2018 IEEE Symposium on Security and Privacy

Distance-Bounding Protocols: Verification without Time and Location

Zach Smith
csc
University of Luxembourg
Belval, Luxembourg
zach.smith@uni.lu

Sjouke Mauw
CSC/SnT
University of Luxembourg
Belval, Luxembourg
sjouke.mauw @uni.lu

Abstract—Distance-bounding protocols are cryptographic
protocols that securely establish an upper bound on the
physical distance between the participants. Existing symbolic
verification frameworks for distance-bounding protocols con-
sider timestamps and the location of agents. In this work we
introduce a causality-based characterization of secure distance-
bounding that discards the notions of time and location.
This allows us to verify the correctness of distance-bounding
protocols with standard protocol verification tools. That is to
say, we provide the first fully automated verification framework
for distance-bounding protocols. By using our framework, we
confirmed known vulnerabilities in a number of protocols and
discovered unreported attacks against two recently published
protocols.

Keywords-distance-bounding; security protocols; causality;
formal verification; automatic verification

1. INTRODUCTION

Contactless systems are gaining more and more popularity
nowadays. An increasing number of applications, including
ticketing, access control, e-passports, tracking services, and
mobile payments, make use of contactless communication
technologies such as RFID and NFC. However, contact-
less communication is known to be vulnerable to relay
attacks [1]: a man-in-the-middle attack where an adversary
relays the verbatim messages that are being exchanged
through the network.

Relay attacks are mostly used to break communication
protocols with a bounded read range, such as smartcards
(2-10 cm) or car keys (10-100 m). By simply relaying, an
adversary is able to establish a long-range communication
between two contactless tokens, which otherwise wouldn’t
be possible. This has been used, for example, by Francillon
et al. [2] to break the passive keyless entry system of various
modern cars.

To face relay attacks, Desmedt et al. [3], [4] introduced
the notion of distance-bounding protocols, and the first such
protocol was designed by Brands and Chaum [5]. Distance-
bounding protocols use the round-trip time (RTT) of one or
more challenge/response rounds to provide an upper bound
on the prover-to-verifier distance (see Figure 1a). Through
this scheme, security verification translates into the validity
of the actual prover-to-verifier distance in comparison with
the RTTs. More precisely, in a secure distance-bounding

© 2018, Sjouke Mauw. Under license to IEEE.
DOI 10.1109/SP.2018.00001

549

Jorge Toro-Pozo
cSC
University of Luxembourg
Belval, Luxembourg
Jjorge.toro@uni.lu

Rolando Trujillo-Rasua
SnT
University of Luxembourg
Belval, Luxembourg
rolando.trujillo@uni.lu

protocol, if the prover-to-verifier distance is d and the RTT
is At, then it must hold that d < %At - ¢, where ¢ denotes
the maximum network transmission speed (for radio-waves,
this is the speed of light). This intuition is supported by the
physical fact that no message can be transmitted at a speed
higher than c.

In the context of distance-bounding protocols, their se-
curity has traditionally been verified over the years, by
accounting for their resistance to three types of attack:
mafia fraud [1], distance fraud [6], and terrorist fraud [6].
Resistance is measured in terms of probability of success of
the adversary in a given adversary model [7]-[9]. However,
this probabilistic analysis based on attack-resistance does not
seem to be a promising verification scheme, as new attacks
might be discovered in the future.

A clear and convincing proof of the flaws of the attack-
based security analysis is the work by Cremers et al. [10].
In this work, the authors prove several protocols to be
vulnerable to distance-hijacking attacks while they were
previously considered secure as they resisted the then-
existing attack types (mafia, distance and terrorist frauds).
An important observation is that, like previous authors on
distance bounding, Cremers et al. assumed a Dolev-Yao [11]
adversary, so they did not introduce stronger adversary
models to define their new type of attack.

Unfortunately, although the desired properties of a
distance-bounding protocol can be precisely defined in cur-
rent security models, it is not so straightforward to verify that
a given protocol satisfies these properties. On the one hand,
computational models [8], [12] typically lead to manual and
complex security proofs. On the other hand, symbolic mod-
els [10], [13] rely on using adapted versions of higher-order
theorem-proving tools such as Isabelle/HOL [14], which
require a high degree of user intervention. This means that
verifying the security of a distance-bounding protocol in the
existing symbolic models requires not only a considerable
amount of expertise, but also a significant time investment.

By comparison, well-established automated verification
tools (such as Tamarin [15], ProVerif [16] and Scyther [17])
are able to verify traditional authentication properties in a
straightforward and rapid way. These tools handle time as
a discrete ordering of events, therefore verifying protocols

IEEE
computer
® psoaety

Figure 1.

with the notion of continuous time becomes difficult.

In this paper we argue that the notions of time and location
are indeed not needed to specify and verify the security
of distance-bounding protocols. Surprisingly enough, such
protocols can be verified by considering the causal order of
events in protocol traces, similarly to authentication prop-
erties like aliveness and synchronization [18]. The intuition
behind this observation is illustrated in Figure 1.

Figure la shows a regular challenge/response round, in
which prover P can only respond to verifier V’s challenge
after having received the challenge. Therefore, %c - At
determines an upper bound on the distance d between V'
and P. Now, suppose that, due to a vulnerability of the
protocol, P is able to predict the appropriate response before
having received the challenge (Figure 1b). This means that
he will be able to send his response “too early”, leading to
a shorter round-trip time At < At and thus to a smaller
and incorrect distance calculated by V. Thus, if the protocol
is insecure because P can preempt the response, P has
sufficient knowledge to create the response before reception
of the challenge. Now our main observation is that (assuming
that there is no other causal relation between sending the
challenge and P’s knowledge), P could even have sent the
response before V' sent the challenge (Figure 1c). From a
causal point of view, this means that if there is a trace in
which P sends its response before P receives the challenge,
there must also be a trace in which P sends the response
before V' sends the challenge. Hence, a flaw in the protocol
translates into such a wrongly ordered trace, which can be
discovered through an analysis that does not consider time.

In the remainder of this paper, we will make this high-
level intuition precise in the following way:

« First we introduce a security model, based on Basin et
al. [13], [19] and formally define the notion of secure
distance-bounding using time and location (Section III).
Then, in Section IV, we analyse the semantic domain
and formulate a number of basic properties that provide
a sufficient characterization of the semantics to prove
our main result. The purpose of this step is to make
our result independent of the particular time/location
semantics used.

« Next, we formulate our notion of causality-based se-

(b)

Three timing scenarios of a challenge/response round.

550

cure distance-bounding, which does not refer to time
and location, and we prove it equivalent to the pre-
viously defined notion of secure distance-bounding
(Section V).

In order to validate our results, we demonstrate an
implementation of causality-based secure distance-
bounding in Tamarin [15] and use it to perform a large-
scale analysis of published protocols (Section VI). Our
analysis results coincide with previous formal analyses,
such as the report by Cremers et al. [10]. In addition,
we uncover previously unreported vulnerabilities on
recently published protocols.

II. BACKGROUND

Distance-Bounding Protocols: The first distance-
bounding protocol was designed by Brands and Chaum [5]
and it is composed of three phases. The slow phase (a.k.a.
initial phase, setup phase) is where the parties agree on
the parameters of the session, such as nonces. Then the
fast phase (ak.a. critical phase, distance-bounding phase,
timed phase) is executed, consisting of a number of chal-
lenge/responses rounds, where the verifier measures the
round-trip times. Finally, a verification phase (ak.a. final
phase, authentication phase) takes place, in which the verifier
makes a decision on whether the prover successfully passed
the protocol. This is done by checking the correctness of all
round-trip times and the prover’s proof of knowledge of a
valid signature.

Another well-known distance-bounding protocol was pro-
posed by Hancke and Kuhn in [20]. An abstraction of
this protocol is shown in Figure 2. The first two messages
compose the initial phase of the protocol, where the verifier
V' sends his nonce Ny to the prover P who replies back with
his nonce Np. Then the fast phase starts (represented by
dashed arrows) with V' sending his challenge C' to P whose
response is h(k, Ny, Np,C), where k is the shared secret
key between V' and P and h is an irreversible cryptographic
function. The verification phase is represented by V’s claim
that “P is close”. The protocol seems to be secure, as for
an attacker (who could be an untrusted prover) to pass the
protocol, he must know either the verifier’s challenge in
advance or the shared secret key between the verifier and

secret k secret k
nonces Ny, C nonce Np
Ny
Np
C
h(k, Ny, Np,C)
< Pis close >
|

Figure 2. A representation of Hancke and Kuhn’s protocol.

the intended prover. However, due to the particular choice
of h, a mafia-fraud attacker successfully passes the protocol
with a non-negligible probability of (3/4)!¢! (see [20] for
further details).

One of the main differences between Brands and Chaum’s
protocol and Hancke and Kuhn’s protocol is the following. In
the former, the fast phase messages do not rely on long-term
secret keys whereas in the latter protocol, such a reliance
does exist. Various protocols have been proposed follow-
ing this characteristic of Brands and Chaum’s approach,
e.g. [21]-[25] whilst others employ Hancke and Kuhn’s
design, such as [26]-[30].

Attacks on Distance-Bounding Protocols: Although
distance-bounding protocols solved the problem of relay
attacks to some extent, more sophisticated attacks have
emerged, such as mafia fraud, distance fraud, terrorist fraud
and distance hijacking.

Mafia-fraud attacks were introduced in [1], in which a
dishonest agent I uses an honest prover P to provide a
verifier V with a false upper bound on the distance between
V and P. Some authors consider mafia-fraud attacks to be
the same as relay attacks. Others, however, classify mafia-
fraud attackers stronger than relay attackers by assuming
that the former can manipulate/modify the messages, rather
than simply relaying them.

A distance-fraud attacker [6] is a dishonest prover I whose
goal is to provide a verifier V' with a false upper bound on
V’s distance to I. In particular, for this type of attack, I
does not use any other prover to perform his attack.

More sophisticated attacks are terrorist fraud and distance
hijacking. Terrorist-fraud attacks were first discussed in [6]
in which the attacker prover I cheats on the upper bound on
the distance between a verifier V' and a dishonest prover P,
without learning P’s secret key material. Distance hijacking
was introduced by Cremers at al. in [10], in which a
dishonest prover I makes use of honest provers in order to
provide a verifier V' with a false upper bound on the distance
between V' and I.

