	
points	than	 in	the	guppy	data,	none	of	the	correlations	are	signifi-
cant.	Nevertheless,	each	correlation	is	smaller	than	the	correlation	
between	all	possible	pairs	of	colours	for	that	morph	and	gender	(see	

Supplemental	 Appendix)	 suggesting	 that	 the	 negative	 correlation	
has	some	function	in	both	species.

Given	that	the	chromatic	and	achromatic	patterns	are	different	and	
almost	complementary	we	suggest	that	the	chromatic	and	achromatic	
components	of	colour	patterns	could	be	used	for	different	functions,	
such	as	sexual	selection,	species	recognition,	or	defense.	Chromaticity	
and	luminance	are	processed	independently,	and	there	is	variation	in	
their	relative	importance	in	stimulus	choice	and	discrimination,	among	
many	species	including	crabs,	psyllids,	honeybees,	bumblebees,	flies,	
hawkmoths,	birds	and	humans	(Baldwin	&	Johnsen,	2012;	Dyer	et	al.,	
2008;	 Farnier,	 Dyer,	 &	 Steinbauer,	 2014;	 Giurfa,	 Vorobyev,	 Brandt,	
Posner,	 &	Menzel,	 1997;	 Keil,	 Miskovic,	 Gray,	 &	Martinovic,	 2013;	
Kelber,	2005,	2016;	Osorio	&	Vorobyev,	2005;	White	&	Kemp,	2016,	
2017;	White,	Rojas,	Mappes,	Rautiala,	&	Kemp,	2017;	Zhou,	Ji,	Gong,	
Gong,	&	Liu,	2012).	This	suggests	that	chromatic	and	achromatic	chan-
nels	could	have	different	functions	in	any	taxa.	There	are	also	distance	
effects,	probably	due	to	the	fact	that	 in	many	animals,	visual	acuity	
is	 greater	 for	 achromatic	 than	 chromatic	 stimuli.	 For	 example,	 bees	
use	chromatic	cues	when	they	subtend	 larger	angles	on	their	 retina	
and	achromatic	cues	when	the	visual	angles	are	smaller	(Giurfa	et	al.,	
1997).	This	means	that	achromatic	cues	may	be	more	useful	at	greater	
distances	 than	chromatic	cues,	especially	at	 lower	 light	 levels	when	
acuity	decreases,	and	colour	vision	stops	working	at	still	lower	irradi-
ances.	Moreover,	chromatic	and	 luminance	components	are	roughly	
independent	 in	natural	scenes	 (Hansen	&	Gegenfurtner,	2009),	sug-
gesting	that	crypsis	may	be	possible	independently	of	signalling.	The	
functional	differences	between	chromatic	and	achromatic	edges	are	
worth	further	investigation.

F IGURE  4 The	distributions	of	
chromatic	and	luminance	edge	statistics	
mΔS and sΔS	of	the	200	guppies	in	
Figures	3	and	4.	(a)	Chromatic	mΔS,	(b)	
chromatic	sΔS,	(c)	luminance	mΔS,	(d)	
luminance sΔS.	All	guppies	have	mΔS > 1 
indicating	that	adjacent	patches	are	
always	discriminable	to	guppies	under	
the	environmental	conditions.	The	thick	
vertical	lines	show	the	same	statistics	if	
the	colour	patches	were	distributed	at	
random	over	each	guppy’s	body;	every	
patch	class	had	an	equal	probability	of	
contacting	the	others.	Almost	all	guppies	
show	smaller	values	than	expected	from	
random	patch	locations
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Gouldian	 finches	 also	 illustrate	 that:	 (a)	 The	 viewing	 angle	
significantly	 affects	 the	 perceived	 relative	 area	 of	 each	 patch,	
significantly	affecting	mΔS and sΔS;	the	¾	view	having	higher	mΔS 
and	often	higher	sΔS	than	the	side	view	(Table	1).	This	highlights	
the	 importance	 of	 recording	 the	 viewing	 angle	 during	 visual	
signalling.	 (b)	 Sexual	 dimorphism	within	 each	morph	 is	 associ-
ated	with	 reduced	 edge	 intensities,	mΔS	 and	 sΔS,	 in	 females	 of	
all	 morphs	 for	 both	 chromatic	 and	 achromatic	 ΔS	 (Figure	6,	
Table	1),	with	 less	reduction	 in	achromatic	ΔS	 (Table	1).	This	 il-
lustrates	the	utility	of	BSA	in	estimating	sexual	dimorphism.	(c)	
Within	males	or	 females,	 the	 three	morphs	differ	 in	 chromatic	