Probabilistic Security Analysis: The work by Avoine et
al. [7] introduces a framework that explores the adversary’s

551

capabilities and strategies and the influence of provers’
abilities to tamper with their devices. New concepts in the
distance-bounding field are introduced such as black-box and
white-box models.

The concepts sketched in [7] were soon formulated in
computational models. For example, Diirholz et al. formal-
ized the classical frauds (except for distance hijacking) by
using an adversary model that does not allow for corrupted
verifiers [8]. Boureanu, Mitrokotsa, and Vaudenay intro-
duced a more general model [12] by allowing adversaries to
interact with multiple provers and verifiers, hence capturing
distance hijacking [10].

Mauw, Toro-Pozo, and Trujillo-Rasua [28], [31] devel-
oped a probabilistic analysis of the security of a class of
distance-bounding protocols in terms of mafia fraud. This
class includes distance-bounding protocols that do not have
a final verification phase and are based on precomputation
(e.g. [20], [26]-[28], [30], [32]-[34]). They proposed a
set-of-automata representation of protocols that allows the
analyst to generically compute the success probability of
mafia-fraud attacks.

Symbolic Security Analysis: Meadows et al. [23] pro-
posed a formal framework to verify distance-bounding pro-
tocols. Their approach does not particularly deal with multi-
prover scenarios, therefore neither distance-hijacking nor
terrorist-fraud attacks would be detected.

The first formal framework for distance-bounding proto-
cols with multi-prover scenarios was proposed by Malladi
et al. [35], along with a software tool. They analyse the
signature-based Brands and Chaum’s protocol and find an
attack in which an adversary who is not in the vicinity of
the verifier still passes the protocol. They call this attack the
farther adversary scenario. Moreover, to solve the security
issue they found, they observed that including the prover’s
identity in the signature would make the protocol no longer
vulnerable to farther adversary attacks.

Basin et al. [13], [19] introduced a simple yet powerful
formal approach for distance-bounding verification. Their
model captures dishonest prover behaviors and, by exten-
sion, distance-fraud and distance-hijacking attacks, of which
the latter was referred to as impersonation attacks. Their
implementation of the formalization is written in the higher-
order logic theorem prover Isabelle/HOL [14]. Similarly
to Malladi et al. [35], they prove that the signature-based
Brands and Chaum’s protocol can be fixed by explicitly
adding the prover’s identity to the responses in the fast
phase.

In [10], Cremers et al. extended Basin et al’s model to cap-
ture bit-level message manipulation on wireless networks,
introduced as overshadowing in [36]. Supported by this,
they proved that including the prover’s identity (neither by
XOR-ing it with the challenge responses nor by using secure
channels) in Brands and Chaum’s protocol does not solve its
vulnerability to distance hijacking.

It is still an open problem how to model terrorist fraud
in a symbolic security model. Originally, a terrorist-fraud
attack consisted in a far-away dishonest prover passing the
distance-bounding protocol with the help of the adversary,
but without leaking the prover’s long-term key [6]. Many
attempts to formalize this intuition have been made in
computational models [8], [24], [37], [38]. Yet, there seems
to be no agreement on the appropriate definition.

III. A SECURITY MODEL BASED ON TIME AND
LOCATION

In this section we describe the formalism of Basin et
al. [13], [19] which is the basis for our work. The formalism
employs logic theories to handle inductively-defined sets of
traces that represent the protocol’s executions. It considers
execution traces that consist of a sequence of timed-events,
e.g. denoting the sending and reception of messages, where
the timestamps represent the point in time at which the
events occurred.

Agents and Messages: Participants in a protocol exe-
cution are called agents. The set of agents is denoted by
Agent, and {Honest, Dishonest} is a partition of the set of
agents into honest and dishonest agents.

During a protocol execution, agents exchange messages
through the network. Basic messages are agent names
(Agent), nonces (Nonce), and constants (Const). More com-
plex messages can be defined by using atomic messages as
the arguments of a function, by pairing them together into a
single message or by denoting an encrypted message. For-
mally, the set of messages Msg is defined by the following
grammar, where atom € ConstUAgentUNonce and f € F
are terminal symbols and F is a countably infinite set of
function symbols.

Msg ::= atom | (Msg, Msg) | {Msg}y, | f (Msg).

The term (mq,m2) denotes the pairing of messages m,
and ms. Further, {ml}m2 stands for the encryption of m;
with the key mo. An agent’s signature on a message is
represented by the encryption of the message with the secret
key of the agent. Finally, f(m;) indicates the output of
the function f on the input m;. Functions with multiple
arguments can be represented through pairing of arguments.

Agents’ cryptographic keys are denoted by the functions
pk: Agent — Msg, sk: Agent — Msg and sh: Agent X
Agent — Msg that indicate the asymmetric public key
of an agent, asymmetric secret key of an agent and the
symmetric shared key of two agents, respectively. Lastly, the
function _~': Msg — Msg maps an encryption key onto the
corresponding decryption key, and vice-versa.

The set B {sk,pk,sh,_~1} C F is the set of
basic functions and its functions are assumed to satisfy that
sh(A, B) = sh(B, A), pk(A)~! = sk(A) and sk(A)~! =
pk(A); for all A, B € Agent. In addition, we assume that
k ¢ {pk(A), sk(A)} implies k~! = k; for all k € Msg and

552

A € Agent. These assumptions represent the properties for
symmetric and asymmetric encryption/decryption.

Events and Traces: An event denotes an agent’s action,
such as sending or receiving a message, or an agent’s
security claim. We define the set of events Ev via the
following grammar, for A, B € Agent.

send4 (Msg) [Msg] | recv4 (Msg) |
claima (B, Ev,Ev).

Ev ::

Given messages m; and mso, and agents A and B,
send4 (mq) [me] indicates that A has sent the message m;
and updated the agent’s local state with the message mo, and
recv4 (m;) means that A has received m;. In the original
model, claiming events have the form claim 4 (B, d), where
d € R is a distance value. This allows an agent A to claim
that another agent B is within a radius of length d, which
is computed based on the round-trip time of a message
exchange. We will make the message exchange explicit, and
use claim 4 (B, e1, e2) where e; and es are the events used to
compute the round-trip time and, by extension, the distance
bound d.

We define the sets Send, Recv C Ev of all send and re-
ceive events, respectively. The function actor: Ev — Agent
maps events onto their corresponding actor agent (i.e., the
instance of A from the syntax). We extend this notation
by using actor («), for a given trace «, to refer to the
set {actor(e) | (t,e) € a}. We require for an event
claim (B, e1,ez) that actor (e1) = actor (ez) = A.

A trace « is a finite sequence of timed-events a €
(R x Ev)*, representing the execution of a protocol.

Agents’ Knowledge: As the trace evolves, agents may
gain knowledge by receiving messages from other agents.
At the beginning of a protocol execution, every agent is
provided with an initial knowledge consisting of all agents’
names and constants, his own nonces and secret keys, and
all public keys. We use the function init: Agent — P (Msg)
to represent the initial knowledge of an agent:

init (A) = Agent U Const U Noncey U {sk(A)} U
{pk(B) | B € Agent} U {sh(A, B) | B € Agent},

where Nonce4 denotes the set of nonces for a given agent
A € Agent. We assume that {Nonce4|A € Agent} forms a
partition of the set Nonce.

Given an agent A and a trace o, dma(a) denotes the
set of all deducible messages from a trace «. This set is
inductively defined by the rules in Figure 3.

Network and Intruder: For a given protocol P, the
set of possible traces Tr (P) is inductively defined by the
Start rule (Start), the Intruder rule (Int), the Network
rule (Net) and the rules specifying the protocol. The Start,
Intruder and Network rules are depicted in Figure 4.

The rules make use of the function maxt: (RxEv)* — R,
defined as maxt(a) = maxy cyeq{t}, yields the latest time

m € init (A)
m € dmy (a)

(t,recva (m)) € a

m € dma (@)
m € dma (o)
feF\B
f(m) € dmy (a)
m € dma (o)
ke dma (o)
{m}, € dma (o)

my € dmy ()
ms € dma (a)

(my,ma) € dma («)

(my,mz) € dma (a)
ie{1,2}

m; € dma ()

{m}, € dma(a) k7' € dma(a)
m € dmy (@)

Figure 3. Rules for message deduction.

————— Start
e €Tr(P)

a € Tr(P) I € Dishonest
t > mazt(a) m € dmy(a)
a - (t,send; (m)[]) € Tr(P)
ac€Tr(P) t>maxt(x)

(t',send 4 (m) [s]) € «
t>t+d(AB)/c

a- (t,recvg (m)) € Tr (P)

Int

Net

Figure 4. Start, Intruder and Network rules.

at which an event of « occurred. The expression d(A, B)
gives the distance between two agents A and B based on
an uninterpreted function [: Agent — R3, which associates
each agent to a location in the real coordinate space R3. It is
worth remarking that this interpretation of location assumes
that agents are static, including dishonest agents.

The Start rule states that the empty trace € is always part of
the set of traces. The Intruder rule enables a dishonest agent,
typically known as the intruder or the adversary, to inject
(by sending) on the network any of his deducible messages.
Finally, the Network rule establishes that a message m sent
by and agent A can be received by an agent B without
violating a time/location constraint that we describe in the
next paragraph. This constraint is actually what makes this
model particularly different from standard security models.

The Network rule also enforces that a message sent by
an agent A and received by an agent B at times ¢ and ¢,
respectively, must satisfy d(A4, B) < (¢t —t’) - c. In this way
the physical law that messages cannot travel faster than the
speed of light is made explicit. Observe that message loss
is captured by not applying the network rule for a given
sending event.

Protocol Specification: A protocol is specified by a
set of rules similar to the rules in Figure 4. Two syntactic
restrictions (whose semantic interpretations will be given in

553

Section IV-A) are applied:

o Neither the premises nor the conclusion of a protocol
rule contain references to dishonest agents. This means
that the behavior of dishonest agents is fully specified
by the intruder rule.

The premise of a protocol rule cannot contain events
whose actors are not the same as the actor of the event
in the premise of the rule. That is to say, agents are
unaware of what other agents do. They can interact
exclusively through the network rule.

Example 1 (Hancke and Kuhn’s protocol). Figure 5 shows
the formalization of Hancke and Kuhn’s protocol [20] (see
the representation in Figure 2). The first four rules in
Figure 5 correspond to the four transmissions that take place
in the protocol. The receiving events are derived from the
network rule. The last rule from Figure 5 refers to the claim
event for the property secure distance-bounding represented
as “P is close” in Figure 2.

The function used: (R x Ev)* — P (Msg) defined as
used(a) = U e)eq subt(cont (€)), is utilized to make sure
that newly generated nonces are fresh, where subt: Msg —
P (Msg) indicates the set of atomic messages that are sub-
terms of a given message and cont: Ev — Msg gives us the
content of a given event. The function subt is recursively
defined as follows.

subt(mq) U subt(ms)
subt(mq) U subt(mz)
subt(myq)

{m}

Example 1 also illustrates the purpose of the information
in square brackets at the end of the send actions. In this
case, it is implicitly used to define the notion of a session,
by extending the send actions with the random nonces from
that session. Further, it is used to specify in which order the
events of a session will have to be executed.

Security Properties: The model uses claim events as
placeholders to indicate where a security property needs
to be satisfied. In this paper we focus on the property of
secure distance-bounding, which is syntactically represented
by claims of the form claimy (P, u,v), where V, P € Agent
and u,v € Ev. A claim event claimy (P, u,v) intuitively
means that the agent V' believes that the events u and v can
be used to correctly compute an upper bound on his distance
to P.

As the Intruder rule suggests, dishonest agents might
disclose their secret key material by sending them out. This
means that two dishonest provers might be indistinguishable
to a legitimate verifier. In other words, a verifier V' cannot
securely decide whether a particular dishonest prover P is
close, as another dishonest prover P’ could have obtained
all P’s secrets and therefore P’ can impersonate P. This
leads to the following statement: 1/ cannot claim that “P

if m = (my,mz)
l:fm: {ml}mQ
ifm= f(m)

otherwise .

subt(m) =

a€Tr(P) V &Honest t>maxt(a)
Ny € Noncey \ used ()

a - (t,sendy (Nv)[]) € Tr(P)

aeTr(P) P e€Honest t2>maxt(x)
(t',recvp (Ny)) €« Np € Noncep \ used(«)

« - (t,sendp (Np) [Nv}) e Tr (P)

a €Tr(P) V €Honest t>maxt(a)
(t',sendy (Ny)[]) € «
(t",recvy (Np)) € a C € Noncey \ used()

a - (t,sendy (C) [Ny, Np]) € Tr(P)
a€Tr(P) P ecHonest t>maxt(a)
(t',sendp (Np) [Ny]) € (t,recvp (C)) € &
- (t,sendp (h (sh(V, P), Ny, Np,C))|[]) € Tr(P)
a€Tr(P) V €Honest tw>maxt(a)
u = sendV (C) [NV7NP]

v = recvy (h (sh(V, P), Ny, Np,C))
(tu,u) € (tv,v) € «
a - (tw, claimy (P, u,v)) € Tr (P)

(0]

Figure 5. Formalization of Hancke and Kuhn’s protocol.

is close” but V can claim that “someone who knows P’s
secrets is close”, at most. To capture this notion, we define
the relation ~ C Agent x Agent as:

~ = {(A, A) | A € Honest} U Dishonest x Dishonest.

We use A % B to indicate that (A, B) ¢ ~. By considering
the relation ~, we provide next a formal definition of secure
distance-bounding.

Definition 1 (Secure distance-bounding). A protocol P
satisfies secure distance-bounding if and only if:

VYa € Tr(P),V, P € Agent,u,v,w € Ev, tw € R:
(tw,w) € a Aw = claimy (P,u,v) =
Ftu,tv € R, P’ € actor (c) :
(tu,u) € a A (tv,v) Ea NP~ P A

d(V, P') < %(w ~). 1)

A distance-bounding protocol is secure if the occurrence
of a claim event claimy (P,u,v) in a protocol execution
implies that V' has correctly computed an upper bound on
his distance to either P (if P is honest) or some dishonest
agent P’ (if P is dishonest).

Our definition of secure distance-bounding slightly dif-
fers from the original one provided by Basin et al., but
the difference is merely notational, allowing us to cleanly
formulate our main result in Section V. Note that claim
events are formulated in such a way that they relate to
a single challenge/response pair. Thus, similar to Basin

554

a€Tr(P) A€ Honest
Hello, Hi € Const (¢, recv4 (Hello)) € a

a-(t—1,sends (Hi)[]) € Tr (P)

Figure 6. A protocol rule that leads to incorrect traces.

et al’s approach, we will need to include several claim
events if the fast phase cannot be abstracted to a single
challenge/response pair.

IV. THE SEMANTIC DOMAIN

An important characteristic of Basin et al’s approach, as
presented in the previous section, is that security protocols
are specified using the same type of derivation rules as used
for the definition of the general semantics of the system.
Consequently, protocol specifications are much more liberal
than in comparable formal approaches that define a domain
specific language for the definition of protocols. Alternative
approaches, like the one by Cremers and Mauw [18] provide
a dedicated protocol specification language and impose
syntactical or semantical constraints to prevent users from
specifying meaningless or simply undesired protocols.

An example of a protocol rule that may be considered
undesirable is the one in Figure 6. It specifies that after
reception of the message Hello at time ¢, agent A sends a
message Hi back at time ¢—1. This is clearly an infringement
of a time consistency property, because it leads to the trace
(1,recv 4 (Hello)) - (0,send 4 (Hi) []).

The solution proposed by Basin et al. is to consider
only those traces that have non-decreasing timestamps for
subsequent events. In our approach we will take this line of
reasoning one step further, in that we will define a number of
assumptions that a proper semantics should satisfy and that
are sufficient to derive our main result. We will argue that
these properties are valid for the semantics from the previous
section, under the assumption of a class of “reasonable”
protocol specifications.

A. Basic Properties of the Semantics

In line with the previous example, the first property that
we formulate is time consistency. It states that events of a
trace are timestamped in non-decreasing order.

Property 1 (Time consistency). A protocol P satisfies time
consistency if for every frace « (t1,e1) - (tn,en) €
Tr (P), it holds that t1 < - -+ < t,.

The second property that we consider is speed-of-light
consistency. It states that all traces satisfy the restrictions of
the speed of light. In particular, this means that the time
between the sending of a message by agent A and the
reception of this message by agent B must be equal to or
larger than the distance between the two agents divided by
the speed of light.

Because this definition requires the correspondence be-
tween a send event and its related receive event, we define
the relation ~ C Send x Recv as follows:

~ = {(e,€') € Send x Recv | cont (e) = cont (¢')}.

The relation ~~ defines whether an event e’ is a receive
event that could have occurred as consequence of the send
event e. As followed from its formulation, ~» is not a one-
to-one relation. This lines up with the fact that it does not
need to be the case that there is a unique send event that
triggers a given receive event. In the semantics above, the
relation ~~ can be easily derived from the application of the
Network rule in Figure 4.

Property 2 (Speed-of-light consistency). A protocol P
satisfies speed-of-light consistency if for every trace o =
(ti,e1) - (tn, en) € Tr(P) the following holds: for all j €
{2,...,n}, if e; € Recv, then there exists i € {1,...,j—1}
such that e; ~ e; and t; —t; > d(e;,¢e;) /c.

Even though we define Properties 1 and 2 for protocols,
we will also use them in relation to traces. Thus we will talk
about time consistency and speed-of-light consistency of a
given trace, with the obvious interpretation.

The formulation of the remaining properties requires
the notion of untimed traces, or simply a sequence of
(untimed) events. The projection w(«) of a trace «
(t1,e1) - (tn,en) € (R x Ev)* is the untimed trace
e1 -+ -e, € Ev*. Likewise, the projection of the set of traces
is defined as 7(Tr (P)) = {7(«a) | @ € Tr (P)}. We say that
two traces v and 3 are content-wise equal, denoted o ~ o/,
if 7(a) = 7w(B).

The third property states that traces are built inductively
by appending events.

Property 3 (Prefix-closure). A protocol P is prefix-closed if
for every v = o-e € w(Tr (P)), it holds that o € ©(Tr (P)).

The fourth property expresses that the notion of time
is only used for the verifier’s decision-making process on
whether the prover passed the protocol or not. Time will
not be used to make any other decision during the execution
of the protocol (e.g., to take a different branch depending
on the time). This means that any trace can be retimed, as
long as it still satisfies time consistency and speed-of-light
consistency.

Property 4 (Time-unawareness). A protocol P is time-
unaware if for every trace o € Tr (P) the following holds:
for all time consistent and speed-of-light consistent traces

B € (R x Ev)*, a ~ 3 implies 3 € Tr (P).

As mentioned in Section III, different agents only interact
through the network via sending and receiving events. As a
consequence, a non-receive action can only be triggered by
the actor agent’s own preceding actions and another agent’s
actions in between can be disregarded or delayed. This leads

555

to the fifth property, locally-enabled events. We use untimed
events in order to easily express that the resulting trace o - e’
might require a re-timing of event e’.

Property 5 (Locally-enabled events). A protocol P satisfies
locally-enabled events if for every vy = o -e-€e’ € w(Tr (P))
such that ¢’ ¢ Recv and actor (e) # actor (€), it holds that
o-e €n(Tr(P)).

The locally-enabled events property allows non-receive
events to move left in a trace under specific conditions.
The next property expresses when a receive event can be
appended to a trace.

Property 6 (Transmission-enabled events). A protocol P
satisfies transmission-enabled events if for every y = o -e €
w(Tr (P)) and every €' € Recv such that e ~ €, it holds
that v - €' € w(Tr (P)).

Agents in the model are universally quantified. Therefore,
in a given trace we can replace an agent by another and still
obtain a valid trace, as long as both agents are either honest
or dishonest. An agent substitution is denoted by A — B
where A and B are agents. Given a message m € Msg,
m[A — B] represents the substitution of all occurrences in
m of A by B. We extend substitutions onto events and traces
in the obvious way.

Property 7 (Substitution-closure). A protocol P s
substitution-closed if for every o € w(Tr(P)) and every
A,B € Agent such that {A, B} C Honest or {A,B} C
Dishonest, it holds that o[A — B] € w(Tr (P)).