mΔS	with	 the	golden	and	 red	morphs	similar	but	different	 from	
the	 black	 morph	 (Table	1).	 They	 differ	 less	 in	 achromatic	mΔS,	
and	 there	 is	 surprisingly	 little	 variation	 in	 sΔS	 among	 morphs;	
perhaps	this	 is	the	sign	of	a	species-	specific	signal.	 (d)	There	 is	
a	clear	difference	 in	pattern	between	the	head	and	the	 rest	of	
the	 body,	 with	 the	 head	 values	 larger	 than	 the	 body.	 The	 dif-
ference	 in	 location-	specific	 edge	 intensities	 is	 stronger	 in	 the	
side	 view.	 This	 reiterates	 the	 importance	 of	 calculations	 using	
the	same	view	angle	as	used	by	the	viewers,	but	it	also	shows	a	
weakness	of	using	mΔS and sΔS	calculated	over	the	entire	body.	It	
may	be	reasonable	in	guppies	or	other	species	that	present	the	

F IGURE  5 Gouldian	finche	edge	
maps	and	fort	diagrams.	(a)	Edge	map	
traced	from	a	3/4	view	photograph.	
(b)	Edge	map	traced	from	a	side	view	
photograph.	(c–h)	Fort	diagrams	of	the	
three	male	morphs	(rows)	showing	the	
difference	in	pattern	for	chromatic	and	
luminance ΔS	(columns)	in	the	3/4	view

weivediSweiv¾
(a) (b)
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entire	 side	of	 a	 relatively	 flat	 surface	 to	 the	 viewer,	 but	 it	will	
be	 inaccurate	 if	 the	viewer	 attends	more	 to	 some	parts	of	 the	
body	than	the	others.	The	stronger	edges	in	the	Gouldian	finch	
heads	may	be	associated	with,	and	even	selected	by,	conspecif-
ics	paying	more	attention	to	the	heads	than	the	rest	of	the	body.	
The	 rest	 of	 the	 body	may	 be	 used	 in	 species	 recognition	 and,	
or,	reduction	of	predator	risk.	Consequently,	mΔS and sΔS	should	

be	 calculated	on	 the	parts	of	 the	 colour	pattern	used	 in	 social	
interactions	 for	 signal	 design	 assessment	whereas	 they	 should	
be	calculated	separately	on	the	parts	of	the	body	seen	by	pred-
ators	 (using	 predator	 vision	 parameters).	 These	 two	 functions	
may	be	spatially	separated.	Clearly	we	need	to	know	about	the	
geometry	of	signalling	as	much	as	the	geometry	of	the	signals	for	
accurate	use	of	BSA.

F IGURE  6 Fort	diagrams	showing	
sexual	dimorphism	in	the	black	(a,b,e,f)	
and	golden-	headed	morphs	(c,d,g,h)	
with	respect	to	both	chromatic	(a–d)	and	
luminance	(e–h)	ΔS	in	the	3/4	view.	The	
red-	headed	morph	does	not	differ	very	
much	from	the	golden-	headed	morph	
(see	Supplemental	Appendix	for	all	fort	
diagrams)
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4  | GENER AL PREDIC TIONS

Because	BSA	can	be	used	to	analyse	any	animal	or	plant	colour	pat-
tern,	it	is	useful	to	make	some	general	predictions,	based	upon	the	
assumption	that	edges	are	important	in	colour	pattern	detection	and	
perception	(Dowling,	2012;	Gegenfurtner	&	Sharpe,	1999;	Stevens	&	
Cuthill,	2006),	and	that	stronger	edges	(larger	ΔS	and	greater	length)	
are	more	effective	than	weaker	edges.