Observe that e ~ ¢’ implies e[A — B] ~ ¢'[A — B].
We say that a protocol is well-formed if it satisfies the seven
properties mentioned above.

B. Validity of the Properties

As stated in the beginning of the current section, the
mechanism for specifying protocols is too liberal to en-
sure the well-formedness properties. Therefore, we use a
restricted format for protocol rules inspired by the example
specification of Hancke and Kuhn’s protocol from Figure 5.
The restricted format is specified by the rule prototype in
Figure 7. We additionally require that p + ¢ > 0, A =
actor (e) = actor (e1) = actor (ez) - = actor (eq),
e ¢ Recv and none of the premises prem; involve any of
the timestamps ¢; or ¢. Even though the protocol format
is restricted with respect to the liberal format specified by
Basin et al., we conjecture that it is sufficiently expressive
to specify all relevant protocols from literature. We validate
this by specifying a number of protocols in this format and
analysing them with our implementation (see Section V).

Together with the Start, Intruder and Network rules from
Figure 4, the restricted format implies well-formedness of
the specified protocol. We will briefly argue the validity of
the properties under this restricted format. Time consistency

a€Tr(P) AcHonest t>mart(a)
premy prems prem,,
(ti,e1) € (t2,e2) € @ (tg,eq) €

a-(t,e) € Tr(P)

Figure 7. Prototype of rules that lead to well-formed protocols.

follows from the precondition ¢ > maxt(«) in the Intruder
and Network rules and in the restricted protocol rule. Speed-
of-light consistency follows from the precondition ¢ > ¢’ +
d (A, B) /c in the Network rule and the requirement that e ¢
Recv in the restricted protocol rule. Prefix-closure follows
from the precondition o € Tr (P) in all rules, together with
the fact that the conclusion extends this trace with a single
event. Time-unawareness follows from the fact that in the
construction of the traces any time ¢ > maxt(«) is allowed
for the next event, as long as speed-of-light consistency is
satisfied. The property locally-enabled events follows from
the requirement that a rule only concerns a single actor.
The transmission-enabled events property follows directly
from the Network rule. Substitution-closure expresses the
(implicit) universal quantification over agents’ names in all
rules.

V. CAUSALITY-BASED VERIFICATION

Given the definitions and properties from the previous
sections, we can now formulate the notion of causality-based
secure distance-bounding and prove that it is equivalent
to the original definition of secure distance-bounding from
Definition 1. The main feature of this new formulation is
that it is causality-based, i.e., it only takes into account
the relative occurrence of events, while ignoring the actual
timestamps of the events and agents’ locations.

This new formulation strongly relates to authentication
properties, such as aliveness (see [18]). It states that for
every claim that prover P is in the vicinity of verifier V, due
to a challenge event u and the reception of its corresponding
response event v in the fast phase, agent P (or a conspiring
agent, if P is dishonest) must have been active in between
these two events. The main difference with Definition 1 is
that we require the prover to be active, instead of measuring
the time between v and v.

Definition 2 (Causality-based secure distance-bounding).
A well-formed protocol P satisfies causality-based secure
distance-bounding if and only if:

Vo € n(Tr (P)),V, P € Agent,u,v € Ev:
claimy (P,u,v) € 0 = 3i,j, k€ {l,...,|o|}:

i<j<kANu=o0; Nv=o0 AP =actor(c;). (2)

In Definition 2 we formalize our causality-based notion
of secure distance-bounding. This formulation impacts only
the security analysis in the design stage. It does not affect

556

the runtime behavior of the agents executing the protocol.
In particular, the verifying agent still has to measure the
round-trip time of the message exchanges in the fast phase.

In the remainder of this section, we develop the proof
that the causality-based definition is equivalent to the secure
distance-bounding property from Definition 1. To do so,
we first present a few lemmas that follow from the basic
properties of the semantic domain described in Section IV-A.
They will prove useful when deriving our main result.

Given two events e,¢’ € Ev, we use d(e,e’) /c as a
shorthand notation for d (actor (e) , actor (¢')) /c. Also, we
say that two timed-events (¢, e), (¢, e’) € R x Ev satisfy the
time/location constraint if |[t' —t| > d (e, e’) /c. For example,
all pairs of events used in the network rule satisfy this
constraint. In addition, we define the predicate v (c), where
« is a trace, that holds if all pairs of consecutive timed-
events on « satisfy the time/location constraint. Likewise,
we say that timed-trace 3 is a subsequence of a timed-trace
a = (t1,e1) - (tn,en), denoted by B C «, if there exist
m € {0,...,n} and {w1,...,wyn} C{1,...,n} such that
wy < - < Wiy and B = (byys €0y) -+ (tw,, s €,y)-

In Lemma 1 below, we demonstrate that for any well-
formed protocol P, any valid timed-trace « - (¢,¢) € Tr (P)
must contain a subsequence [that is also a valid trace in
P, and contains (¢,e) and v (8). We use |.| to denote the
length of a (timed or not) trace, in terms of the number of
events.

Lemma 1. Let P be a well-formed protocol. Then the
following holds:

Va € Tr(P),(t,e) e Rx Ev: a-(t,e) € Tr(P) =
BEeTr(P): (t,e) e BABC a- (t,e) AN (B).

Proof: We will proceed by induction over |«|. The base
case |o| = O trivially holds by setting 8 = (¢, e). So, let
n € N\ {0} and assume by the induction hypothesis that
the lemma holds for all « € Tr (P) with |«| < n. Now, let
a=(t1,e1) - (tn,en) € Tr(P) and (t,e) € R x Ev such
that v = « - (t,e) € Tr (P). Let us analyse the two cases:

Case 1 (e € Recv): From Property 2 we have that
there exists ¢ € {1,...,n} such that ¢; ~> e and t — ¢; >
d (e;,e) /c. Consider o (ti,e1)---(ti—1,e;—1). Then,
from the induction hypothesis (given that |o'| =i—1<n
and o/ € Tr(P) due to Properties 3 and 4) it follows that
there exists 3’ € Tr (P) with (¢;,¢;) € 5 such that 8’ C o
and ¢ (8'). Thus, ¥ (') along with t —t; > d (e;, e) /c give
us that ¢ (8’ - (¢,e)) and S’ (¢, e) is time and speed-of-light
consistent.

Now, from Property 6 we derive w(5’) - e € 7(Tr (P)).
On the other hand, 5’ - (t,e) ~ 3" for some 8" € Tr(P)
such that 7(3') - e = w(8"”). Finally, Property 4 gives us
B (t,e) € Tr(P).

Case 2 (e ¢ Recv): Let i be the largest number in
{1,...,n} such that actor (e;) = actor (e). If i does not

exist, then from Property 5 we obtain that e € 7(Tr (P)) and
therefore (t,e) € Tr(P) for some ¢’ € R. Hence, as (t,e)
is time and speed-of-light consistent, Property 4 gives us
(t,e) € Tr(P) as (t,e) ~ (', e). Further, ¢ ((¢,¢e)) trivially
holds, which leaves us with the remaining case in which ¢
exists.

Let o = (t1,e1)---(t;,e;). Then, from the induction
hypothesis (given that /| =i—1 < n and &/ € Tr (P) due
to Properties 3 and 4) it follows that there exists 5’ € Tr (P)
with (¢;,e;) € 8’ such that 5’ C o' and ¢ (8’). Thus, ¢ (')
along with t—t; > d (e;, e) /c = 0 give us that ¢ (5’ - (¢, €))
and 8’ - (t,e) is time and speed-of-light consistent.

Now, from Property 6 we derive w(3’) - e € 7(Tr (P)).
On the other hand, 3’ - (t,e) ~ 3" for some 5" € Tr(P)
such that 7(3") = w(B’) - e. Finally, Property 4 gives us
B (t,e) € Tr(P). [

Lemma 2 below is an extension of Lemma 1. It states
that if a valid trace « satisfies ¢ («), then not only any
pair of consecutive events in « satisfy the time/location
constraint but also any pair of events in «.. The proof follows
from the application of the triangle inequality d (e, ¢e’) /c +
d(e',e")/c > d(e,e”) /c, for all e,e’,e” € Ev, given that
d models physical distances.

Lemma 2. Let P be a well-formed protocol and o € Tr (P)
such that ¢ («). Then for all (t,e),(t',€') € a it holds that
[t —t'| > d(e,e) /c

Proof: Let « (t1,e1) - (tn,en) and 4,5 €
{1,...,n}. Assume without loss of generality that ¢ < j.
Given that ¥ () we have that t, —t,—1 > d(ez—1,€z) /C
forall z € {i+1,...,;}. Hence,

= (tj —tj—1) + (tj—1 — tj—2) + -+ (tig1 — ts)
> d(ei,eir1) /c+d(eirr,ei2) [c+ -+
d(ej-1,¢;5) /c.)

Thus, by applying the triangle inequality in Equation 3
above, we obtain ¢; —t; > d(e;, €;) /c. [|

The last lemma of this section concerns agent substi-
tutions. We extend Property 7 from the set of untimed-
traces 7(Tr (P)) of a given protocol P to the set of timed-
traces Tr (P). The lemma proves that, given a protocol’s
valid trace o = (t1,e1) - (tn, €n), it is possible to replace
an agent A by another agent B (under certain conditions
described in the lemma) to obtain another valid trace o =
(th,€ey)---(t,,el) such that the difference between ¢, and
t; only depends on the number of events before the i-th
event on « that were executed by A. Consequently, the time-
difference between two events of o where A does not act
is equal to the time-difference between the corresponding
events of /. This is actually a strong result because it
implicitly shows that event-intervals where the prover does
not act cannot be used to securely upper-bound the prover-
to-verifier distance.

ty—t;

557

Lemma 3. Let P be a well-formed protocol and o
(t1,e1) -+ (tn,en) € Tr(P). Let A € actor(a), B €
Agent \ actor (a) such that either {A, B} C Honest or
{A,B} C Dishonest. Then there exists © € Rxq such
that o' (th,el) - (t,,el) € Tr(P) where for all
i €{1,...,n} it holds that:

/
€;

=e¢;[A B and t; = t; + pu - q;, where
g =|{je{l,...,i—1}| actor (e;) = A} + s;, and
s; = 1if (A= actor(e;) A e; € Recv), or otherw. s; = 0.

Proof: Consider the set R = {B} U actor («) and
r)?gﬁ{d (A, X) /c}. We will proceed to prove that

1

o' € Tr(P). To do so we will first prove time and speed-
of-light consistency for «/'.

Time consistency: For all i € {1,...,n — 1}, we have
that g;11 > ¢; and therefore ¢, | —t; = tj11 —t; + p -
(@iv1 — qi) > tiz1 —t; > 0.

Speed-of-light consistency: Let j € {1,...,n} such
that e; € Recv. Also, as « is speed-of-light consistent, we
derive that there exists ¢ < j such that e; ~ e; and t; —1; >
d(ei, ej) /c. Hence, given that e} ~~ €/, it becomes sufficient
to prove that ¢ —t; > d (e}, €;) /c. Let us consider the three
cases:

1) A = actor (e;). In this case ¢; > ¢; + 1 because e; ¢
Recv. Therefore t;» —t>t—ti+u>d (e;, e;) /c
as pu > d(ef, ¢}) Jc.

A # actor (e;) and A = actor (¢;). In this case we
have again q; > ¢; + 1 as e; € Recv, and it follows
analogously to the previous case.

A ¢ {actor (e;),actor (e;)}. This case gives us
actor (e;) = actor (¢€}) and actor (e;) = actor (e;).
Thus, d (e;,e;) /c = d (€], €;) /c and therefore th —

2)

3)

ti=t;—ti+p (g —a) thj —t; > d (e e5) [c=
d(ej,€}) /e
Thus, o’ is time consistent and speed-of-light consistent.
Consider now ¢ = m(«). From Property 7 we have that
o[A — B] € 7(Tr(P)). Therefore, there exists v € Tr (P)
such that w(vy) = o[A — B]. Finally, given that v ~ o/,
from Property 4 we obtain o’ € Tr (P). [

Theorem 1. A well-formed protocol P satisfies secure
distance-bounding (Definition 1) if and only if P satisfies
causality-based secure distance-bounding (Definition 2).

Proof: We will proceed by proving Sufficiency (i.e.,
Equation 1 = Equation 2) and Necessity (i.e., Equation 2
= Equation 1):

Sufficiency: Assume Equation 1 holds and Equation 2
does not. Our goal is to reach a contradiction. The statement
that Equation 2 does not hold is equivalent to stating that
there exist 0 = 01 - - -0, € ©(Tr (P)), V, P € Agent, u,v €

Ev and [€ {1,...,n} such that o; = claimy (P, u,v) and:

Vi, k€ {1,...,n}:
u=o0, ANv=0,ANi<j<k = P#% actor(o;). (4)

Consider now the following sets:

IK = {(i,k) e NxN|o; =uAop =0},
J={jeN |36,k eIK:i<j<k}
{G1,...,Gg} ={G € actor (o) | P = G}.

If P is honest, then the set {G1,..., Gy} consists of the
singleton {P}, otherwise it contains all dishonest agents
acting in o.

Let Eve,Charlie € Agent \ actor (o) be two dif-
ferent agents such that {P, Eve, Charlie} C Honest or
{P, Eve,Charlie} C Dishonest.

Consider the sequence of traces o!,...,09"1 €
7(Tr (P)) such that o' = o and for all i € {1,...,g},
otl = ¢'[G; — FEve]. The fact that o!,... 09! €
7(Tr (P)) follows from the substitution-closedness property.
Hence, let e; - - e, = 0971, i.e., the trace resulting from o

after the successive substitutions of all agents G1,...,Gg
by Fwve. Therefore N C Agent exists such that:
actor (e - -e,) = {V, Eve} UN and

VE € N: Eve % E. ®))

Let t1,...,t, € Rsuchthat (t1,e1) - (tn,en) € Tr (P).
Observe that the ¢;’s exist because e; ---e, € w(Tr(P)).
Hence, from Equations 1 and 5 and given that ¢
claimy (Eve, e;, ex) for some (i,k) € IK, we derive that
0 € Rxq exists such that:

d(V, Eve) 4+ 6 = (6)

C

2 (i,km)aeb)}}({tk ik
From Lemma 3 we have that there exist 4 € Ry,

(th,el)---(t,,e) € Tr(P) and ¢1,...,g, € N such

that for all ¢ € {1,...,n}, € ei[Eve — Charlie]

and t, = t; + pu - g; (see the construction of the ¢;’s in

Lemma 3). On the other hand, from Equation 4 we have

that Vj € J: Eve # actor (e;). Therefore
V(i k) € IK : t), — t, =ty — t;.

(N

Furthermore, given that {FEve, Charlie} C Honest or
{Ewve, Charlie} C Dishonest, it holds that:

actor (¢} -+ -e)) = {V,Charlie} U N and

VC € N: Charlie % C.

®)
Again, e = claimy (Charlie, e}, e,) for some (i, k) €

IK, so from Equations 1 and 8 we derive:

‘ c
d(V,Charlie) < 3 (i’r]?)sg}]{{tk —t}.

©))

Finally, from Equations 6, 7 and 9 we derive that
d(V,Charlie) < d(V,Eve) + 6. This is a contradiction,

558

as 0 does not depend on Charlie who is an arbitrary agent
from the same set as P in Honest or Dishonest. Therefore
we can always find C'harlie such that his distance to V' is
larger than d(V, Eve) + 6.

Necessity: Assume Equation 2 holds. We will prove
that Equation 1 holds as well. Let o € =«(Tr(P)) and
a € Tr(P) such that o m(a). Let V,P € Agent,
u,v,w € Ev and tw € R such that (tw,w) € « and
w = claimy (P, u,v). Also, let 8 € Tr (P) such that 8 C a,
(tw,w) € B and ¥ (B). Observe that 3 exists because of
Lemma 1.

From Equation 2 and given that w(8) € 7(Tr(P)), we
have that there exist tu’, tv’ € R, P’ € Agent and (t,¢e) € 8
such that P’ = actor (e), tu’ < t < ', (tu',u) € S,
(tv',v) € B and P ~ P’. Hence, Lemma 2 gives us:

d(e,v) + d(u,e)

' —tu = (t' —t) + (t —tu) >

c
2d (V, P Jc,

which proves Equation 1 as (tu’,u) € f C a, (tv',v) €
B Caand (tw,w) € BC a. [
The result obtained from Theorem 1 means that, within
the semantic domain described in Section IV-A, the se-
cure distance-bounding property can be verified by simply
analysing the ordering of events in the traces. Therefore, the
notions of time and location are indeed unnecessary for the
symbolic verification of distance-bounding protocols.

VI. AUTOMATED VERIFICATION

We implemented the causality-based definition of secure
distance-bounding in the software tool Tamarin [15]. This
allowed us to automatically verify the (in)security of 13
distance-bounding protocols and their variations. The source
code of our implementation can be freely accessed online'.
A discussion on the Tamarin tool and its specifics can be
found in the appendix.

To explain the overall methodology we use to analyse
distance-bounding protocols, we perform a comprehensive
analysis of the Terrorist-fraud Resistant and Extractor-free
Anonymous Distance-bounding (TREAD) protocol [24] in
Section VI-A. Later on, in Section VI-B we show and
discuss the results of our automated verification.

A. Breaking the TREAD Protocol

The TREAD protocol was claimed to satisfy various
security properties, making use of the computational model
DFKO introduced in [8]. Relaying on this model, a proof
is given to show probabilistic resistance’ against mafia-
fraud, distance-fraud, terrorist-fraud, and distance-hijacking
attacks. However, by using our framework, we have iden-
tified mafia-fraud and distance-hijacking attacks on this
protocol.

! At http://satoss.uni.lu/software/DB Verify/
2No attack succeeds with non-negligible probability.

Verifier V Prover P
k=L dec. key k: enc. key
Slow phase
Pick o, 8 € {0,1}*"
o = {|Blidpriv(P) }sk(p)
L —— e={alBloh
Pick m € {0,1}" —nu"——
Fast Phase
fori=0ton—1
Pick ¢; € {0,1}
Start Clock —%
o «; ife; =0
717{ﬁi@mi lfQ:l
VI & S
Stop Clock
store At;

Final phase
If all r;’s and At;’s
are correct,
then Outy = 1;

O
else Outy =0 utv

- -

Figure 8. The TREAD protocol.

TREAD consists of three phases (see Figure 8). First,
the prover P generates two nonces « and (3, and creates
the message o a|Blidpriv(P), where idpriv(P) is an
anonymous group identity. This message is signed by P and
sent encrypted to the verifier V, together with P’s identity
idpub(P). Upon reception, V' decrypts the message and
verifies the signature. If correct, V finishes the first phase
by sending a random nonce m of size n to P. The second
phase is a standard n-round fast phase wherein V' sends a
random bit ¢; with ¢ € {0,...,n — 1} and P replies back
with «; if ¢; = 0, with 8; & m; otherwise. The protocol
finishes successfully if all responses during the fast phase
are correct and the round-trip times are below a predefined
threshold (third phase).

To symbolically verify TREAD, we transform the fast
phase into a single challenge-response message exchange
(see Figure 9). We also ignore details that are irrelevant
to our security analysis, such as the anonymous identity
of the prover, and upgrade bitwise operations to stronger
cryptographic primitives, such as a hash function. Overall,
our goal is to obtain an abstraction of the original protocol
such that every attack found in the abstraction can be
mapped back onto the original protocol.

TREAD can be instantiated with either a symmetric or
an asymmetric encryption scheme. We thus specified in
Tamarin two variants of the TREAD protocol: one where
k is a symmetric key and another one where k is an asym-
metric key. In the second variant, Tamarin finds a simple
man-in-the-middle attack that violates the secure distance-
bounding property. The attack is depicted in Figure 10 and
works as follows. An intruder I initiates a session with the
prover P by requesting P to prove proximity. P then sends
the message ({o, 5, {a, B}sr(p)}pr(r), P) to I. Now the

559

nonces m, ¢

nonces a, 3

o = {a, Bsr(p)
{Oé, B~, O}kv P
m
c
”””” fleomaf) |
< P isclose >
I

Figure 9. A representation of the TREAD protocol.

intruder decrypts the received message, learns the nonces
« and 3, and re-encrypts the message with the public key
of the verifier. Next, the intruder starts a session with a
legitimate verifier V' with goal of impersonating P. To do so,
I sends ({c, B,{c, B}sk(P) tpk(vy; P) to V. Then V checks
that the signed message {«, B}Sk(p) indeed corresponds to
P, and sends back two nonces m and c. The attack ends
with the intruder correctly replying to the challenges with
fle,m,a, B).