1. If	 mΔS	 is	 important	 in	 intraspecific	 signalling	 then	 it	 should	
predict	 behaviours	 such	 as	mate	 choice	or	 any	other	 visually	
based	choice	behaviour.	The	relative	importance	of	chromatic	
and luminance mΔS	 is	 unknown,	 and	 this	 may	 vary	 among	
higher	 taxonomic	 groups.	 Consequently,	 we	 predict	 that	 the	

relationship	 between	 mΔS,	 pattern	 conspicuousness,	 deci-
sion-making,	 and	 fitness	will	 be	 context,	 habitat	 and	 species	
specific.	 Restriction	 of	mΔS	 to	 calculations	 just	 over	 the	 part	
of	 the	 colour	 pattern	 tracked	 by	 viewers	 should	 be	 limited	
to	 species	with	well-studied	 signalling	geometry,	or	will	 have	
to	 wait	 for	 more	 advances	 in	 eye-tracking	 methodologies

2. If	 sΔS	 is	 important	 in	 colour	 pattern	 conspicuousness	 then	 it	
should	 predict	 visually-based	 choices.	 However,	 it	 is	 not	 clear	
whether	larger	or	smaller	sΔS	increases	the	overall	conspicuous-
ness.	Small	sΔS	(or	CV)	could	give	a	consistently	higher	stimulation	
to	the	retina.	However,	larger	sΔS	might	be	more	effective	if	spa-
tially	similar	ΔS	(low	sΔS)	leads	to	sensory	adaptation	and	hence	
inefficient	reception.	This	could	be	particularly	true	for	fast	mov-
ing	patterns.

F IGURE  7 Fort	diagrams	of	side	views	
of	the	black	(a,b,e,f)	and	golden-	headed	
(c,d,g,h)	morphs.	See	Supplemental	
Appendix	for	all	fort	diagrams
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3. For	 colour	 patterns,	 or	 components	 used	 in	 signalling,	 edges	
should	have	mΔS	>	1	with	respect	to	chromatic	and	luminance	ΔS; 
edges	with	ΔS	≤	1	are	unlikely	to	be	detected.	Patterns	with	small	
mΔS	have	fewer	detectable	edges,	leading	to	inefficient	visual	sig-
nalling.	For	crypsis,	having	mostly	undetectable	edges	(mΔS	≤	1)	is	
an	advantage.	However,	if	the	background	has	many	ΔS > 1 and 
the	animal	has	many	ΔS	≤	1	the	animal’s	shape	will	be	conspicu-
ous.	 If	both	have	many	ΔS	>	1	 then	 the	pattern	may	be	cryptic	
(Endler,	1978)	or	disruptively	coloured	(Endler,	2006).

4. For	colour	patterns	or	pattern	parts	used	in	signalling,	the	distri-
bution	of	both	mΔS	and	sΔS	should	be	different	from	those	of	the	
visual	background	with	respect	to	either	chromatic	or	luminance	
ΔS	 or	 both.	 The	 animal-background	 colour	 pattern	 component	
distributions	should	be	similar	for	cryptic	species,	or	parts	of	the	
colour	 patters	 that	 are	 seen	 more	 often	 by	 predators	 than	
conspecifics.

5. The	animal-background	match	or	mismatch	of	both	mΔS	and	sΔS 
should	differ	 in	different	parts	of	the	animal’s	body	for	species	
that	are	usually	seen	by	predators	from	one	viewing	angle	(e.g.,	
above	or	behind)	and	by	conspecifics	from	another	viewing	angle	
(e.g.,	 frontal;	 e.g.,	 Salticid	 spiders);	 parts	 viewed	 by	 predators	
should	be	more	cryptic	than	parts	viewed	by	conspecifics.	Colour	
pattern	 functions	 could	 not	 only	 differ	 in	 regions	 of	 the	 body	
viewed	from	different	angles,	but	may	also	differ	when	viewed	

from	different	distances	because	this	may	cause	some	adjacent	
patches	to	blend	(Endler,	1978).

6. For	prey	species	living	in	areas	over	a	range	of	predation	inten-
sities,	 the	 fraction	 of	 edges	 with	ΔS	≤	1	 should	 be	 relatively	
higher	in	areas	with	higher	predation	because	ΔS	≤	1	leads	to	
poorer	 perception	 of	 separate	 patches,	 but	 the	 opposite	 is	
needed	 for	 disruptive	 colouration.	 The	 absolute	 fraction	 of	
edges	with	ΔS	≤	1	should	depend	upon	the	background	patch	
pattern.	 For	 example,	 in	 visual	 backgrounds	with	 highly	 con-
trasting	patches	(most	ΔS ≫	1,	large	mΔS)	the	mΔS	and	the	dis-
tributions	of	ΔS	in	the	animal	and	backgrounds	should	be	more	
similar	 in	 areas	 of	 higher	 predation	 intensity	 than	 areas	 of	
lower	 predation.	 For	 prey	 species	 that	 use	 only	 parts	 of	 the	
pattern	 for	 signalling,	 the	 signalling	 components	 should	 be	
smaller,	with	 shorter	 edges	 and	 lower	ΔS	 in	 areas	 of	 greater	
predation	risk.