Observe that the attack described above and depicted in
Figure 10 not only breaks standard authentication properties
such as agreement and synchronization [18], [39], but also
the secure distance-bounding property as follows. Assume
P is far from V' and the intruder wants to convince V that
P is close. To do so, the intruder just needs to be close to
V' and executes the attack above. Note that the fast phase
corresponds to the events containing the messages ¢ and
f(e,m,a, 8), which the intruder can successfully produce
without relaying.

Interesting enough, if k is a symmetric key the described
mafia-fraud attack does not work. The reason is that the
intruder does not know the secret key shared between P
and V. Thus the intruder is prevented from re-encrypting the
message received from P with the correct key. Nevertheless,
a distance-hijacking type of attack exists irrespective of the
encryption scheme. The attack is represented in Figure 11.
Assume an honest prover P is close to the verifier V', while
the intruder I is far from V. As before, P executes the
protocol to prove its proximity to I. This allows I to learn
« and S. Thus [starts a session with V' by using the nonces
o and @ from P. At this point, V believes I is a legitimate
prover and accept its signature. During the fast phase, P,
which is close to V, receives the challenge (supposedly from
I) sent by V' and replies correctly. Then V' receives the
response f(c,m,«,) (supposedly from I) from P who is
close to V, and finishes the protocol with I correctly.

Neither of the two described attacks are possible when

Intruder

nonces m, ¢ nonces a, 8
o = {e, Blsup)
{aa 67 U}pk([): P
{O[./ ﬁa U}pk(V)7 P
m
C
f(C, m, &, 6)
I I

Figure 10. A mafia fraud on TREAD with asymmetric encryption.

Intruder

[T]

nonces m, ¢ nonces a, 3
o= {a7 5}sk(P)
{e, 8,0} sn,py, P
o' ={a, BYern
{Oé, 57 o sh(V,I)» I
m
c
f(c‘ m7 a7)
I I

Figure 11. A distance hijacking on TREAD with symmetric encryption.

considering the adversary model used by the authors of the
TREAD protocol, because their model does not allow for
“malicious” verifiers. In their model an honest prover will
fail to initiate a communication with an untrusted verifier
as the first message in each attack will not be sent. This
adversary model is weaker than other models that are more
common in the distance-bounding literature.

B. Verification Results and Discussion

We applied the above analysis methodology on a number
of distance-bounding protocols. To the best of our knowl-
edge, this is the first large-scale automated security analysis
of distance-bounding protocols in literature.

Table I summarizes the results of the verification. The
columns Code and Time refer to the code complexity (num-
ber of lines of code) and the verification execution time (in
seconds), respectively. To measure execution time, we ran

560

Table I
VERIFICATION OF A SET OF PROTOCOLS IN TAMARIN. PROTOCOLS
MARKED WITH * AND ** HAVE IDENTICAL FORMALIZATION,

RESPECTIVELY.
Protocol Attacks Code (lines) Time (s)
BC-Signature [5] DH 185 5.98
BC-FiatShamir [5]* DH, DF 189 6.51
BC-Schnorr [5]* DH, DF 189 6.51
CRCS [21] DH 182 5.56
Meadows et al. [23] DH 226 18.59
Tree-based [26]** None 186 2.51
Poulidor [27]** None 186 2.51
Hancke and Kuhn [20]** None 186 2.51
Uniform [28]** None 186 2.51
Kim and Avoine [29] None 184 1.76
Munilla et al. [30] None 193 3.24
Reid et al. [40] None 192 2.74
Swiss-Knife [41] None 207 2.92
TREAD-PK [24] MF 195 4.50
TREAD-SH [24] DH 201 6.01
PaySafe [25] DF 222 15.59

the verification 10 times for each protocol and computed
the average time. The column Atfacks indicates the type of
attack found (if any) by Tamarin: mafia fraud (MF), distance
fraud (DF), or distance hijacking (DH). The protocols were
verified by using a 64-bit Ubuntu 16.04 LTS computer with
15.5 Gb of RAM memory and a processor Intel Core i7-
6700HQ CPU @ 2.60GHz x 8.

We remark that the Tree-based, Poulidor, Hancke and
Kuhn’s and Uniform protocols have equivalent Tamarin
implementation as their symbolic formalization is the same.
Similarly, the Brands and Chaum’s (BC) protocol versions
with Fiat-Shamir and Schnorr identification schemes have
also the same representation. When verifying these two
versions of the protocol, we found a distance-fraud attack
against them. However, as the authors have pointed out, such
an attack is no longer possible if a challenge/response causal
relation is used during the fast phase, such as the XOR
operation employed in the signature-based version of the
protocol.

On average, the Tamarin implementation of a protocol
consists of 194 lines of code and the verification takes 5.62
seconds. A total of 5 protocols (and their variations) were
found vulnerable to attacks, of which 3 had been already re-
ported flawed in the literature. The two remaining protocols
are TREAD (whose analysis was detailed in Section VI-A)
and PaySafe [25].

Figure 12 shows a representation of the PaySafe protocol,
which is a variant of the classical EMV contactless payment
protocol. PaySafe features a distance-bounding mechanism

ATC, secret Ky

nonce n¢

secret Ky
nonce UN

Hello
UN, amount

Ks={ATC}y,,
AC:MACKS(amount,ATC,UN)

SDAD={nc,UN,AC}c)
SDAD, AC

< C'is close > ATC + +

Figure 12. A representation of the PaySafe protocol.

to avoid relay attacks. Although not in contradiction with the
authors’ claim regarding PaySafe security, our Tamarin ver-
ification found a successful distance-fraud attack against it.
This attack is possible as there is no causal relation between
the challenge and response in the fast phase (dashed arrows).
Consequently, a dishonest prover C' can send (ATC,n¢)
before receiving (UN, amount). A simple solution to this
attack is to include the nonce U N in the response message.

When considering distance hijacking, our security analy-
sis is consistent with the analysis performed by Cremers et
al. in [10]. That is to say, in general protocols based on the
Brand and Chaum’s design (see Section II, third paragraph)
are vulnerable to this type of attacks, whereas those based
on Hancke and Kuhn’s are not. In addition, we observed that
protocols following Hancke and Kuhn’s approach seem to
be resistant not only to distance hijacking but also to mafia
and distance frauds.

A few of the analysed protocols have been automatically
verified in previous works. Those protocols are Brands and
Chaum’s and its variations, as well as Meadows et al’s
with F(...) (Nv,Np & P), which were verified in
Isabelle/HOL? by using Basin et al’s model [13], [19]. No
formal symbolic verification (automatic or not) has been
reported for the rest of the protocols from Table I.

Our method compares well with the Isabelle/HOL im-
plementation of Basin et al. While our approach is fully
automatic, proving a protocol insecure with Isabelle/HOL
requires user-assistance to prove the existence of an attack
trace. In addition, the code complexity of a protocol when
implemented in Isabelle/HOL tends to be much larger.
For example, the implementation of Brands and Chaum’s
protocol consists of 185 lines of Tamarin code, whilst the
Isabelle implementation (including attack trace) takes 653.

3 At http://www.infsec.ethz.ch/research/software/protoveriphy.html

561

VII. CONCLUSION AND FUTURE WORK

In this work, we addressed the topic of formal verification
of distance-bounding protocols. We described and analysed
a tool-supported verification framework by Basin et al. [13],
[19] based on timed-events and agents’ locations. By con-
sidering the language and semantics of this formalism, we
characterized a semantic domain of well-formed distance-
bounding protocols in which the timestamps associated to
the agents’ actions are only utilized for proximity verifica-
tion purposes and not for, e.g., taking a different branch in
the execution. This is not a trivial class of distance-bounding
protocols but it contains, to the best of our knowledge, all
protocols published to date. Our main result consists of the
first causality-based security model for symbolic verification
of distance-bounding protocols, which we prove equivalent
to Basin et al’s model.

Our proposal does not consider time and location, but
is instead based on the order of events in the execution
traces. By implementing our proposed model in the Tamarin
verification tool, we automatically verified various state-of-
the-art protocols. It is therefore the first fully automated for-
mal verification framework for distance-bounding protocols.
With our automated verification, we identified unreported
vulnerabilities in two recent protocols: a mafia-fraud and a
distance-hijacking attack on the TREAD protocol [24], and
a distance-fraud attack against the EMV-based contactless
payment protocol PaySafe [25].

As future work, we plan to extend the formalism to
capture terrorist-fraud attacks (which are not covered in
Basin et al’s model either), and formalize the different at-
tacks and protocols’ characteristics to prevent them. We also
plan to extend our methodology as to capture probabilistic
reasoning in a causality-based model. This will allow us to
automatically determine the probability of success of a given
attack against a distance-bounding protocol.

ACKNOWLEDGMENT

This work was supported by the Luxembourg National
Research Fund under the grants AFR-PhD-10188265 and
C15-1S-10428112.

REFERENCES

[1] Y. Desmedt, C. Goutier, and S. Bengio, “Special uses and
abuses of the fiat-shamir passport protocol,” in CRYPTO’87,
1987, pp. 21-39.

[2] A. Francillon, B. Danev, and S. Capkun, “Relay attacks on

passive keyless entry and start systems in modern cars,” in

Proceedings of the Network and Distributed System Security

Symposium, NDSS 2011, San Diego, California, USA, 6th

February - 9th February 2011, 2011.

[3] S. Bengio, G. Brassard, Y. Desmedt, C. Goutier, and

J. Quisquater, “Secure implementations of identification sys-

tems,” J. Cryptology, vol. 4, no. 3, pp. 175-183, 1991.

(4]

(1]

(6]

(71

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

T. Beth and Y. Desmedt, “Identification tokens - or: Solving
the chess grandmaster problem,” in CRYPTO’90, 1990, pp.
169-177.

S. Brands and D. Chaum, “Distance-bounding protocols,” in
EUROCRYPT 93, 1993, pp. 344-359.

Y. Desmedt, “Major security problems with the
"unforgeable’ (feige)-fiat-shamir proofs of identity and
how to overcome them,” in SECURICOM’SS, 1988, pp.
15-17.