7. For	species	attending	more	to	chromaticity	than	luminance	in	in-
traspecific	signalling	the	chromatic	mΔS	and	most	or	all	chromatic	
ΔS	should	be	larger	than	1	with	the	opposite	for	luminance.	This	
ensures	that	the	pattern	is	maximally	conspicuous	to	the	receiv-
er’s	visual	system.	A	similar	pattern	should	appear	for	luminance	
mΔS and ΔS	in	species	using	luminance	more	than	chromaticity.

5  | GENER AL QUESTIONS

There	is	so	little	known	about	the	implications	of	estimates	of	patch	
boundary	strengths	that	predictions	are	limited,	but	there	are	sev-
eral	 questions	which	 are	worth	 further	 investigation	 until	we	 can	
make	explicit	predictions.

1. Which	 is	more	 important	 in	 intraspecific	 signalling,	mΔS or sΔS? 
If	 both	 are	 important,	 does	 their	 relative	 importance	 change	
with	 the	 complexity	 of	 the	 visual	 background	 or	 the	 mixture	
of	 different	 intraspecific	 and	 interspecific	 viewers?

2. mΔS and sΔS	estimate	the	effects	of	patch	boundaries	on	the	overall	
colour	pattern	conspicuousness.	It	is	also	possible	that	within-pat-
tern	variation	in	hue,	chroma	and	luminance	of	patches	also	affect	
overall	conspicuousness,	regardless	of	whether	or	not	they	come	
into	contact	(Endler	&	Mielke,	2005).	What	is	the	relative	impor-
tance	 of	 overall	 variation	 in	 hue,	 chroma,	 luminance,	 and	 edge	
properties?	Which	measures	successfully	predict	mate	choice	and	
survival	under	specific	visual	and	ecological	conditions?

3. Do	different	aspects	of	salience	allow	for	“private	channels,”	al-
lowing	mitigation	of	the	trade-off	between	being	conspicuous	to	
potential	mates	 and	 inconspicuous	 to	 predators?	 This	might	 be	
most	 likely	 if,	 for	 example,	 predators	 used	 different	 visual	 pro-
cessing,	different	components	of	the	colour	patterns,	or	different	
viewing	distances	and	angles	than	the	prey	use	for	 intraspecific	
signalling.

4. How	do	patch	and	patch	edge	properties	communicate	signal	con-
tent?	 Do	 they	 constrain	 content	 enough	 to	 make	 predictions	

TABLE  1 Gouldian	finch	mean	(mΔS)	and	SD	(sΔS)	of	patch	edge	
chromatic	(Cr)	and	luminance	(Lm)	ΔS,	weighted	by	edge	lengths

Cr mΔS Cr sΔS Lm mΔS Lm sΔS

Morph- gender- 
view

7.56 4.97 11.07 10.43 Black,	Male,	3/4	
view

5.71 4.25 7.84 9.29 Black,	Male,	
Side	view

4.49 2.64 8.55 6.53 Black,	Female,	
3/4 view

3.19 2.21 5.78 6.50 Black,	Female,	
Side	view

12.30 5.46 11.84 11.08 Golden,	Male,	
3/4 view

8.58 5.55 9.75 10.91 Golden,	Male,	
Side	view

6.70 3.43 9.90 10.41 Golden,	Female,	
3/4 view

4.77 3.57 8.33 9.91 Golden,	Female,	
Side	view

11.44 4.94 12.95 9.56 Red,	Male,	3/4	
view

7.96 4.95 9.68 10.10 Red,	Male,	Side	
view

5.75 2.98 11.80 9.30 Red,	Female,	
3/4 view

4.40 3.25 9.76 9.24 Red,	Female,	
Side	view
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about	 the	kind	and	amount	of	 information	to	be	 transmitted	 to	
conspecifics?

In	sum,	within	the	limitations	outlined	in	Sections	1.1	and	1.2,	BSA	
will	 enable	 these	questions	 to	be	addressed	 in	any	 species	 that	use	
vision	 to	make	 decisions	 based	 upon	 reception	 and	 perception	 of	 a	
sender’s	colour	pattern.
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