G. Avoine, M. A. Bingdl, S. Kardas, C. Lauradoux, and
B. Martin, “A framework for analyzing RFID distance bound-

ing protocols,” Journal of Computer Security, vol. 19, no. 2,
pp- 289-317, 2011.

U. Diirholz, M. Fischlin, M. Kasper, and C. Onete, “A formal
approach to distance-bounding RFID protocols,” in Informa-
tion Security, 14th International Conference, ISC 2011, Xi’an,
China, October 26-29, 2011. Proceedings, 2011, pp. 47-62.

I. Boureanu and S. Vaudenay, “Optimal proximity proofs,”
in Information Security and Cryptology - 10th International
Conference, Inscrypt 2014, Beijing, China, December 13-15,
2014, Revised Selected Papers, 2014, pp. 170-190.

C. J. E Cremers, K. B. Rasmussen, B. Schmidt, and S. Cap-
kun, “Distance hijacking attacks on distance bounding proto-
cols,” in S&P’12, 2012, pp. 113-127.

D. Dolev and A. C. Yao, “On the security of public key pro-
tocols,” IEEE Transactions on Information Theory, vol. 29,
no. 2, pp. 198-207, 1983.

I. C. Boureanu, A. Mitrokotsa, and S. Vaudenay, “Towards
secure distance bounding,” in Fast Software Encryption — 20th
International Workshop, FSE 2013, ser. LNCS, S. Moriai,
Ed., vol. 8424. Singapore, Republic of Singapore: Springer,
February 2013, invited Talk by Serge Vaudenay.

P. Schaller, B. Schmidt, D. A. Basin, and S. Capkun, “Mod-
eling and verifying physical properties of security protocols
for wireless networks,” in CSF’09, 2009, pp. 109-123.

T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL
- A Proof Assistant for Higher-Order Logic, ser. LNCS.
Springer, 2002, vol. 2283.

S. Meier, B. Schmidt, C. Cremers, and D. A. Basin, “The
TAMARIN prover for the symbolic analysis of security
protocols,” in CAV’13, 2013, pp. 696-701.

B. Blanchet, “An Efficient Cryptographic Protocol Verifier
Based on Prolog Rules,” in CSFW’01, 2001, pp. 82-96.

C. J. F. Cremers, “The Scyther tool: Verification, falsification,
and analysis of security protocols,” in CAV’08, 2008, pp. 414—
418.

C. Cremers and S. Mauw, Operational Semantics and Verifi-
cation of Security Protocols. Springer, 2012.

D. A. Basin, S. Capkun, P. Schaller, and B. Schmidt, “Let’s
get physical: Models and methods for real-world security
protocols,” in TPHOLs’09, 2009, pp. 1-22.

562

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

G. P. Hancke and M. G. Kuhn, “An RFID distance bounding
protocol,” in SecureComm’05, 2005, pp. 67-73.

K. B. Rasmussen and S. Capkun, ‘“Realization of RF distance
bounding,” in USENIX Security’10, 2010, pp. 389-402.

S. Capkun, L. Buttydn, and J. Hubaux, “SECTOR: secure
tracking of node encounters in multi-hop wireless networks,”
in Proceedings of the 1st ACM Workshop on Security of ad
hoc and Sensor Networks, SASN 2003, Fairfax, Virginia, USA,
2003, 2003, pp. 21-32.

C. A. Meadows, R. Poovendran, D. Pavlovic, L. Chang, and
P. F. Syverson, “Distance bounding protocols: Authentication
logic analysis and collusion attacks,” in Secure Localization
and Time Synchronization for Wireless Sensor and Ad Hoc
Networks, 2007, pp. 279-298.

G. Avoine, X. Bultel, S. Gambs, D. Gérault, P. Lafour-
cade, C. Onete, and J. Robert, “A terrorist-fraud resistant
and extractor-free anonymous distance-bounding protocol,”
in Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, AsiaCCS 2017, Abu
Dhabi, United Arab Emirates, April 2-6, 2017, 2017, pp. 800—
814.

T. Chothia, F. D. Garcia, J. de Ruiter, J. van den Breekel, and
M. Thompson, “Relay cost bounding for contactless EMV
payments,” in Financial Cryptography and Data Security -
19th International Conference, FC 2015, San Juan, Puerto
Rico, January 26-30, 2015, Revised Selected Papers, 2015,
pp. 189-206.

G. Avoine and A. Tchamkerten, “An efficient distance bound-
ing RFID authentication protocol: Balancing false-acceptance
rate and memory requirement,” in ISC’09, 2009, pp. 250-261.

R. Trujillo-Rasua, B. Martin, and G. Avoine, “The poulidor
distance-bounding protocol,” in RFIDSec’10, 2010, pp. 239—
257.

S. Mauw, J. Toro-Pozo, and R. Trujillo-Rasua, “A class of
precomputation-based distance-bounding protocols,” in Eu-
roS&P’16, 2016, pp. 97-111.

C. H. Kim and G. Avoine, “RFID distance bounding protocol
with mixed challenges to prevent relay attacks,” in CANS’09,
2009, pp. 119-133.

J. Munilla and A. Peinado, “Distance bounding protocols
for RFID enhanced by using void-challenges and analysis
in noisy channels,” Wireless Communications and Mobile
Computing, vol. 8, no. 9, pp. 1227-1232, 2008.

S. Mauw, J. Toro-Pozo, and R. Trujillo-Rasua, “Optimality
results on the security of lookup-based protocols,” in Radio
Frequency Identification and loT Security - 12th International
Workshop, RFIDSec 2016, Hong Kong, China, November 30
- December 2, 2016, Revised Selected Papers, 2016, pp. 137—
150.

A. O. Giirel, A. Arslan, and M. Akgiin, “Non-uniform
stepping approach to RFID distance bounding problem,” in
DPM’10/SETOP’10, ser. LNCS, vol. 6514, 2011, pp. 64-78.

(33]

[34]

(35]

(36]

[37]

(38]

[39]

[40]

(41]

(42]

[43]

S. Kardas, M. S. Kiraz, M. A. Bingdl, and H. Demirci, “A
novel RFID distance bounding protocol based on physically
unclonable functions,” in RFIDSec’11, ser. LNCS, vol. 7055.
Springer, 2012, pp. 78-93.

C. H. Kim and G. Avoine, “RFID distance bounding protocols
with mixed challenges,” IEEE Trans. on Wireless Comm.,
vol. 10, no. 5, pp. 1618-1626, 2011.

S. Malladi, B. Bruhadeshwar, and K. Kothapalli, “Auto-
matic analysis of distance bounding protocols,” CoRR, vol.
abs/1003.5383, 2010.

C. Popper, N. O. Tippenhauer, B. Danev, and S. Capkun,
“Investigation of signal and message manipulations on the
wireless channel,” in ESORICS’11, 2011, pp. 40-59.

M. Fischlin and C. Onete, “Terrorism in distance bound-
ing: Modeling terrorist-fraud resistance,” in Proceedings of
the 11th International Conference on Applied Cryptography
and Network Security, ser. ACNS’13. Berlin, Heidelberg:
Springer-Verlag, 2013, pp. 414-431.

S. Vaudenay, “On modeling terrorist frauds,” in Proceedings
of the 7th International Conference on Provable Security -
Volume 8209, ser. ProvSec 2013. New York, NY, USA:
Springer-Verlag New York, Inc., 2013, pp. 1-20.

G. Lowe, “A hierarchy of authentication specifications,” in
Proceedings 10th Computer Security Foundations Workshop,
Jun 1997, pp. 31-43.

J. Reid, J. M. G. Nieto, T. Tang, and B. Senadji, “Detecting
relay attacks with timing-based protocols,” in Proceedings of
the 2007 ACM Symposium on Information, Computer and
Communications Security, ASIACCS 2007, Singapore, March
20-22, 2007, 2007, pp. 204-213.

C. H. Kim, G. Avoine, F. Koeune, F. Standaert, and O. Pereira,
“The swiss-knife RFID distance bounding protocol,” in In-
Sformation Security and Cryptology - ICISC 2008, 11th In-
ternational Conference, Seoul, Korea, December 3-5, 2008,
Revised Selected Papers, 2008, pp. 98—-115.

J. Dreier, C. Duménil, S. Kremer, and R. Sasse, “Beyond
subterm-convergent equational theories in automated verifi-
cation of stateful protocols,” in International Conference on
Principles of Security and Trust. Springer, 2017, pp. 117-
140.

M. Arapinis, J. Phillips, E. Ritter, and M. D. Ryan, “Statverif:
Verification of stateful processes,” Journal of Computer Se-
curity, vol. 22, no. 5, pp. 743-821, 2014.

563

APPENDIX
TAMARIN SPECIFICS

In this section we discuss relevant aspects of the Tamarin
tool and the implementation of the secure distance-bounding
property. First, a brief overview of the tool as well as
its strengths and limitations are given. An introduction
to the specification language that Tamarin uses follows.
Finally, we provide a specification of the causality-based
secure distance-bounding security claim inside Tamarin, and
discuss some of the details behind how the tested protocols
were implemented.

A. The Tamarin Prover Tool

The Tamarin prover is a software tool for automatic
verification of security protocols. Tamarin makes use of
multiset rewriting systems to specify the protocols.

The Tamarin implementations are in some cases not able
to precisely reproduce the original protocols, and must make
overestimations. Although Tamarin allows for a user-defined
equational theory, it is required to be subterm convergent.
Ongoing work, such as that of Dreier et al. [42] continues
to reduce these restrictions.

The stateful environment that Tamarin uses means that
it will never identify false attacks (e.g., it will never claim
that there is an attack when one does not exist). This is in
contrast to other verification tools, such as ProVerif [43],
which can find false attacks. In the other direction, Tamarin
is also sound in its analysis: if a claim is verified, then
there indeed exist no traces that violate this claim. This
property extends to the protocol that is being modelled, up
to the accuracy of the implementation of protocol rules and
equational theory. For example, Tamarin does not identify
the probabilistic attack on Hancke and Kuhn’s protocol
(mentioned in Section II), as the function used during the fast
phase is abstracted to a secure hash function. Tamarin is not
guaranteed to terminate for all claims, but in our case study
no such problems arose, with all protocols taking less than
20 seconds (< 6 on average) to either successfully verify or
provide an attack trace.

B. Tamarin Specification Language

Tamarin uses a specification language built on multiset
rewriting. The elements of the multiset are facts: first order
logic terms built from a fact name and a number of subterms.
Subterms are built from atoms of type Pub or Fresh. Note
that Fresh corresponds directly to Nonce as defined in the
paper, and that Pub is assumed by design to include Agent
from the paper as a subset. Msg is a superset of these, and
security claims can make use of terms of type Temporal
(a discrete type with partial order). However, atoms of type
Temporal are never used inside a protocol rule. Atoms can
also be either variables or constants. Constants are almost
always public (and indeed are in all of our implemented
protocols).

Atoms are extended to the full set of terms by function
symbols and an equational theory. These are defined entirely
by the user, with the only exception being the 2-ary function
symbol (_, _), 1-ary function symbols fst(_) and snd(_) and

the equations

fst((z,y)) =«

In general, equational theories must be subterm conver-
gent. Tamarin allows the importing of some stronger pre-
built equational theories with more capabilities, such as fully
modelling the exponentiation rules necessary for using the
Diffie-Hellman scheme.

Tamarin reserves some fact names. Fr(n) represents the
generation of a fresh nonce n. In(z) and Out(x) represent
the sending or receiving of the message x from the network.
K(z) represents the adversary knowing the term z. Unless
the type of an atom is explicitly denoted, it is always
assumed to be of type Msg. For clarity’s sake, it is assumed
that the arity of a fact name is constant over all instances of
it in a protocol specification.

A protocol rule is written as a ‘left-hand side’ and a ‘right-
hand side’, each a sequence of facts. The starting state of the
protocol is the empty multiset. If the variables in the left-
hand side of a rule can be instantiated in such a way that
it is a subset of the current multiset, then the rule can be
executed, with the (instantiated) facts in the left-hand side
removed from the state and replaced with the facts in the
right-hand side.

Tamarin supports two special kind of facts. Persistent facts
may appear on the left-hand side of a rewrite rule, but are not
removed from the multiset as a consequence of its execution.
Action facts may only appear on the right-hand side of a
protocol rule. All security claims are made based on the
presence and ordering of these Action facts, and so protocol
rules are in fact written as:

snd((z,y)) =y

[LHS]-—[ACTION]->[RHS]

For example, the sending of a freshly generated nonce onto
the network might be written as:

[Fr("n)]--[SendNonce (™ n)]->[Out("n)]

where ~ indicates that n is of the type Fresh.

Security claims are first order logic statements based on
the action facts in the protocol specification. For example,
suppose that a protocol’s intended execution ends with the
rule:

[In(n)]1-—-[Secret(n)]1->[]

The fact name Secret(n) has been chosen to suggest that
the agent enacting the rule believes the value n to be a
secret. The corresponding security claim might read as in
Figure 13, which is interpreted as: “For any value n and
event t such that it is believed that n is secret at event t,

564

lemma Secrecy:

"

All n #t. Secret (n)@t ==>
not (Ex #s K(x)@s)

Figure 13. The Tamarin lemma Secrecy.

is it not the case that there is a corresponding event at s in
which the adversary knows n”.

The Tamarin adversary follows the Dolev-Yao model [11],
assuming full control over the network. It automatically
makes use of the equational theory provided to deduce as
much information as possible, and has free choice in the
order of protocol rules chosen and the choice of instantiation
for the variables. We provide the adversary with the addi-
tional power to corrupt certain agents, gaining knowledge of
their long term secrets. Security claims are made with this
in mind, in line with how the language introduced in the
paper does not discriminate between dishonest agents.

C. Implementation Details

The definition of the causality-based secure distance-
bounding property is not immediately compatible with the
specification model that Tamarin uses. We note the following
factors:

1) The definition uses a claim event that refers specifi-
cally to other events (which mark the start and end of
the fast phase). Tamarin does not allow for an event
to be one of the subterms of a fact.

2) The specification language partitions agents into the
sets Honest and Dishonest of honest agents (who
attempt to perfectly follow the protocol’s intended
execution) and dishonest agents (who are willing to
make use of other rules in order to violate security
properties). Tamarin carries no understanding of the
intended execution of a protocol. Further, Tamarin
does not inherently carry the notion of agents, al-
though they are trivially modelled by public variables.
The adversary is not considered an agent in Tamarin,
and the sending of messages by the adversary is
modelled using built-in rewriting rules that are often
not straightforward to write claims around.

3) The security property is dependent on the identity of
the actor of an event: i.e. the agent who performed the
action. Tamarin does not explicitly attach an identity
to a rewriting rule’s application, as a consequence of
agents not being an inherent feature of Tamarin.

These issues were addressed as follows:

1) In order to model claim events, state facts con-
taining session data were used. In particular, the
VerifierComplete(params) state fact was added to all
rewrite rules designed to symbolise that the verifier

role believes they successfully completed the protocol
with session data params. The term params is built
from all session data added to the protocol in the order
that it is added. This necessarily includes two public
variables to model the identities of the prover and
verifier, as well as at least one fresh variable used in
the protocol execution. However, different protocols
make use of different numbers of fresh variables,
so the number of them inside this state fact varies
slightly. The state facts StartFastPhase(data) and
EndFastPhase(data) model the start and end of the
fast phase as defined by the protocol specification.
Note that in protocols involving pre-commitments, the
verifier is not fully aware of the value of all of the
session data at the start or end of the fast phase, and
S0 it is not necessarily the case that params and data
will be equal. However, the subterms of data are a
strict subset of the subterms of params.

Assuming that the session data of a protocol is dif-
ferent between different runs of the protocol, the sub-
terms of the VerifierComplete fact refer unambigu-
ously to the corresponding state facts for the denoting
fast phase. If a protocol does not have different session
data between executions, it is trivially vulnerable to
replay attacks.

Agents are modelled in protocol specifications as
public terms. Rewrite rules are included to model an
agent receiving any secret keys or other information
they have at the start of a protocol’s execution. In this
case, we see facts of the form Ltk(A, k), denoting
that the agent A has key k. Additional rewrite rules
are added for the corruption of agents (in which a
fact containing a secret key is sent on to the network,
revealing the identity of the agent), and also to model
a corrupt agent sending a message on the network.
This is important for adding state facts to symbolise
the adversary acting during the fast phase.

For the secure distance-bounding claim to make sense
the identity of the prover must be used in the protocol
in some way: either their identity is used in a message,
or the prover possesses a long-term secret key used
in a calculation. This could be for symmetric or
asymmetric encryption, or in some cases for signed
hashes. Any multiset rule that uses an agent’s identity
(or carries session data from an earlier rule in the
protocol which does) is marked with the state fact
Action(agent).

2)

3)

With these in mind, the Tamarin lemma dbsec is defined
in Figure 14. This lemma can be understood as meaning
that whenever a verifier reaches the end of their protocol
execution, one of three following events is possible:

1) The verifier is corrupt: they have revealed their long
term secret key to the adversary, making their claim

565

lemma dbsec:

All P Vmn #t. (

VerifierComplete (P, V, m, n)@t) ==>
(
Ex #tc.
Corrupt (V) @tc
) 1«

Ex #tl #t2 #t3.
StartFastPhase (V, m)@tl &
Action (P)Qt2 &
EndFastPhase (V, m)@t3 &
(#t1 < #t2) &

(#t2 < #t3) &
((#£3 < #t) | (#t3 = #t))
)1«

Ex CAgent #t4 #t5 #t6 #t7.
StartFastPhase (V, m)@t5 &
EndFastPhase (V, m)Q@t7 &
Corrupted (P, V)@t4 &
CAction (CAgent) @t6 &

(#t5 < #t6)&
(#t6 < #t7)s&
((#E£7 < #t) | (#t7 = #t))

Figure 14. The Tamarin lemma dbsec.

invalid.

Between the start and end of the fast phase, the agent
P that the verifier believes is close performed some
action.

The agent P that the verifier believes is close has
revealed their long term secret key to the adversary.
Between the start and end of the fast phase, some
corrupt agent (who may be P or another agent who
has revealed their long-term key) performed an action.

2)

3)

Our implementations of the protocols also involve a num-
ber of reachability lemmas. These lemmas are not related to
the main dbsec lemma, but instead prove that the protocol
has been implemented in such a way that the various
stages of the protocol can be reached as per their intended
execution. If the end of the protocol is not reachable, then
the dbsec property is trivially true.

Finally, the protocol implementations include some trace
restrictions, also known as axioms. These are claims that
are assumed to be true when Tamarin constructs proofs for
the lemmas. The main axioms used are at_most_once
(Figure 15) and equality (Figure 16).

The axiom at_most_once is used to ensure that a
single agent (or pair of agents) may only be given a single
long term key (or shared key, respectively), and the axiom

axiom at_most_once:
All A #tl1 #t2.
Once (A)@tl & Once (A)@t2 ==>
(
#tl = #t2

Figure 15. The Tamarin axiom at_most_once.

axiom equality:
n

All a b #tl. Eg(a, b)@tl ==> a =D

Figure 16. The Tamarin axiom equality.

equality serves to verify that an equation holds: typically
used in the case of verifying that a signature lines up with
the message it is intended to be signing.

D. Expressiveness and Abstraction

The Tamarin verifier supports stateful protocol specifica-
tions: where the output of the system is dependent on the
internal state, potentially causing repeated executions to have
differing consequences. The specification model provided in
Section V is built in a stateless manner, but allows for this
extension in a natural way. Of the protocols analysed, the
PaySafe protocol is the only one which contains stateful
components (in the form of an incrementing counter, ATC
in Figure 12). The attack provided on PaySafe can be
identified in a stateless variant of the protocol and shown
to hold even in the full version.

A key advantage with our form of automated verification
is that the protocol specification and associated security
claim are disjoint (save for markers indicating which events
the claim is made about). This means that the security
definition does not need to be adapted in order to be
compatible with a given protocol, and the analyst can focus
on attempting to represent the protocol’s specification as
faithfully as possible. There is occasional need for the
analyst to make decisions about the abstraction of certain
details (such as which aspects of the equational theory
behind the exclusive-OR operator should be available), but
this is a consequence of the limitations of the verification
tool, not the specification model.

566

